362
Views
9
CrossRef citations to date
0
Altmetric
Review

Mitochondrial dysfunctions in HIV infection and antiviral drug treatment

&
Pages 1043-1052 | Received 11 May 2019, Accepted 11 Nov 2019, Published online: 18 Nov 2019

References

  • Nicastri E, Tommasi C, Abbate I, et al. Effect of raltegravir on the total and unintegrated proviral HIV DNA during raltegravir-based HAART. Antivir Ther. 2011;16:797–803.
  • Eley B. Metabolic complications of antiretroviral therapy in HIV-infected children. Expert Opin Drug Metab Toxicol. 2008. DOI:10.1517/17425255.4.1.37
  • Fiala M, Murphy T, MacDougall J, et al. HAART drugs induce mitochondrial damage and intercellular gaps and gp120 causes apoptosis. Cardiovasc Toxicol. 2004;4:327–337.
  • Apostolova N, Blas-Garcia A, Esplugues VJ. Mitochondrial toxicity in HAART: an overview of in vitro evidence. Curr Pharm Des. 2011. DOI:10.2174/138161211796904731.
  • Margolis AM, Heverling H, Pham PA, et al. A review of the toxicity of HIV medications. J Med Toxicol. 2014;10:26–39. .
  • Lewis W, Day BJ, Copeland WC. Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov. 2003;2:812–822.
  • Velichkovska M, Surnar B, Nair M, et al. Targeted mitochondrial COQ 10 delivery attenuates antiretroviral-drug-induced senescence of neural progenitor cells. Mol Pharm. 2019. DOI:10.1021/acs.molpharmaceut.8b01014.
  • Stevens P, Gawryluk J, Hui L, et al. Creatine protects against mitochondrial dysfunction associated with HIV-1 tat-induced neuronal injury. Curr HIV Res. 2015;12:378–387.
  • Grayson ML, Cosgrove SE, Crowe SM, et al. Kucers’ the use of antibiotics: A clinical review of antibacterial, antifungal, antiparasitic, and antiviral drugs. In: Kucers the Use of Antibiotics: A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, Seventh Edition (pp. 1–4841). CRC Press; 2017. DOI:10.1201/9781315152110.
  • Pham PA, Gallant JE. Tenofovir disoproxil fumarate for the treatment of HIV infection. Expert Opin Drug Metab Toxicol. 2006;2:459–469.
  • Vermeulen J, Van Der Valk M. Etravirine. In: Kucers the use of antibiotics: a clinical review of antibacterial, antifungal, antiparasitic, and antiviral drugs. Seventh Edition (pp. 1–4841). CRC Press. 2017. DOI:10.1201/9781315152110.
  • Colombier MA, Molina JM. Doravirine: A review. Curr Opin HIV AIDS. 2018. DOI:10.1097/COH.0000000000000471
  • Findlay VJ Ritonavir. xPharm: The Comprehensive Pharmacology Reference. 2011. doi:10.1016/B978-008055232-3.62543-7
  • Othumpangat S, Noti JD. Antiviral drugs. Side Eff Drugs Annu. 2018. DOI:10.1016/bs.seda.2018.08.005
  • Jacobson JM, Kuritzkes DR, Godofsky E, et al. Safety, pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected adults. Antimicrob Agents Chemother. 2009. DOI:10.1128/AAC.00942-08.
  • Tseng A, Hughes CA, Wu J, et al. Cobicistat versus ritonavir: similar pharmacokinetic enhancers but some important differences. Ann Pharmacother. 2017. DOI:10.1177/1060028017717018
  • Skowron G. ddC (zalcitabine). Adv Exp Med Biol. 1996;394:257–69. DOI: 10.1007/978-1-4757-9209-6_23
  • Scott LJ, Perry CM. Delavirdine: a review of its use in HIV infection. Drugs. 2000. DOI:10.2165/00003495-200060060-00013
  • Findlay VJ Nelfinavir. xPharm: The Comprehensive Pharmacology Reference. 2011. doi:10.1016/B978-008055232-3.62257-3
  • Sadler BM, Stein DS. Clinical pharmacology and pharmacokinetics of amprenavir. Ann Pharmacother. 2002. DOI:10.1345/aph.10423
  • Weston MD Amprenavir. xPharm: The Comprehensive Pharmacology Reference. 2007. doi:10.1016/B978-008055232-3.61228-0
  • Deeks ED. Elvitegravir: A review of its use in adults with HIV-1 infection. Drugs. 2014. DOI:10.1007/s40265-014-0206-8
  • Lu G, Matsuura SE, Barrientos A, et al. HIV-1 infection is blocked at an early stage in cells devoid of mitochondrial DNA. PLoS One. 2013;8:1–12.
  • Bacman SR, Moraes CT. Transmitochondrial technology in animal cells. Methods Cell Biol. 2007;503–524. DOI:10.1016/S0091-679X(06)80025-7
  • Somasundaran M. Localization of HIV RNA in mitochondria of infected cells: potential role in cytopathogenicity. J Cell Biol. 1994;126:1353–1360.
  • Lee-Huang S, Lin Huang P, Lee Huang P. Live-cell real-time imaging reveals role of mitochondria in cell-to-cell transmission of HIV-1. Biochem Biophys Res Commun Elsevier Inc. 2011;415:384–389.
  • Yan N, Chen ZJ. Intrinsic antiviral immunity. Nat Immunol. 2012;214–222. DOI:10.1038/ni.2229
  • Mills EL, Kelly B, O’Neill LAJ. Mitochondria are the powerhouses of immunity. Nat Immunol. 2017;488–498. DOI:10.1038/ni.3704
  • Maagaard A, Holberg-Petersen M, Kollberg G, et al. Mitochondrial (mt)DNA changes in tissue may not be reflected by depletion of mtDNA in peripheral blood mononuclear cells in HIV-infected patients. Antivir Ther. 2006;11:601–608.
  • Arnoult D, Petit F, Lelièvre JD, et al. Mitochondria in HIV-1-induced apoptosis. Biochem Biophys Res Commun. 2003;304:561–574.
  • Février M, Dorgham K, Rebollo A. CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis. Viruses. 2011;3:586–612.
  • Ohta A, Nishiyama Y. Mitochondria and viruses. Mitochondrion. 2011;11:1–12. Elsevier B.V. and Mitochondria Research Society.
  • Rozzi SJ, Avdoshina V, Fields JA, et al. Human immunodeficiency virus tat impairs mitochondrial fission in neurons. Cell Death Discov. 2018;4. DOI:10.1038/s41420-017-0013-6
  • Teodorof-Diedrich C, Spector SA. Human immunodeficiency virus type 1 gp120 and tat induce mitochondrial fragmentation and incomplete mitophagy in human neurons. J Virol. 2018;92. DOI:10.1128/jvi.00993-18
  • Roda RH, Hoke A. Mitochondrial dysfunction in HIV-induced peripheral neuropathy. Int Rev Neurobiol. 2019;145:67–82. DOI:10.1016/bs.irn.2019.04.001.
  • Rumlová M, Křížová I, Keprová A, et al. HIV-1 protease-induced apoptosis. Retrovirology. 2014;11:1–15.
  • Garg H, Mohl J, Joshi A. HIV-1 induced bystander apoptosis. Viruses. 2012;4:3020–3043.
  • Haughey NJ, Mattson MP. Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins tat and gp120. JAIDS J Acquir Immune Defic Syndr. 2002;31:S55–S61.
  • Fields JA, Serger E, Campos S, et al. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders. Neurobiol Dis. 2016;86:154–169.
  • Shah A, Vaidya NK, Bhat HK, et al. HIV-1 gp120 induces type-1 programmed cell death through ER stress employing IRE1α, JNK and AP-1 pathway. Sci Rep. 2016. DOI:10.1038/srep18929
  • Ferri KF, Jacotot E, Blanco J, et al. Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases. J Exp Med. 2000;192:1081–1092.
  • Avdoshina V, Fields JA, Castellano P, et al. The HIV protein gp120 alters mitochondrial dynamics in neurons. Neurotox Res. 2016;29:583–593. Springer US.
  • Joshi A, Nyakeriga AM, Ravi R, et al. HIV ENV glycoprotein-mediated bystander apoptosis depends on expression of the CCR5 co-receptor at the cell surface and ENV fusogenic activity. J Biol Chem. 2011;286:36404–36413.
  • Perfettini JL, Castedo M, Roumier T, et al. Mechanisms of apoptosis induction by the HIV-1 envelope. Cell Death Differ. 2005;12:916–923.
  • Zauli G, Gibellini D, Secchiero P, et al. Human immunodeficiency virus type 1 Nef protein sensitizes CD4(+) T lymphoid cells to apoptosis via functional upregulation of the CD95/CD95 ligand pathway. Blood. 1999;93:1000–1010.
  • Muratori C, Cavallin LE, Krätzel K, et al. Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe. 2009. DOI:10.1016/j.chom.2009.06.009.
  • Muthumani K. HIV-1 Nef-induced FasL induction and bystander killing requires p38 MAPK activation. Blood. 2005;106:2059–2068.
  • Lenassi M, Cagney G, Liao M, et al. HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic. 2010;11:110–122.
  • Wang T, Green LA, Gupta SK, et al. Transfer of intracellular HIV Nef to endothelium causes endothelial dysfunction. PLoS One. 2014;9. DOI:10.1371/journal.pone.0091063.
  • Acheampong EA, Parveen Z, Muthoga LW, et al. Human immunodeficiency virus type 1 Nef potently induces apoptosis in primary human brain microvascular endothelial cells via the activation of caspases. J Virol. 2005;79:4257–4269.
  • Fujii Y, Otake K, Tashiro M, et al. Soluble Nef antigen of HIV-1 is cytotoxic for human CD4+ T cells. FEBS Lett. 1996;393:93–96.
  • James CO, Huang M-B, Khan M, et al. Extracellular Nef protein targets CD4+ T cells for apoptosis by interacting with CXCR4 surface receptors. J Virol. 2004;78:3099–3109.
  • Giacca M. HIV-1 Tat, apoptosis and the mitochondria: A tubulin link? Retrovirology. 2005;2:4–7.
  • Chen D, Wang M, Zhou S, et al. HIV-1 Tat targets microtubules to induce apoptosis, a process promoted by the pro-apoptotic Bcl-2 relative Bim. Embo J. 2002;21:6801–6810.
  • Rozzi SJ, Avdoshina V, Fields JA, et al. Human immunodeficiency virus Tat impairs mitochondrial fission in neurons. Cell Death Discov. 2018;4:8.
  • Thangaraj A, Periyasamy P, Liao K, et al. HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy. 2018;14:1596–1619. Taylor & Francis.
  • Deniaud A, Brenner C, Kroemer G. Mitochondrial membrane permeabilization by HIV-1 Vpr. Mitochondrion. 2004;4:223–233.
  • Huang CY, Chiang SF, Lin TY, et al. HIV-1 Vpr triggers mitochondrial destruction by impairing Mfn2-mediated ER-mitochondria interaction. PLoS One. 2012;7. DOI:10.1371/journal.pone.0033657
  • Jacotot E, Ferri KF, El Hamel C, et al. Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein R and Bcl-2. J Exp Med. 2001;193:509–519.
  • Hima Bindu A, Naga Anusha P. Adverse effects of highly active anti-retroviral therapy (HAART). J Antivirals Antiretrovir. 2011;3:060–064.
  • Hooker DJ, Cherry CL. Apoptosis: a clinically useful measure of antiretroviral drug toxicity? Expert Opin Drug Metab Toxicol. 2009;5:1543–1553. DOI:10.1517/17425250903282781
  • Blas-Garcia A, Apostolova N, Esplugues JV. Oxidative stress and mitochondrial impairment after treatment with anti-HIV drugs: clinical implications. Curr Pharm Des. 2011;17:4076–4086.
  • de Clercq E, DC E. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29:695–747.
  • Sluis-Cremer N, Alpay Temiz N, Bahar I. Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Curr HIV Res. 2004. DOI:10.2174/1570162043351093
  • Sluis-Cremer N, Tachedjian G. Mechanisms of inhibition of HIV replication by non-nucleoside reverse transcriptase inhibitors. Virus Res. 2008;134:147–156.
  • de Béthune MP. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989–2009). Antiviral Res. 2010;85:75–90.
  • Lewis W. Nucleoside reverse transcriptase inhibitors, mitochondrial DNA and AIDS therapy. Antivir Ther. 2005;10(Suppl_2): M13–M27.
  • Lewis W. Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy. Prog Cardiovasc Dis. 2003. DOI:10.1053/pcad.2003.3b
  • Dalakas MC, Illa I, Pezeshkpour GH, et al. Mitochondrial myopathy caused by long-term zidovudine therapy. N Engl J Med. 1990;322:1098–1105.
  • Arnaudo E, Shanske S, DiMauro S, et al. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet. 1991. DOI:10.1016/0140-6736(91)91294-5.
  • Côté HCF, Brumme ZL, Craib KJP, et al. Changes in mitochondrial DNA as a marker of nucleoside toxicity in HIV-infected patients. N Engl J Med. 2002;346:811–820.
  • Lewis W, Gonzalez B, Chomyn A, et al. Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria. J Clin Invest. 1992. DOI:10.1172/JCI115722
  • Koczor CA, Lewis W. Nucleoside reverse transcriptase inhibitor toxicity and mitochondrial DNA. Expert Opin Drug Metab Toxicol. 2010;6:1493–1504.
  • Kakuda TN. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther. 2000;22:685–708.
  • Benbrik E, Chariot P, Bonavaud S, et al. Cellular and mitochondrial toxicity of zidovudine (AZT), didanosine (ddI) and zalcitabine (ddC) on cultured human muscle cells. J Neurol Sci. 1997;149:19–25.
  • Medina DJ, Tsai CH, Hsiung GD, et al. Comparison of mitochondrial morphology, mitochondrial DNA content, and cell viability in cultured cells treated with three anti-human immunodeficiency virus dideoxynucleosides. Antimicrob Agents Chemother. 1994;38:1824–1828.
  • Chen CH, Vazquez-Padua M, Cheng YC. Effect of anti-human immunodeficiency virus nucleoside analogs on mitochondrial DNA and its implication for delayed toxicity. Mol Pharmacol. 1991 May;39(5):625–628.
  • Pan-Zhou XR, Cui L, Zhou XJ, et al. Differential effects of antiretroviral nucleoside analogs on mitochondrial function in HepG2 cells. Antimicrob Agents Chemother. 2000. DOI:10.1128/AAC.44.3.496-503.2000
  • Wright DW, Sadiq SK, De Fabritiis G, et al. Thumbs down for HIV: domain level rearrangements do occur in the nnrti-bound hiv-1 reverse transcriptase. J Am Chem Soc. 2012;134:12885–12888.
  • Apostolova N, Gomez-Sucerquia LJ, Gortat A, et al. Compromising mitochondrial function with the antiretroviral drug efavirenz induces cell survival-promoting autophagy. Hepatology. 2011;54:1009–1019.
  • Apostolova N, Gomez-Sucerquia LJ, Gortat A, et al. Autophagy as a rescue mechanism in Efavirenz-induced mitochondrial dysfunction: A lesson from hepatic cells. Autophagy. 2011;7:1402–1404.
  • Ganta KK, Mandal A, Chaubey B. Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol. 2017;33:69–82.
  • Polo M, Alegre F, Funes HA, et al. Mitochondrial (dys)function - A factor underlying the variability of efavirenz-induced hepatotoxicity? Br J Pharmacol. 1713–1727;2015(172). DOI:10.1111/bph.13018
  • Purnell PR, Fox HS. Efavirenz induces neuronal autophagy and mitochondrial alterations. J Pharmacol Exp Ther. 2014;351:250–258.
  • Blas-García A, Apostolova N, Ballesteros D, et al. Inhibition of mitochondrial function by efavirenz increases lipid content in hepatic cells. Hepatology. 2010;52:115–125.
  • Decloedt EH, Maartens G. Neuronal toxicity of efavirenz: a systematic review. Expert Opin Drug Saf. 2013;12:841–846.
  • Funes HA, Blas-garcia A, Esplugues JV, et al. Efavirenz alters mitochondrial respiratory function in cultured neuron and glial cell lines. J Antimicrob Chemother. 2015;70:2249–2254.
  • Fortuin-De Smidt M, De Waal R, Cohen K, et al. First-line antiretroviral drug discontinuations in children. PLoS One. 2017;12:1–9.
  • Ganta KK, Mandal A, Debnath S, et al. Anti-HCV activity from semi-purified methanolic root extracts of valeriana wallichii. Phyther Res. 2017;31:433–440.
  • Imaizumi N, Kwang Lee K, Zhang C, et al. Mechanisms of cell death pathway activation following drug-induced inhibition of mitochondrial complex I. Redox Biol Elsevier. 2015;4:279–288.
  • Wongtrakul J, Paemanee A, Wintachai P, et al. Nevirapine induces apoptosis in liver (HepG2) cells. Asian Pac J Trop Med. 2016. DOI:10.1016/j.apjtm.2016.04.015.
  • Paemanee A, Sornjai W, Kittisenachai S, et al. Nevirapine induced mitochondrial dysfunction in HepG2 cells. Sci Rep. 2017;7:9194.
  • Blas-García A, Polo M, Alegre F, et al. Lack of mitochondrial toxicity of darunavir, raltegravir and rilpivirine in neurons and hepatocytes: A comparison with efavirenz. J Antimicrob Chemother. 2014;69:2995–3000. England.
  • Bertrand L, Toborek M. Dysregulation of endoplasmic reticulum stress and autophagic responses by the antiretroviral drug efavirenz. Mol Pharmacol. 2015;88:304–315.
  • Weiß M, Kost B, Renner-Müller I, et al. Efavirenz causes oxidative stress, endoplasmic reticulum stress, and autophagy in endothelial cells. Cardiovasc Toxicol. 2016;16:90–99.
  • Apostolova N, Gomez-Sucerquia LJ, Alegre F, et al. ER stress in human hepatic cells treated with efavirenz: mitochondria again. J Hepatol. 2013;59:780–789.
  • Rock BM, Hengel SM, Rock DA, et al. Characterization of ritonavir-mediated inactivation of cytochrome P450 3A4. Mol Pharmacol. 2014;86:665–674.
  • Scholar E HIV protease inhibitors. xPharm: The Comprehensive Pharmacology Reference. 2011. doi:10.1016/B978-008055232-3.61025-6
  • Leung D, Abbenante G, Fairlie DP. Protease inhibitors: current status and future prospects. J Med Chem. 2000;305–341. DOI:10.1021/jm990412m
  • Of I, Inhibitors D, Pepsin RTO. NIH public access. Proteins. 2010;75:556–568.
  • Boesecke C, Cooper DA. Toxicity of HIV protease inhibitors: clinical considerations. Curr Opin HIV AIDS. 2008;653–659. DOI:10.1097/COH.0b013e328312c392
  • Badley AD. In vitro and in vivo effects of HIV protease inhibitors on apoptosis. Cell Death Differ. 2005;12:924–931.
  • Mukhopadhyay A, Wei B, Zullo SJ, et al. In vitro evidence of inhibition of mitochondrial protease processing by HIV-1 protease inhibitors in yeast: A possible contribution to lipodystrophy syndrome. Mitochondrion. 2002;1:511–518.
  • Estaquier J, Lelievre J-D, Petit F, et al. Effects of antiretroviral drugs on human immunodeficiency virus type 1-induced CD4+ T-cell death. J Virol. 2002;76:5966–5973.
  • Gibellini L, De Biasi S, Pinti M, et al. The protease inhibitor atazanavir triggers autophagy and mitophagy in human preadipocytes. AIDS. 2012;26:2017–2026.
  • Sham HL, Kempf DJ, Molla A, et al. ABT-378, a highly potent inhibitor of the human immunodeficiency virus protease. Antimicrob Agents Chemother. 1998;42:3218–3224.
  • Shafran SD, Mashinter LD, Roberts SE. The effect of low-dose ritonavir monotherapy on fasting serum lipid concentrations. HIV Med. 2005;6:421–425.
  • Gatti G, Di Biagio A, Casazza R, et al. The relationship between ritonavir plasma levels and side-effects: implications for therapeutic drug monitoring. Aids. 1999;13:2083–2089.
  • VA E, Back DJ, Barry MG. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol. 2003;44:190–194.
  • Schmidtke G, Holzhütter HG, Bogyo M, et al. How an inhibitor of the HIV-I protease modulates proteasome activity. J Biol Chem. 1999;274:35734–35740.
  • Hill A, Van Der Lugt J, Sawyer W, et al. How much ritonavir is needed to boost protease inhibitors? Systematic review of 17 dose-ranging pharmacokinetic trials. Aids. 2009;23:2237–2245.
  • Pérez-Valero I, Arribas JR. Protease inhibitor monotherapy. Curr Opin Infect Dis. 2011;24:7–11.
  • Ganta KK, Chaubey B. Endoplasmic reticulum stress leads to mitochondria-mediated apoptosis in cells treated with anti-HIV protease inhibitor ritonavir. Cell Biol Toxicol. 2018. DOI:10.1007/s10565-018-09451-7
  • Quashie PK, Sloan RD, Wainberg MA. Novel therapeutic strategies targeting HIV integrase. BMC Med. 2012;10:34.
  • Métifiot M, Marchand C, Pommier Y. HIV integrase inhibitors. 20-year landmark and challenges. Adv Pharmacol. 2013;67:75–105.
  • Peñafiel J, De Lazzari E, Padilla M, et al. Tolerability of integrase inhibitors in a real-life setting. J Antimicrob Chemother. 2017;72:1752–1759.
  • Díaz-Delfín J, Domingo P, Giralt M, et al. Maraviroc reduces cytokine expression and secretion in human adipose cells without altering adipogenic differentiation. Cytokine. 2013;61:808–815.
  • Beccari MV, Mogle BT, Sidman EF, et al. Ibalizumab, a novel monoclonal antibody for the management of multidrug-resistant HIV-1 infection. Antimicrob Agents Chemother. 2019. DOI:10.1128/AAC.00110-19
  • Boon L, Holland B, Gordon W, et al. Development of anti-CD4 MAb hu5A8 for treatment of HIV-1 infection: preclinical assessment in non-human primates. Toxicology. 2002. DOI:10.1016/S0300-483X(02)00002-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.