326
Views
6
CrossRef citations to date
0
Altmetric
Review

An outlook on the trigeminovascular mechanisms of action and side effects concerns of some potential neuropeptidergic antimigraine therapies

ORCID Icon, , & ORCID Icon
Pages 179-199 | Received 15 Sep 2020, Accepted 23 Nov 2020, Published online: 20 Jan 2021

References

  • Headache classification committee of the international headache society (IHS) the international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38:1–211.
  • Goadsby PJ, Holland PR, Martins-Oliveira M, et al. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev 2017;97:553–622.
  • Villalón CM, MaassenVanDenBrink A The role of 5-hydroxytryptamine in the pathophysiology of migraine and its relevance to the design of novel treatments. Mini Rev Med Chem 2017;17:928–938.
  • de Vries T, Villalón CM, MaassenVanDenBrink A. Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans.Pharmacol Ther 2020;211: 107528
  • Villalón CM, Olesen J The role of CGRP in the pathophysiology of migraine and efficacy of CGRP receptor antagonists as acute antimigraine drugs. Pharmacol Ther 2009;124:309–323.
  • Ashina M, Hansen JM, Do TP, et al. Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol 2019;18:795–804.
  • Ceriani CEJ, Wilhour DA, Silberstein SD Novel medications for the treatment of migraine. headache. 2019;59:1597–1608.
  • Rivera-Mancilla E, Villalón CM, MaassenVanDenBrink A CGRP inhibitors for migraine prophylaxis: a safety review. Exp Opin Drug Saf 2020; DOI:10.1080/14740338.2020.1811229.
  • Tepper SJ Acute Treatment of Migraine. Neurol Clin 2019;37:727–742.
  • Strother LC, Srikiatkhachorn A, Supronsinchai W Targeted orexin and hypothalamic neuropeptides for migraine. Neurotherapeutics. 2018;15:377–390.
  • González-Hernández A, Marichal-Cancino BA, MaassenVanDenBrink A, et al. Side effects associated with current and prospective antimigraine pharmacotherapies. Exp Opin Drug Metab Toxicol 2018;14:25–41.
  • Jacobs B, Dussor G Neurovascular contributions to migraine: moving beyond vasodilation. Neuroscience. 2016;338:130–144.
  • Goadsby PJ The vascular theory of migraine – a great story wrecked by the facts. Brain. 2009;132:6–7.
  • Shevel E The extracranial vascular theory of migraine – a great story confirmed by the facts. Headache. 2011;51:409–417
  • Goadsby PJ Migraine – A disorder involving trigeminal brainstem mechanisms. In: Basbaum AI, ed. Science of Pain, 1st. USA: Elsevier; 2009:461–468.
  • Burstein R, Noseda R, Borsook D Migraine: multiple processes, complex pathophysiology. J Neurosci 2015;35:6619–6629.
  • Strassman AM, Raymond SA, Burstein R Sensitization of meningeal sensory neurons and the origin of headaches. Nature. 1996;384:560–564.
  • Yamamura H, Malick A, Chamberlin NL, et al. Cardiovascular and neuronal responses to head stimulation reflect central sensitization and cutaneous allodynia in a rat model of migraine. J Neurophysiol 1999;81:479–493.
  • Goadsby PJ, Edvinsson L, Ekman R Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol 1990;28:183–187
  • Schulte LH, May A The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain. 2016;139:1987–1993.
  • Schulte LH, Allers A, May A Hypothalamus as a mediator of chronic migraine: evidence from high-resolution fMRI. Neurology. 2017;88:2011–2016.
  • Bahra A, Matharu M, Buchel C, et al. Brainstem activation specific to migraine headache. Lancet 2001;357:1016–1017.
  • Hostetler ED, Joshi AD, Sanabria-Bohórquez S, et al. In vivo quantification of calcitonin gene-related peptide receptor occupancy by telcagepant in rhesus monkey and human brain using the positron emission tomography tracer [11C]MK-4232. J Pharmacol Exp Ther 2013;347:478–486. .
  • Noseda R, Schain AJ, Melo-Carrillo A, et al. Fluorescently-labeled fremanezumab is distributed to sensory and autonomic ganglia and the dura but not to the brain of rats with uncompromised blood brain barrier. Cephalalgia. 2020;40:229–240.
  • Edvinsson L, Villalón CM, MaassenVanDenBrink A Basic mechanisms of migraine and its acute treatment. Pharmacol Ther 2012;136:319–333.
  • Villalón CM, Centurión D, Valdivia LF, et al. Migraine: an updated review on pathophysiology, pharmacology, therapy and future trends. Curr Vasc Pharmacol 2003;1:7184.
  • Arulmani U, Gupta S, MaassenVanDenBrink A, et al. Experimental migraine models and their relevance in migraine therapy. Cephalalgia. 2006;26:642659.
  • Arulmani U, MaassenVanDenBrink A, Villalón CM, et al. Calcitonin generelated peptide and its role in migraine pathophysiology. Eur J Pharmacol 2004;500:315330.
  • Gupta S, Nahas SJ, Peterlin BL Chemical mediators of migraine: preclinical and clinical observations. Headache. 2011;51:1029–1045.
  • González-Hernández A, Marichal-Cancino BA, García-Boll E, et al. The locus of action of CGRPergic monoclonal antibodies against migraine: peripheral over central mechanisms. CNS Neurol Disord 2020; DOI:10.2174/1871527319666200618144637.
  • Harriott AM, Strother LC, Vila-Pueyo M, et al. Animal models of migraine and experimental techniques used to examine trigeminal sensory processing. J Headache Pain 2019;20:91.
  • Xu H, Han W, Wang J, et al. Network meta-analysis of migraine disorder treatment by NSAIDs and triptans. J Headache Pain 2016;17:113.
  • Kumar A, Kadian R. Migraine Prophylaxis. In: StatPearls [Internet]. 2020 Jan [cited 2020 Dec 4]. Treasure Island (FL). Available from: https://www.ncbi.nlm.nih.gov/books/NBK507873/
  • Berger A, Bloudek LM, Varon SF, et al. Adherence with migraine prophylaxis in clinical practice. Pain Pract 2012;12:541–549
  • Balbisi EA Frovatriptan succinate, a 5-HT1B/1D receptor agonist for migraine. Int J Clin Practice 2004;58:695–705.
  • Markus F, Mikko K Frovatriptan review. Exp Op Pharmacother 2007;8:3029–3033.
  • Tfelt-Hansen P, De Vries P, Saxena PR Triptans in migraine: a comparative review of pharmacology, pharmacokinetics and efficacy. Drugs. 2000;60:1259–1287.
  • Villalón CM, Centurión D Cardiovascular responses produced by 5-hydroxytriptamine: a pharmacological update on the receptors/mechanisms involved and therapeutic implications. Naunyn Schmiedebergs Arch Pharmacol 2007;376:45–63.
  • Dahlöf C, Maassen Van Den Brink A. Dihydroergotamine, ergotamine, methysergide and sumatriptan - basic science in relation to migraine treatment. Headache. 2012;52:707–714.
  • NCT03939312. Extension study to evaluate the long-term safety and tolerability of oral atogepant for the prevention of migraine in participants with episodic migraine. cited 2020 Nov 11. Available from: https://clinicaltrials.gov/ct2/show/NCT03939312
  • NCT04408794. Long-term safety study of BHV-3500 (Zavegepant*) for the acute treatment of migraine. cited 2020 Nov 11. Available from: https://clinicaltrials.gov/ct2/show/NCT03939312
  • Rapoport A, Edmeads J Migraine – the evolution of our knowledge. Arch Neurol 2000;57:1221–1223.
  • Graham JR, Wolff HG Mechanism of migraine headache and action of ergotamine tartrate. Arch Neurol Psych 1938;39:737.
  • Wolff HG Headache and cranial arteries. Trans Ass Am Phycns 1938;53:193.
  • Silberstein SD, Shrewsbury SB, Hoekman J Dihydroergotamine (DHE) - then and now: a narrative review. Headache. 2020;60:40–57.
  • Müller-Schweitzer E Ergot alkaloids in migraine: it the effect via 5-HT receptors?: Olesen J, Saxena PR, eds. 5-hydroxytryptamine mechanisms in primary headaches. New York, USA: Raven Press; 1992:297–304.
  • Lance JW Headache. Ann Neurol 1981;10:1–10.
  • Moskowitz MA The neurobiology of vascular head pain. Ann Neurol. 1984;16(2)157–168.
  • Chan KY, Vermeersch S, de Hoon J, et al. Potential mechanisms of prospective antimigraine drugs: a focus on vascular (side) effects. Pharmacol Ther. 2011;129(3):332–351.
  • Phebus LA, Johnson KW, Zgombick JM, et al. Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine. Life Sci 1997;61:2117–2126.
  • Kilinc E, Guerrero-Toro C, Zakharov A, et al. Serotonergic mechanisms of trigeminal meningeal nociception: implications for migraine pain. Neuropharmacology. 2017;116:160–173.
  • Marichal-Cancino BA, González-Hernández A, Manrique-Maldonado G, et al. Intrathecal dihydroergotamine inhibits capsaicin-induced vasodilatation in the canine external carotid circulation via GR127935- and rauwolscine-sensitive receptors. Eur J Pharmacol 2012;692:69–77.
  • Villalón CM, Galicia-Carreón J, González-Hernández A, et al. Pharmacological evidence that spinal α2C- and, to a lesser extent, α2A-adrenoceptors inhibit capsaicin-induced vasodilatation in the canine external carotid circulation. Eur J Pharmacol 2012;683:204–210.
  • Jeong HJ, Mitchell VA, Vaughan CW Role of 5-HT1 receptor subtypes in the modulation of pain and synaptic transmission in rat spinal superficial dorsal horn. Br J Pharmacol 2012;165:1956–1965.
  • Bartsch T, Knight YE, Goadsby PJ Activation of 5-HT1B/1D receptor in the periaqueductal gray inhibits nociception. Ann Neurol 2004;56:371–381.
  • Silberstein SD, McCrory DC Ergotamine and dihydroergotamine: history, pharmacology, and efficacy. Headache. 2003;43:144–166.
  • MaassenVanDenBrink A, Reekers M, Bax WA, et al. Coronary side-effect potential of current and prospective antimigraine drugs. Circulation. 1998;98:25–30.
  • Becerra L, Bishop J, Barmettler G, et al. Triptans disrupt brain networks and promote stress-induced CSD-like responses in cortical and subcortical areas. J Neurophysiol 2016;115:208–217.
  • Schwedt TJ, Chong CD Medication overuse headache: pathophysiological insights from structural and functional brain MRI research. Headache. 2017;57(7):1173–1178.
  • Labastida-Ramírez A, Rubio-Beltrán E, Haanes KA, et al. Lasmiditan inhibits calcitonin gene-related peptide release in the rodent trigeminovascular system. Pain. 2020;161:1092–1099.
  • Rubio-Beltrán E, Labastida-Ramírez A, Haanes KA, et al. Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan. Br J Pharmacol 2019;176:4681–4695.
  • Färkkilä M, Diener HC, Géraud G, et al. Efficacy and tolerability of lasmiditan, an oral 5-HT1F receptor agonist, for the acute treatment of migraine: a phase 2 randomised, placebo-controlled, parallelgroup, dose-ranging study. Lancet Neurol 2012;11:405–413.
  • Ferrari MD, Färkkilä M, Reuter U, et al. Acute treatment of migraine with the selective 5-HT1F receptor agonist lasmiditan - a randomised proof-of-concept trial. Cephalalgia. 2010;30:1170–1178.
  • Saengjaroentham C, Strother LC, Dripps I, et al. Differential medication overuse risk of novel anti-migraine therapeutics. Brain. 2020; DOI: 10.1093/brain/awaa211.
  • Bruinvels AT, Landwehrmeyer B, Gustafson EL, et al. Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology. 1994;33:367–386.
  • Tepper SJ, Diener HC, Ashina M, et al. Erenumab in chronic migraine with medication overuse: subgroup analysis of a randomized trial. Neurology. 2019;92:e2309–e2320.
  • Chu MK, Buse DC, Bigal ME, et al. Factors associated with triptan use in episodic migraine: results from the American Migraine Prevalence and Prevention study. Headache. 2012;52:213–223.
  • Messali AJ, Yang M, Gillard P, et al. Treatment persistence and switching in triptan users: A systematic literature review. Headache. 2014;54:1120–1130.
  • Wells RE, Markowitz SY, Baron EP, et al. Identifying the factors underlying discontinuation of triptans. Headache. 2014;54:278–289.
  • Lipton RB, Hutchinson S, Ailani J, et al. Discontinuation of acute prescription medication for migraine: results from the chronic migraine epidemiology and outcomes (CaMEO) study. Headache. 2019;59:1762–1772.
  • Lipton RB, Buse DC, Saiers J, et al. Frequency and burden of headache- related nausea: results from the American Migraine Prevalence and Prevention (AMPP) study. Headache. 2013;53:93–103.
  • Goadsby PJ, Edvinsson L The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol 1993;33:4853.
  • Russo AF Overview of neuropeptides: awakening the senses? Headache. 2017;57:37:46.
  • Van den Pol AN Neuropeptide transmission in brain circuits. Neuron. 2012;76:98–115.
  • Brain SD, Williams TJ, Tippins JR, et al. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985;313:54–56.
  • Wimalawansa SJ Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocrine Rev 1996;17:533–582.
  • Poyner DR, Sexton PM, Marshall I, et al. International Union of pharmacology XXXII. The mammalian calcitonin generelated peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 2002;54:233–246.
  • Russell FA, King R, Smillie SJ, et al. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev 2014;94:1099–1142.
  • Lundberg JM Pharmacology of cotransmission in the autonomic nervous system: integrative aspects on amines, neuropeptides, adenosine triphosphate, amino acids and nitric oxide. Pharmacol Rev 1996;48:113–178.
  • Julius D, Basbaum AI Molecular mechanisms of nociception. Nature. 2001;413:203–210.
  • González-Hernández A, Marichal-Cancino BA, Lozano-Cuenca J, et al. Heteroreceptors modulating CGRP release at neurovascular junction: potential therapeutic implications on some vascular-related diseases. Biomed Res Int 2016;2016:2056786.
  • Hay DL, Poyner DR, Quirion R International union of pharmacology. LXIX. Status of the calcitonin gene-related peptide subtype 2 receptor. Pharmacol Rev. 2008; 60:143–145.
  • Smillie SJ, King R, Kodji X, et al. An ongoing role of alpha-calcitonin gene-related peptide as part of a protective network against hypertension, vascular hypertrophy, and oxidative stress. Hypertension. 2014;63:1056–1062.
  • MaassenVanDenBrink A, Meijer J, Villalón CM, et al. Wiping out CGRP: potential cardiovascular risks. Trends Pharmacol Sci 2016;37:779–788.
  • Russo AF, Dickerson IM CGRP: a multifunctional neuropeptide. In: Lajtha A, Lim R, eds. Handbook of neurochemistry and molecular neurobiology: neuroactive proteins and peptides. Boston, USA: Springer; 2006;391–426.
  • Prado MA, Evans-Bain B, Oliver KR, et al. The role of the CGRP-receptor component protein (RCP) in adrenomedullin receptor signal transduction. Peptides. 2001;22:1773–1781.
  • Brain SD, Grant AD Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev 2004;84:903–934.
  • Iyengar S, Johnson KW, Ossipov M, et al. CGRP and the trigeminal system in migraine. Headache. 2019;59:659–681.
  • Juhasz G, Zsombok T, Modos EA, et al. NO-induced migraine attack: strong increase in plasma calcitonin gene-related peptide (CGRP) concentration and negative correlation with platelet serotonin release. Pain. 2003;106:461–470.
  • Gallai V, Sarchielli P, Floridi A, et al. Vasoactive peptide levels in the plasma of young migraine patients with and without aura assessed both interictally and ictally. Cephalalgia. 1995;15:384–390.
  • Lassen LH, Haderslev PA, Jacobsen VB, et al. CGRP may play a causative role in migraine. Cephalalgia. 2002;22:54–61.
  • Hansen JM, Hauge AW, Olesen J, et al. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia. 2010;30:1179–1186.
  • Juhasz G, Zsombok T, Jakab B, et al. Sumatriptan causes parallel decrease in plasma calcitonin gene-related peptide (CGRP) concentration and migraine headache during nitroglycerin induced migraine attack. Cephalalgia. 2005;25:179–183.
  • Simerly RB Organization of the hypothalamus. In: Paxinos G ed. The rat nervous system. 4th Ed. Academic Press USA, 2015:267–294.
  • Alstadhaug K Migraine and the Hypothalamus. Cephalalgia. 2009;29:809–817.
  • Denuelle M, Fabre N, Payoux P, et al. Hypothalamic activation in spontaneous migraine attacks. Headache. 2007;47:1418–1426.
  • Blau JN Migraine: theories of pathogenesis. Lancet. 1992;339:1202–1207.
  • Akerman S, Holland PR, Goadsby PJ Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci 2011;12:570–584.
  • Quintela E, Castillo J, Muñoz P, et al. Premonitory and resolution symptoms in migraine: A prospective study in 100 unselected patients. Cephalalgia. 2006;26:1051–1060.
  • Schoonman GG, Evers DJ, Terwindt GM, et al. The prevalence of premonitory symptoms in migraine: A questionnaire study in 461 patients. Cephalalgia. 2006;26:1209–1213.
  • Laurell K, Artto V, Bendtsen L, et al. Premonitory symptoms in migraine: a cross-sectional study in 2714 persons. Cephalalgia 2016;36:951–959.
  • Karsan N, Goadsby PJ Imaging the premonitory phase of migraine. Front Neurol 2020;11:140.
  • Güven B, Güven H, Comoglu SS Migraine and yawning. Headache. 2018;58:210–216.
  • Alstadhaug K, Salvesen R, Bekkelund S Insomnia and circadian variation of attacks in episodic migraine. Headache. 2007;47:1184–1188.
  • Silberstein S, Merriam G Sex hormones and headache (menstrual migraine). Neurology. 1999;53:S3–S13.
  • Kelman L The postdrome of the acute migraine attack. Cephalalgia. 2006;26:214–220.
  • Bose P, Karsan N, Goadsby PJ The migraine postdrome. Curr Opin Neurol 2016;29:299–301.
  • Giffin NJ, Lipton RB, Silberstein SD, et al. The migraine postdrome: an electronic diary study. Neurology. 2016;87:309–313.
  • Filippi M, Messina R The chronic migraine brain: what have we learned from neuroimaging? Front Neurol 2020;10:1356.
  • Schulte LH, May A Of generators, networks and migraine attacks. Curr Opin Neurol 2017;30:241–245.
  • May A Understanding migraine as a cycling brain syndrome: reviewing the evidence from functional imaging. Neurol Sci 2017;38:125–130.
  • Malick A, Strassman RM, Burstein R Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat.  J Neurophysiol 2000;84:2078–2112.
  • Abdallah K, Artola A, Monconduit L, et al. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats.  PLoS One 2013;8:e73022.
  • Edvinsson L, Goadsby PJ Neuropeptides in migraine and cluster headache. Cephalalgia. 1994;14:320–327.
  • Schytz HW, Holst H, Arendt-Nielsen L, et al. Cutaneous nociception and neurogenic inflammatory evoked by PACAP38 and VIP. J Head Pain 2010;11:309–316.
  • Sheward WJ, Lutz EM, Copp AJ, et al. Expression of PACAP, and PACAP type 1 (PAC1) receptor mRNA during development of the mouse embryo. Brain Res Dev Brain Res 1998;109:245–253
  • Miyata A, Jiang L, Dahl RD, et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 1990;170:643–648.
  • Mulder H, Uddman R, Moller K, et al. Pituitary adenylate cyclase activating polypeptide expression in sensory neurons. Neuroscience. 1994;63:307–312.
  • Uddman R, Tajti J, Hou M, et al. Neuropeptide expression in the human trigeminal nucleus caudalis and in the cervical spinal cord C1 and C2. Cephalalgia. 2002;22:112–116.
  • Csati A, Tajti J, Kuris A, et al. Distribution of vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, nitric oxide synthase, and their receptors in human and rat sphenopalatine ganglion. Neuroscience. 2012;202:158–168.
  • Ghatei MA, Takahashi K, Suzuki Y, et al. Distribution, molecular characterization of pituitary adenylate cyclase activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol 1993;136:159–166.
  • Chan KY, Baun M, De Vries R, et al. Pharmacological characterization of VIP and PACAP receptors in the human meningeal and coronary artery. Cephalalgia. 2011;31:181–189.
  • Dickson L, Finlayson K VPAC and PAC receptors: from ligands to function. Pharmacol Ther 2009;121:294–316.
  • IUPHAR/BPS Guide to Pharmacology.cited 2020 Sept 14. Available from: https://www.guidetopharmacology.org/
  • Vaudry D, Gonzalez BJ, Basille M, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 2000;52:269–324.
  • Tuka B, Helyes Z, Markovics A, et al. Peripheral and central alterations of pituitary adenylate cyclase activating polypeptide-like immunoreactivity in the rat in response to activation of the trigeminovascular system. Peptides. 2012;33:307–316.
  • Zagami AS, Edvinsson L, Hoskin KL, et al. Stimulation of the superior sagittal sinus causes extracranial release of PACAP. Cephalalgia. 1995;15(S1):109.
  • Schytz HW, Birk S, Wienecke T, et al. PACAP38 induces migraine-like attacks in patients with migraine without aura. Brain. 2009;132:16–25.
  • Zagami AS, Edvinsson L, Goadsby PJ Pituitary adenylate cyclase activating polypeptide and migraine. Ann Clin Transl Neurol 2014;1:1036–1040.
  • Amin FM, Hougaard A, Schytz HW, et al. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain. 2014;137:779–794.
  • Amin FM, Hougaard A, Magon S, et al. Change in brain network connectivity during PACAP38-induced migraine attacks: A resting-state functional MRI study. Neurology. 2016;86:180–187.
  • Olesen J, Baun M, Amrutkar DV, et al. PACAP-38 but not VIP induces release of CGRP from trigeminal nucleus caudalis via a receptor distinct from the PAC1 receptor. Neuropeptides. 2014;48:53–64.
  • NCT03238781. Study to evaluate the efficacy and safety of AMG 301 in migraine prevention.cited 2020 Sept 14. Available from: https://clinicaltrials.gov/ct2/show/NCT03238781
  • Robert C, Bourgeais L, Arreto CD, et al. Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches. J Neurosci 2013;33:8827–8840.
  • Akerman S, Goadsby PJ Neuronal PAC1 receptors mediate delayed activation and sensitization of trigeminocervical neurons: relevance to migraine. Sci Transl Med 2015;7:308ra157.
  • Martin M, Otto C, Santamarta MT, et al. Morphine withdrawal is modified in pituitary adenylate cyclase-activating polypeptide type I-receptor-deficient mice. Brain Res Mol Brain Res 2003;110:109–118.
  • Missig G, Roman CW, Vizzard MA, et al. Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology. 2014;86:38–48.
  • Jurek B, Neumann ID The oxytocin receptor: from intracellular signaling to behavior. Physiol Rev 2018;98:1805–1908.
  • Grinevich V, Stoop R Interplay between oxytocin and sensory systems in the orchestration of socio-emotional behaviors. Neuron. 2018;99:887–904.
  • Boll S, Almeida de Minas AC, Raftogianni A, et al.Oxytocin and pain perception: from animal models to human research. Neuroscience. 2018;387: 149–161.
  • Poisbeau P, Grinevich V, Charlet A Oxytocin signaling in pain: cellular, circuit, system, and behavioral levels. Curr Top Behav Neurosci 2018;35:193–211.
  • Bowen MT, Neumann ID The multidimensional therapeutic potential of targeting the brain oxytocin system for the treatment of substance use disorders. Curr Top Behav Neurosci 2018;35:269–287.
  • Neumann ID, Slattery DA Oxytocin in general anxiety and social fear: a translational approach. Biol Psychiatry 2016;79:213–221.
  • Condés-Lara M, Rojas-Piloni G, Martínez-Lorenzana G, et al. Paraventricular hypothalamic influences on spinal nociceptive processing. Brain Res 2006;1081:126–137.
  • Condés-Lara M, Martínez-Lorenzana G, Rodríguez-Jiménez J, et al. Paraventricular hypothalamic nucleus stimulation modulates nociceptive responses in dorsal horn wide dynamic range neurons. Neurosci Lett 2008;444:199–202.
  • Eliava M, Melchior M, Knobloch-Bollmann, et al. (2016). A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron. 2016;89: 1291–1304.
  • Rash JA, Aguirre-Camacho A, Campbell TS Oxytocin and pain: a systematic review and synthesis of findings. Clin J Pain 2014;30:453–462.
  • Grinevich V, Neumann ID Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Mol Psychiatry 2020;1–15.DOI:10.1038/s41380-020-0802-9
  • Busnelli M, Saulière A, Manning M, et al. Functional selective oxytocin-derived agonists discriminate between individual G protein family subtypes. J Biol Chem 2012;287:3617–3629.
  • González-Hernández A, Rojas-Piloni G, Condés-Lara M Oxytocin and analgesia: future trends. Trends Pharmacol Sci 2014;35:549–551.
  • Gonzalez-Hernandez A, Charlet A. Oxytocin, GABA, and TRPV1, the Analgesic Triad? Front Mol Neurosci 2018;11:398.
  • Tello-García IA, Pérez-Ortega J, Martínez-Lorenzana G, et al. Oxytocin prevents neuronal network pain-related changes on spinal cord dorsal horn in vitro. Cell Calcium 2020;90:102246.
  • Boada MD, Gutierrez S, Eisenach JC Peripheral oxytocin restores light touch and nociceptor sensory afferents towards normal after nerve injury. Pain. 2019;160:1146–1155.
  • González-Hernández A, Espinosa De Los Monteros-Zuñiga A, Martínez-Lorenzana G, et al. Recurrent antinociception induced by intrathecal or peripheral oxytocin in a neuropathic pain rat model. Exp Brain Res. 2019;237:2995–3010.
  • Martínez-Lorenzana G, Espinosa-López L, Carranza M, et al. PVN electrical stimulation prolongs withdrawal latencies and releases oxytocin in cerebrospinal fluid, plasma, and spinal cord tissue in intact and neuropathic rats. Pain. 2008;140(2):265–273.
  • Eisenach JC, Tong C, Curry R Phase 1 safety assessment of intrathecal oxytocin. Anesthesioloy. 2015;122:407–413.
  • Condés‐Lara M, Zayas‐González H, Manzano‐García A, et al. Successful pain management with epidural oxytocin. CNS Neurosci Ther 2016;22:532–534.
  • Zayas-González H, González-Hernández A, Manzano-García A, et al. Effect of local infiltration with oxytocin on hemodynamic response to surgical incision and postoperative pain in patients having open laparoscopic surgery under general anesthesia. Eur J Pain 2019;23:1519–1526.
  • Phillips WJ, Ostrovsky O, Galli RL, et al. Relief of acute migraine headache with intravenous oxytocin: report of two cases. J Pain Palliat Care Pharmacother 2006;20:25–28.
  • Tzabazis A, Kori S, Mechanic J, et al. Oxytocin and migraine headache. Headache. 2017;57:64–75.
  • Wang Y-L, Yuan Y, Yang J, et al. The interaction between the oxytocin and pain modulation in headache patients. Neuropeptides. 2013;47:93–97.
  • García-Boll E, Martínez-Lorenzana G, Condés-Lara M, et al. Oxytocin inhibits the rat medullary dorsal horn Sp5c/C1 nociceptive transmission through OT but not V1A receptors. Neuropharmacology. 2018;129:109–117.
  • García-Boll E, Martínez-Lorenzana G, Condés-Lara M, et al. Inhibition of nociceptive dural input to the trigeminocervical complex through oxytocinergic transmission. Exp Neurol 2020;323:113079.
  • Condés-Lara M, Maie IA, Dickenson AH Oxytocin actions on afferent evoked spinal cord neuronal activities in neuropathic but not in normal rats. Brain Res 2005;1045:124–133.
  • Freeman SM, Smith AL, Goodman MM, et al. Selective localization of oxytocin receptors and vasopressin 1a receptors in the human brainstem. Soc Neurosci 2017;12:113–123.
  • Kubo A, Shinoda M, Katagiri A, et al. Oxytocin alleviates orofacial mechanical hypersensitivity associated with infraorbital nerve injury through vasopressin-1A receptors of the rat trigeminal ganglia. Pain. 2017;158:649–659.
  • Tzabazis A, Mechanic J, Miller J et al. Oxytocin receptor: expression in the trigeminal nociceptive system and potential role in the treatment of headache disorders. Cephalalgia. 2016;36:943–950.
  • Gotter AL, Roecker AJ, Hargreaves R, et al. Orexin receptors as therapeutic drug targets. Prog Brain Res 2012;198:163–188.
  • Sakurai T The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 2007;8:171–181.
  • Kukkonen JP, Holmqvist T, Ammoun S, et al. Functions of the orexinergic/hypocretinergic system. Am J Physiol Cell Physiol 2002;283:567–1591.
  • Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92:696–697.
  • Sarchielli P, Rainero I, Coppola F, et al. Involvement of corticotrophin-releasing factor and orexin-A in chronic migraine and medication-overuse headache: findings from cerebrospinal fluid. Cephalalgia. 2008;28:714–722.
  • Holland PR, Akerman S, Goadsby PJ Modulation of nociceptive dural input to the trigeminal nucleus caudalis via activation of the orexin 1 receptor in the rat. Eur J Neurosci. 2006;24(10):2825–2833.
  • Bartsch T, Levy MJ, Knight YE, et al. Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain. 2004;109:367–378
  • Holland PR, Akerman S, Lasalandra, et al. Antinociceptive effects of orexin A in the vlPAG are blocked by 5-HT1B/1D receptor antagonism. Headache. 2008;48;S6(OR13).
  • Bertels Z, Pradhan AAA Emerging treatment targets for migraine and other headaches. Headache. 2019;59(Suppl2):50–65.
  • Peroutka SJ Neurogenic inflammation and migraine: implications for the therapeutics. Molec Interv 2005;5:304–311.
  • Gupta S, Villalón CM The relevance of preclinical research models for the development of antimigraine drugs: focus on 5-HT1B/1D and CGRP receptors. Pharmacol Ther 2010;128:170190.
  • Lambru G, Andreou AP, Guglielmetti M, et al. Emerging drugs for migraine treatment: an update. Expert Opin Emerg Drugs 2018;23:301–318.
  • De Matteis E, Guglielmetti M, Ornello R, et al. Targeting CGRP for migraine treatment: mechanisms, antibodies, small molecules, perspectives. Expert Rev Neurother 2020;20:627–641.
  • Allergan Receives U.S. FDA approval for UBRELVY™ for the acute treatment of migraine with or without aura in adults. cited 2020 Sept 14. Available from: https://news.abbvie.com/news/allergan-press-releases/allergan-receives-us-fda-approval-for-ubrelvy-for-acute-treatment-migraine-with-or-without-aura-in-adults.htm
  • Biohaven’s NURTEC™ ODT (rimegepant) receives FDA approval for the acute treatment of migraine in adults. cited 2020 Sept 14 Available from: https://www.biohavenpharma.com/investors/news-events/press-releases/02-27-2020
  • NCT0372368. Efficacy and safety trial of rimegepant for migraine prevention in adults. cited 2020 Sept 14. Available from: https://clinicaltrials.gov/ct2/show/NCT03732638
  • Martelletti P, Cipolla F, Capi M, et al. Atogepant calcitonin gene-related peptide (CGRP) receptor antagonist, preventive treatment of migraine. Drugs Fut 2020;45:285.
  • Sacco S, Bendtsen L, Ashina M, et al. European headache federation guideline on the use of monoclonal antibodies acting on the calcitonin gene related peptide or its receptor for migraine prevention. Practice guideline. J Headache Pain. 2019;20:6.
  • Reinshagen M, Flämig G, Ernst S, et al. Calcitonin gene-related peptide mediates the protective effect of sensory nerves in a model of colonic injury. J Pharmacol Exp Ther 1998;286:657–661.
  • Ornello R, Casalena A, Frattale I, et al. Real-life data on the efficacy and safety of erenumab in the Abruzzo region, central Italy. J Headache Pain 2020;21:32
  • Negro A, Martelletti P Gepants for the treatment of migraine. Exp Opin Invest Drugs 2019;28:555–567.
  • Pellesi L, Guerzoni S, Pini LA Spotlight on anti-CGRP monoclonal antibodies in migraine: the clinical evidence to date. Clin Pharmacol Drug Dev 2017;6:534–547
  • Raffaelli B, Neeb L, Reuter U Monoclonal antibodies for the prevention of migraine. Expert Opin Biol Ther 2019;19:1307–1317
  • Buse DC, Gandhi SK, Cohen JM, et al. Improvements across a range of patient-reported domains with fremanezumab treatment: results from a patient survey study. J Head Pain 2020;21:109.
  • Ning X, Cohen J, Bennett N, et al. Long-term safety of fremanezumab: results of a 1-year study (P1.10-015).Neurology. 2019;92(15S).
  • Shi L, Lehto SG, Zhu DX, et al. Pharmacologic Characterization of AMG 334, a potent and selective human monoclonal antibody against the calcitonin gene-related peptide receptor. J Pharmacol Exp Ther 2016;356:223–231.
  • Sun H, Dodick DW, Silberstein S, et al. Safety and efficacy of AMG 334 for prevention of episodic migraine: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Neurol 2016;15:382–390.
  • Deen M, Correnti E, Kamm K, et al. Blocking CGRP in migraine patients - a review of pros and cons. J Headache Pain 2017;18:96.
  • Curto M, Capi M, Cipolla F, et al. Ubrogepant for the treatment of migraine. Expert Opin Pharmacother 2020;21:755–759.
  • Tfelt-Hansen P, Loder E The emperor’s new gepants: are the effects of the new oral CGRP antagonists clinically meaningful? Headache. 2019;59:113–117.
  • Schoenen J, Manise M, Nonis R, et al. Monoclonal antibodies blocking CGRP transmission: an update on their added value in migraine prevention. Rev Neurol 2020; DOI:10.1016/j.neurol.2020.04.027.
  • Deng H, Li GG, Nie H, et al. Efficacy and safety of calcitonin-gene-related peptide binding monoclonal antibodies for the preventive treatment of episodic migraine - an updated systematic review and meta-analysis. BMC Neurol. 2020;20(1):57.
  • Ferrari MD, Goadsby PJ, Roon KI, et al. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia. 2002;22:633–658
  • Goadsby PJ, Wietecha LA, Dennehy EB, et al. Phase 3 randomized, placebo-controlled, double-blind study of lasmiditan for acute treatment of migraine. Brain. 2019;142:1894–1904
  • Marcus R, Goadsby PJ, Dodick D, et al. BMS-927711 for the acute treatment of migraine: a double-blind, randomized, placebo controlled, dose-ranging trial. Cephalalgia. 2014;34:114–125
  • Goadsby PJ, Reuter U, Hallstrom Y, et al. A controlled trial of erenumab for episodic migraine. N Engl J Med 2017;377:2123–2132.
  • Dodick DW, Ashina M, Brandes JL, et al. ARISE: a phase 3 randomized trial of erenumab for episodic migraine. Cephalalgia. 2018;38:1026–1037.
  • Dodick DW, Goadsby PJ, Silberstein SD, et al. Safety and efficacy of ALD403, an antibody to calcitonin generelated peptide, for the prevention of frequent episodic migraine: A randomised, double-blind, placebo-controlled, exploratory phase 2 trial. Lancet Neurol 2014;13:1100–1107
  • Stauffer VL, Dodick DW, Zhang Q, et al. Evaluation of galcanezumab for the prevention of episodic migraine: the EVOLVE-1 randomized clinical trial. JAMA Neurol 2018;75:1080–1088
  • Tfelt-Hansen P, Diener HC, Steiner TJ Problematic presentation and use of efficacy measures in current trials of CGRP monoclonal antibodies for episodic migraine prevention: a mini-review. Cephalalgia 2020;40:122–126.
  • Ornello R, Casalena A, Frattale I, et al. Conversion from chronic to episodic migraine in patients treated with erenumab: real-life data from an Italian region. J Headache Pain 2020;21:102.
  • González‐Hernández A, Condés‐Lara M The multitarget drug approach in migraine treatment: the new challenge to conquer. Headache. 2014;54:197–199.
  • Rustichelli C, Lo Castro F, Baraldi C, et al. Targeting pituitary adenylate cyclase-activating polypeptide (PACAP) with monoclonal antibodies in migraine prevention: a brief review. Expert Opin Investig Drugs 2020; DOI:10.1080/13543784.2020.1811966.
  • Ashina M, Dolezil D, Bonner JH, et al. A phase 2, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of AMG 301 in migraine prevention. Presented at:13th European Headache Federation Congress, Athens, Greece, 30 May – 1 June2019, ePoster. [cited 2020 Dec 4]. Available from: https://www.ehf2019.com/e-posters.
  • Hensley K, Pretorius J, Chan B, et al. PAC1 receptor mRNA and protein distribution in rat and human tri-geminal and sphenopalatine ganglia, spinal trigeminal nucleus and in dura mater. Cephalalgia. 2019;39:827–840.
  • Warfvinge K, Edvinsson L Cellular distribution of PACAP-38 and PACAP receptors in the rat brain: relation to migraine activated regions. Cephalalgia. 2020;40:527–542.
  • Knutsson M, Edvinsson L Distribution of mRNA for VIP and PACAP receptors in human cerebral arteries and cranial ganglia. Neuroreport. 2002;13:507–509.
  • Pellesi L, Al-Karagholi MA, Chaudhry BA, et al. Two-hour infusion of vasoactive intestinal polypeptide induces delayed headache and extracranial vasodilation in healthy volunteers. Cephalalgia. 2020; DOI: 10.1177/0333102420937655
  • Grant S, Lutz EM, McPhaden AR, et al. Location and function of VPAC1, VPAC2 and NPR-C receptors in VIP-induced vasodilation of porcine basilar arteries. J Cereb Blood Flow Metab 2006;26:58–67.
  • Moldovan Loomis C, Dutzar B, Ojala EW, et al. Pharmacologic characterization of ALD1910, a potent humanized monoclonal antibody against the pituitary adenylate cyclase-activating peptide. J Pharmacol Exp Ther 2019;369:26–36.
  • NCT04197349. Study to evaluate the safety, tolerability and pharmacokinetics of ALD1910 in healthy men and woman. cited 2020 Sept 14. Available from: https://clinicaltrials.gov/ct2/show/NCT04197349
  • Madrazo I, Franco-Bourland RE, León-Meza VM, et al. Intraventricular somatostatin-14, arginine vasopressin, and oxytocin: analgesic effect in a patient with intractable cancer pain. Appl Neurophysiol 1987;50:427–431.
  • Morin V, Del Castillo JRE, Authier S, et al. Evidence for non-linear pharmacokinetics of oxytocin in anesthetized rat. J Pharm Pharm Sci 2008;11:12–24.
  • Rydén G, Sjöholm I Half-life of oxytocin in blood of pregnant and non-pregnantwomen. Acta Endocrinol 1969;61:425–431
  • Mens WB, Witter A, van Wimersma Greidanus TB. Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain Res 1983;262:143–149.
  • Frantz MC, Pellissier LP, Pflimlin E, et al. LIT-001, the first nonpeptide oxytocin receptor agonist that improves social interaction in a mouse model of autism. J Med Chem 2018;61:8670–8692.
  • Hilfiger L, Zhao Q, Kerspern D, et al. A nonpeptide oxytocin receptor agonist for a durable relief of inflammatory pain. Sci Rep 2020;10:3017.
  • Warfvinge K, Krause DN, Maddahi A, et al. Oxytocin as a regulatory neuropeptide in the trigeminovascular system: localization, expression and function of oxytocin and oxytocin receptors. Cephalalgia. 2020; DOI:10.1177/0333102420929027.
  • Quintana DS, Lischke A, Grace S, et al. Advances in the field of intranasal oxytocin research: lessons learned and future directions for clinical research. Mol Psychiatry 2020; DOI:10.1038/s41380-020-00864-7.
  • MacDonald E, Dadds MR, Brennan JL, et al. A review of safety, side-effects and subjective reactions to intranasal oxytocin in human research. Psychoneuroendocrinology. 2011;36(8):1114–1126.
  • Verhees MWFT, Houben J, Ceulemans E, et al. No side-effects of single intranasal oxytocin administration in middle childhood. Psychopharmacology. 2018;235:2471–2477.
  • Gamal-Eltrabily M, Espinosa de Los Monteros-zúñiga A, Manzano-García A, et al. The rostral agranular insular cortex, a new site of oxytocin to induce antinociception. J Neurosci. 2020;40:5669–5680.
  • Quintana DS, Westlye LT, Smerud KT, et al. Saliva oxytocin measures do not reflect peripheral plasma concentrations after intranasal oxytocin administration in men. Horm Behav 2018;102:85–92
  • Spinazzi R, Andreis PG, Rossi GP, et al. Orexins in the regulation of the hypothalamic-pituitary-adrenal axis. Pharmacol Rev 2006;58:46–57.
  • Tsujino N, Sakurai T Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev 2009;61:162–176.
  • Van den Pol AN Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci 1999;19:3171–3182.
  • Date Y, Mondal MS, Matsukura S, et al. Distribution of orexin-A and orexin-B (hypocretins) in the rat spinal cord. Neurosci Lett 2000;288:87–90.
  • Cheng J-K, Chou R-C-C, Hwang -L-L, et al. Antiallodynic effects of intrathecal orexins in a rat model of postoperative pain. J Pharmacol Exp Ther 2003;307:1065–1071.
  • Yamamoto T, Nozaki-Taguchi N, Chiba T Analgesic effect of intrathecally administered orexin-A in the rat formalin test and in the rat hot plate test. Br J Pharmacol 2002;137:170–176.
  • Razavi BM, Hosseinzadeh H A review of the role of orexin system in pain modulation. Biomed Pharmacother 2017;90:187–193.
  • May A, Bahra A, Buchel C, et al. Hypothalamicactivation in cluster headache attacks. Lancet 1998;352:275–278.
  • Peres MF, Sanchez Del Rio M, Seabra S, et al. Hypothalamic involvement in chronic migraine. J Neurol Neurosurg Psychiatry. 2001;71:747–751.
  • Holland P, Goadsby PJ The hypothalamic orexinergic system: pain and primary headaches. Headache. 2007;47: 951–962.
  • Hoffmann J, Supronsinchai W, Akerman S, et al. Evidence for orexinergic mechanisms in migraine. Neurobiol Dis 2015;74:137–143.
  • Holland PR, Akerman S, Goadsby PJ Orexin 1 receptor activation attenuates neurogenic dural vasodilation in an animal model of trigeminovascular nociception. J Pharmacol Exp Ther 2005;315:1380–1385.
  • Kooshki R, Abbasnejad M, Esmaeili-Mahani S, et al. Activation orexin 1 receptors in the ventrolateral periaqueductal gray matter attenuate nitroglycerin-induced migraine attacks and calcitonin gene related peptide up-regulation in trigeminal nucleus caudalis of rats. Neuropharmacology. 2020;178:107981.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.