241
Views
2
CrossRef citations to date
0
Altmetric
Review

Potential implications of DMET ontogeny on the disposition of commonly prescribed drugs in neonatal and pediatric intensive care units

, , , &
Pages 273-289 | Received 23 Sep 2020, Accepted 27 Nov 2020, Published online: 20 Jan 2021

References

  • Rajabi M. Food Quality Protection Act. In: Wexler PBT-E of T (Third E, editor. Oxford: Academic Press; 2014. p. 637–638. Available from: http://www.sciencedirect.com/science/article/pii/B9780123864543006072.
  • *Hines RN. Developmental expression of drug metabolizing enzymes: impact on disposition in neonates and young children. Int J Pharm [Internet]. 2013;452(1–2):3–7.
  • **Laughon MM, Avant D, Tripathi N, et al. Drug labeling and exposure in neonates. JAMA Pediatr. 2014;168(2):130–136.
  • Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45(9):931–956.
  • Sutherland JM. Fatal cardiovascular collapse of infants receiving large amounts of chloramphenicol. AMA J Dis Child. 1959;97:761–767.
  • Weiss CF, Glazko AJ, Weston JK, Chloramphenicol in the newborn infant. N Engl J Med. [Internet]. 1982;22(16):787–794.
  • De Wildt SN, Kearns GL, Leeder JS, et al. Glucuronidation in humans. Pharmacogenetic and developmental aspects. Clin Pharmacokinet. 1999;36(6):439–452.
  • **Bhatt DK, Mehrotra A, Gaedigk A, et al. Age‐and genotype‐dependent variability in the protein abundance and activity of six major uridine diphosphate‐glucuronosyltransferases in human liver. Clin Pharmacol Ther. 2019;105(1):131–141.
  • **Ladumor MK, Bhatt DK, Gaedigk A, et al. Ontogeny of hepatic sulfotransferases and prediction of age-dependent fractional contribution of sulfation in acetaminophen metabolism. Drug Metab Dispos. 2019;47(8):818–831.
  • Alam SN, Roberts RJ, Fischer LJ. Age-related differences in salicylamide and acetaminophen conjugation in man. J Pediatr [Internet]. 1977;90(1):130–135. cited 2020 May 6. Available from http://www.sciencedirect.com/science/article/pii/S0022347677807877
  • HTM DLC, Costa TX, Martins RR, et al. Use of off-label and unlicensed medicines in neonatal intensive care. PLoS One. 2018;13:1–12.
  • McCarver DG, Hines RN. The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther. 2002 Feb;300(2):361–6. doi:10.1124/jpet.300.2.361. PMID: 11805192.
  • Hay M, Thomas DW, Craighead JL, et al. Clinical development success rates for investigational drugs. Nat Biotechnol [Internet]. 2014;32(1):40–51.
  • Harkin T S.3187-112th congress (2011–2012): food and drug administration safety and innovation act. 2012 cited 2020 Jul 29; Available from: https://www.congress.gov/bill/112th-congress/senate-bill/3187
  • Dodd CJ S.1789-107th congress (2001–2002): best pharmaceuticals for children act. 2002 cited 2020 Jul 29; Available from: https://www.congress.gov/bill/107th-congress/senate-bill/1789
  • DeWine M S.650-108th congress (2003–2004): pediatric research equity act of 2003. 2003 cited 2020 Jul 29; Available from: https://www.congress.gov/bill/108th-congress/senate-bill/650
  • Dodd CJ S.830-110th congress (2007–2008): pediatric medical device safety and improvement act of 2007. 2007 cited 2020 Jul 29; Available from: https://www.congress.gov/bill/110th-congress/senate-bill/830
  • Bhatt DK, Mehrotra A, Gaedigk A, et al. Age- and genotype-dependent variability in the protein abundance and activity of six major uridine diphosphate-glucuronosyltransferases in human liver. Clin Pharmacol Ther. 2019;105(1):131–141.
  • Ladumor MK, Thakur A, Sharma S, et al. A repository of protein abundance data of drug metabolizing enzymes and transporters for applications in physiologically based pharmacokinetic (PBPK) modelling and simulation. Sci Rep. 2019;9(1):1–16.
  • Salem F, Johnson TN, Barter ZE, et al. Age related changes in fractional elimination pathways for drugs: assessing the impact of variable ontogeny on metabolic drug-drug interactions. J Clin Pharmacol. 2013;53(8):857–865.
  • Blake MJ, Gaedigk A, Pearce RE, et al. Ontogeny of dextromethorphan O‐and N‐demethylation in the first year of life. Clin Pharmacol Ther. 2007;81:510–516.
  • de Wildt SN, Kearns GL, Leeder JS, et al. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999;37(6):485–505.
  • Gail McCarver D, Hines RN. The ontogeny of human drug-metabolizing enzymes: phase II conjugation enzymes and regulatory mechanisms. J Pharmacol Exp Ther. 2002;300(2):361–366.
  • Saghir SA, Khan SA, McCoy AT. Ontogeny of mammalian metabolizing enzymes in humans and animals used in toxicological studies. Crit Rev Toxicol. 2012 May;42(5):323-57. doi:10.3109/10408444.2012.674100. PMID: 22512665.
  • Bhatt DK, Basit A, Zhang H, et al. Hepatic abundance and activity of androgen- and drug-metabolizing enzyme UGT2B17 are associated with genotype, age, and sex. Drug Metab Dispos. 2018;46(6):888–896.
  • Hines RN. The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther. 2008;118(2):250–267.
  • Saravanakumar A, Sadighi A, Ryu R, et al. Physicochemical properties, biotransformation, and transport pathways of established and newly approved medications: a systematic review of the top 200 most prescribed drugs vs. the FDA-approved drugs between 2005 and 2016. Clin Pharmacokinet [Internet]. 2019;58(10):1281–1294.
  • Hu S, Leblanc AF, Gibson AA, et al. Identification of OAT1/OAT3 as contributors to cisplatin toxicity. Clin Transl Sci. 2017;10(5):412–420.
  • Guo Y, Chu X, Parrott NJ, et al. Advancing predictions of tissue and intracellular drug concentrations using in vitro, imaging and physiologically based pharmacokinetic modeling approaches. Clin Pharmacol Ther. 2018;104:865–889.
  • Endres CJ, Moss AM, Ke B, et al. The role of the equilibrative nucleoside transporter 1 (ENT1) in transport and metabolism of ribavirin by human and wild-type or Ent1-/- mouse erythrocytes. J Pharmacol Exp Ther. 2009;329:387–398.
  • Sweeney DE, Vallon V, Rieg T, et al. Functional maturation of drug transporters in the developing, neonatal, and postnatal kidney. Mol Pharmacol. 2011;80(1):147–154.
  • *Prasad B, Gaedigk A, Vrana M, et al. Ontogeny of hepatic drug transporters as quantified by LC-MS/MS proteomics. Clin Pharmacol Ther. 2016;100(4):362–370.
  • **Brouwer KLR, Aleksunes LM, Brandys B, et al. Human ontogeny of drug transporters: review and recommendations of the pediatric transporter working group. Clin Pharmacol Ther. 2015;98(3):266–287.
  • Forrest JAH, Clements JA, Prescott LF. Clinical pharmacokinetics of paracetamol. Clin Pharmacokinet. 1982;7(2):93–107.
  • Wang C, Allegaert K, Tibboel D, et al. Population pharmacokinetics of paracetamol across the human age-range from (pre)term neonates, infants, children to adults. J Clin Pharmacol. 2014;54(6):619–629.
  • Mohamed MHN, Lima JJ, Eberle LV, et al. Effects of gender and race on albuterol pharmacokinetics. Pharmacotherapy. 1999;19(2):157–161.
  • Boulton DW, Fawcett JP. Enantioselective disposition of albuterol in humans. Clin Rev Allergy Immunol. 1996;14(1):115–138.
  • Boulton DW, Fawcett JP. Enantioselective disposition of salbutamol in man following oral and intravenous administration. Br J Clin Pharmacol. 1996;41(1):35–40.
  • Boulton DW, Fawcett JP. The pharmacokinetics of levosalbutamol: what are the clinical implications? Clin Pharmacokinet. 2001;40(1):23–40.
  • Rafailidis PI, Ioannidou EN, Falagas ME. Ampicillin/sulbactam: current status in severe bacterial infections. Drugs. 2007;67(13):1829–1849.
  • Yokoyama Y, Matsumoto K, Yamamoto H, et al. Pharmacokinetics of ampicillin-sulbactam and the renal function-based optimization of dosing regimens for prophylaxis in patients undergoing cardiovascular surgery. J Infect Chemother. 2012;18(6):878–882.
  • Kucers A Kucers’ the use of antibiotics, a clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs. 2012.
  • Edsbäcker S, Andersson T. Pharmacokinetics of budesonide (EntocortTM EC) capsules for Crohn’s disease. Clin Pharmacokinet. 2004;43:803–821.
  • Blanchard J, Sawers SJA. The absolute bioavailability of caffeine in man. Eur J Clin Pharmacol. 1983;24(1):93–98.
  • Ha HR, Chen J, Krähenbühl S, et al. Biotransformation of caffeine by cDNA-expressed human cytochromes P-450. Eur J Clin Pharmacol. 1996;49(4):309–315.
  • Kaplan GB, Greenblatt DJ, Ehrenberg BL, et al. Dose-dependent pharmacokinetics and psychomotor effects of caffeine in humans. J Clin Pharmacol. 1997;37:693–703.
  • Brachtel D, Richter E. Absolute bioavailability of caffeine from a tablet formulation. J Hepatol. 1992;16(3):385.
  • Rybak M. The pharmacokinetic profile of a new generation of parenteral cephalosporin. Am J Med. 1996;100(6):39S–44S.
  • Claessens AJ, Risler LJ, Eyal S, et al. CYP2D6 mediates 4-hydroxylation of clonidine in vitro: implication for pregnancy-induced changes in clonidine clearance. Drug Metab Dispos. 2010;38(9):1393–1396.
  • Lowenthal DT, Matzek KM, MacGregor TR. Clinical pharmacokinetics of clonidine. Clin Pharmacokinet. 1988;14(5):287–310.
  • Davies DS, Wing LMH, Reid JL, et al. Pharmacokinetics and concentration-effect relationships of intravenous and oral clonidine. Clin Pharmacol Ther. 1977;21(5):593–601.
  • Spoorenberg SMC, Deneer VHM, Grutters JC, et al. Pharmacokinetics of oral vs . intravenous dexamethasone in patients hospitalized with community-acquired pneumonia. Br J Clin Pharmacol. 2014;78(1):78–83.
  • Anttila M, Penttilä J, Helminen A, et al. Bioavailability of dexmedetomidine after extravascular doses in healthy subjects. Br J Clin Pharmacol. 2003;56(6):691–693.
  • Weerink MAS, Struys MMRF, Hannivoort LN, et al. Clinical pharmacokinetics and pharmacodynamics of dexmedetomidine. Clin Pharmacokinet. 2017;56(8):893–913.
  • Mandelli M, Tognoni G, Garattini S. Clinical pharmacokinetics of diazepam. Clin Pharmacokinet. 1978;3(1):72–91.
  • Friedman H, Greenblatt DJ, Peters GR, et al. Pharmacokinetics and pharmacodynamics of oral diazepam: effect of dose, plasma concentration, and time. Clin Pharmacol Ther. 1992;52(2):139–150.
  • Greenblatt DJ, Divoll Allen M, Harmatz JS, et al. Diazepam disposition determinants. Clin Pharmacol Ther. 1980;27(3):301–312.
  • Krishna DR, Klotz U. Newer H 2-receptor antagonists. Clinical pharmacokinetics and drug interaction potential. Clin Pharmacokinet. 1988;15(4):205–215.
  • Maples HD, James LP, Stowe CD, et al. Famotidine disposition in children and adolescents with chronic renal insufficiency. J Clin Pharmacol. 2003;43(1):7–14.
  • Howden CW, Tytgat GNJ. The tolerability and safety profile of famotidine. Clin Ther. 1996;18(1):36–54.
  • Lin JH. Pharmacokinetic and pharmacodynamic properties of histamine H2-receptor antagonists: relationship between intrinsic potency and effective plasma concentrations. Clin Pharmacokinet. 1991;20(3):218–236.
  • Ohbuchi M, Noguchi K, Kawamura A, et al. Different effects of proton pump inhibitors and famotidine on the clopidogrel metabolic activation by recombinant CYP2B6, CYP2C19 and CYP3A4. Xenobiotica. 2012;42(7):633–640.
  • Olkkola KT, Hamunen K, Maunuksela E-L. Clinical pharmacokinetics and pharmacodynamics of opioid analgesics in infants and children. Clin Pharmacokinet. 1995;28(5):385–404.
  • Scholz J, Steinfath M, Schulz M. Clinical pharmacokinetics of alfentanil, fentanyl and sufentanil. An update. Clin Pharmacokinet. 1996;31(4):275–292.
  • Andreasen F, Hansen U, Husted SE, et al. The pharmacokinetics of frusemide are influenced by age. Br J Clin Pharmacol. 1983;16(4):391–397.
  • Ponto LL, Schoenwald RD. Furosemide (frusemide). A pharmacokinetic/pharmacodynamic review (Part I). Clin Pharmacokinet. 1990;18:381–408.
  • Waller ES, Hamilton SF, Massarella JW, et al. Disposition and absolute bioavailability of furosemide in healthy males. J Pharm Sci. 1982;71(10):1105–1108.
  • Kerdpin O, Knights KM, Elliot DJ, et al. In vitro characterisation of human renal and hepatic frusemide glucuronidation and identification of the UDP-glucuronosyltransferase enzymes involved in this pathway. Biochem Pharmacol. 2008;76(2):249–257.
  • Zaske DE, Cipolle RJ, Rotschafer JC, et al. Gentamicin pharmacokinetics in 1,640 patients: method for control of serum concentrations. Antimicrob Agents Chemother. 1982;21(3):407–411.
  • Regamey C, Gordon RC, Kirby WMM. Comparative pharmacokinetics of tobramycin and gentamicin. Clin Pharmacol Ther. 1973;14(3):396–403.
  • Derendorf H, Mollmann H, Barth J, et al. Pharmacokinetics and oral bioavailability of hydrocortisone. J Clin Pharmacol. 1991;31(5):473–476.
  • Czock D, Keller F, Rasche FM, et al. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44:61–98.
  • Sarkar U, Rivera-Burgos D, Large EM, et al. Metabolite profiling and pharmacokinetic evaluation of hydrocortisone in a perfused three-dimensional human liver bioreactor. Drug Metab Dispos. 2015;43(7):1091–1099.
  • Furuta T, Mori C, Suzuki A, et al. Simultaneous determination of 6β-hydroxycortisol and cortisol in human urine by liquid chromatography with ultraviolet absorbance detection for phenotyping the CYP3A activity determined by the cortisol 6β-hydroxylation clearance. J Chromatogr B Anal Technol Biomed Life Sci. 2004;801(2):165–171.
  • Mazaleuskayaa LL, Thekena KN, Gong L, et al. PharmGKB summary: ibuprofen pathways. Pharmacogenet Genomics. 2015;25(2):96–106.
  • Lee EJ, Williams KM, Day R, et al. Stereoselective disposition of ibuprofen enantiomers in man. Br J Clin Pharmacol. 1985;19(5):669–674.
  • Lockwood GF, Albert KS, Gillespie WR, et al. Pharmacokinetics of ibuprofen in man. I. free and total area/dose relationships. Clin Pharmacol Ther. 1983;34(1):97–103.
  • Strolin Benedetti M, Whomsley R, Nicolas JM, et al. Pharmacokinetics and metabolism of 14C-levetiracetam, a new antiepileptic agent, in healthy volunteers. Eur J Clin Pharmacol. 2003;59(8–9):621–630.
  • Patsalos PN. Clinical pharmacokinetics of levetiracetam. Clin Pharmacokinet. 2004;43(11):707–724.
  • Greenblatt DJ. Clinical pharmacokinetics of oxazepam and lorazepam. Clin Pharmacokinet. 1981;6(2):89–105.
  • Anderson GD, Lynn AM. Optimizing pediatric dosing: A developmental pharmacologic approach. Pharmacotherapy. 2009;29(6):680–690.
  • Dyer KR, Foster D, White JM, et al. Steady‐state pharmacokinetics and pharmacodynamics in methadone maintenance patients: comparison of those who do and do not experience withdrawal and concentration‐effect relationships. Clin Pharmacol Ther. 1999;65(6):685–694.
  • Inturrisi CE, Colburn WA, Kaiko RF, et al. Pharmacokinetics and pharmacodynamics of methadone in patients with chronic pain. Clin Pharmacol Ther. 1987;41(4):392–401.
  • Kharasch ED, Hoffer C, Whittington D, et al. Role of hepatic and intestinal cytochrome P450 3A and 2B6 in the metabolism, disposition, and miotic effects of methadone. Clin Pharmacol Ther. 2004;76(3):250–269.
  • Rohatagi S, Barth J, Möllmann H, et al. Pharmacokinetics of methylprednisolone and prednisolone after single and multiple oral administration. J Clin Pharmacol. 1997;37(10):916–925.
  • Thummel KE, O’Shea D, Paine MF, et al. Oral first‐pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A‐mediated metabolism. Clin Pharmacol Ther. 1996;59(5):491–502.
  • Miller A, McKee A, Mazer CD Sedation, analgesia, and related topics [Internet]. Second Edi. Cardiothorac. Crit. Care. Elsevier Inc. 2007. doi:10.1016/B978-0-7506-7572-7.50007-2.
  • Berkowitz BA. The relationship of pharmacokinetics to pharmacological activity: morphine, methadone and naloxone. Clin Pharmacokinet. 1976;1(3):188–219.
  • Roila F, Del Favero A. Ondansetron clinical pharmacokinetics. Clin Pharmacokinet. 1995;29(2):95–109.
  • Yang SH, Lee MG. Effects of cytochrome P450 (CYP) inducers and inhibitors on ondansetron pharmacokinetics in rats: involvement of hepatic CYP2D subfamily and 3A1/2 in ondansetron metabolism. J Pharm Pharmacol. 2008;60:853–861.
  • Culy CR, Bhana N, Plosker GL. Ondansetron a review of its use as an antiemetic in children. Paediatr Drugs. 2001;3(6):441–479.
  • Ordóñez Gallego A, González Barón M, Espinosa Arranz E. Oxycodone: a pharmacological and clinical review. Clin Transl Oncol. 2007;9:298–307.
  • Benziger DP, Kaiko RF, Miotto JB, et al. Differential effects of food on the bioavailability of controlled‐release oxycodone tablets and immediate‐release oxycodone solution. J Pharm Sci. 1996;85(4):407–410.
  • Takala A, Kaasalainen V, Seppälä T, et al. Pharmacokinetic comparison of intravenous and intranasal administration of oxycodone. Acta Anaesthesiol Scand. 1997;41(2):309–312.
  • Frey BM, Frey FJ. Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet. 1990;19(2):126–146.
  • Colangelo PM, Blouin RA, Steinmetz JE, et al. Age and propranolol stereoselective disposition in humans. Clin Pharmacol Ther. 1992;51(5):489–494.
  • Walle T, Conradi EC, Walle UK, et al. 4‐Hydroxypropranolol and its glucuronide after single and long‐term doses of propranolol. Clin Pharmacol Ther. 1980;27(1):22–31.
  • Masubuchi Y, Hosokawa S, Horie T, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes. The role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos. 1994;22:909–915.
  • Mansur AP, Avakian SD, Paula RS, et al. Pharmacokinetics and pharmacodynamics of propranolol in hypertensive patients after sublingual administration: systemic availability. Braz J Med Biol Res. 1998;31:691–696.
  • Walker DK. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man. Xenobiotica. 1999;29(3):297–310.
  • Zhao P, Vieira MDLT, Grillo JA, et al. Evaluation of exposure change of nonrenally eliminated drugs in patients with chronic kidney disease using physiologically based pharmacokinetic modeling and simulation. J Clin Pharmacol. 2012;52(S1):91S–108S.
  • Marsot A, Boulamery A, Bruguerolle B, et al. Vancomycin: a review of population pharmacokinetic analyses. Clin Pharmacokinet. 2012;51(1):1–13.
  • Leader WG, Chandler MHH, Castiglia M. Pharmacokinetic optimisation of vancomycin therapy. Clin Pharmacokinet. 1995;28(4):327–342.
  • Golper TA, Noonan HM, Elzinga L, et al. Vancomycin pharmacokinetics, renal handling, and nonrenal clearances in normal human subjects. Clin Pharmacol Ther. 1988;43:565–570.
  • Momper JD, Yang J, Gockenbach M, et al. Dynamics of organic anion transporter-mediated tubular secretion during postnatal human kidney development and maturation. Clin J Am Soc Nephrol. 2019;14(4):540–548.
  • Strolin Benedetti M, Baltes EL. Drug metabolism and disposition in children. Fundam Clin Pharmacol. 2003;17(3):281–299.
  • Shimada T, Yamazaki H, Mimura M, et al. Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal liver and adult lungs. Drug Metab Dispos. 1996;24:515–522.
  • Shimada T, Yamazaki H, Mimura M, et al. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994;270:414–423.
  • Jedrychowski WA, Perera FP, Camann D, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ Sci Pollut Res. 2015;22(5):3631–3639.
  • Alsabri SG, Mari WO, Younes S, et al. Kinetic and dynamic description of caffeine. J Caffeine Adenosine Res. 2018;8(1):3–9.
  • J V A, Cook CE, Gorman W, et al. Pharmacokinetic profile of caffeine in the premature newborn infant with apnea. J Pediatr. 1979;94(4):663–668.
  • Tanner J-A, Prasad B, Claw KG, et al. Predictors of variation in CYP2A6 mRNA, protein, and enzyme activity in a human liver bank: influence of genetic and nongenetic factors. J Pharmacol Exp Ther. 2017;360(1):129–139.
  • Koukouritaki SB, Manro JR, Marsh SA, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308(3):965–974.
  • Treluyer JM, Cheron G, Sonnier M, et al. Cytochrome P-450 expression in sudden infant death syndrome. Biochem Pharmacol. 1996;52(3):497–504.
  • Figueiras A, Estany-Gestal A, Aguirre C, et al. CYP2C9 variants as a risk modifier of NSAID-related gastrointestinal bleeding: a case-control study. Pharmacogenet Genomics. 2016;26(2):66–73.
  • Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5(1):6–13.
  • Stevens JC, Marsh SA, Zaya MJ, et al. Developmental changes in human liver CYP2D6 expression. Drug Metab Dispos. 2008;36(8):1587–1593.
  • Johnson TN, Tucker GT, Rostami‐Hodjegan A. Development of CYP2D6 and CYP3A4 in the first year of life. Clin Pharmacol Ther. 2008;83(5):670–671.
  • Gaedigk A, Dinh JC, Jeong H, et al. Ten years’ experience with the CYP2D6 activity score: a perspective on future investigations to improve clinical predictions for precision therapeutics. J Pers Med. 2018;8(2):15.
  • Drozdzik M, Busch D, Lapczuk J, et al. Protein abundance of clinically relevant drug‐metabolizing enzymes in the human liver and intestine: a comparative analysis in paired tissue specimens. Clin Pharmacol Ther. 2018;104(3):515–524.
  • Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21(4):169–175.
  • Johnson TN, Tanner MS, Taylor CJ, et al. Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis. Br J Clin Pharmacol. 2001;51(5):451–460.
  • Völler S, Flint RB, Andriessen P, et al. Rapidly maturing fentanyl clearance in preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2019;104(6):F598–F603.
  • Vyhlidal CA, Bi C, Ye SQ, et al. Dynamics of cytosine methylation in the proximal promoters of CYP3A4 and CYP3A7 in pediatric and prenatal livers. Drug Metab Dispos. 2016;44(7):1020–1026.
  • Koukouritaki SB, Simpson P, Yeung CK, et al. Human hepatic flavin-containing monooxygenases 1 (FMO1) and 3 (FMO3) developmental expression. Pediatr Res. 2002;51(2):236–243.
  • Dolphin CT, Cullingford TE, Shcphard EA, et al. Differential developmental and tissue‐specific regulation of expression of the genes encoding three members of the flavin‐containing monooxygenase family of man, FMO1, FMO3 and FMO4. Eur J Biochem. 1996;235(3):683–689.
  • Yeung CK, Lang DH, Thummel KE, et al. Immunoquantitation of FMO1 in human liver, kidney, and intestine. Drug Metab Dispos. 2000;28:1107–1111.
  • Zhang J, Cashman JR. Quantitative analysis of fmo gene mrna levels in human tissues. Drug Metab Dispos. 2006;34(1):19–26.
  • Chen Y, Zane NR, Thakker DR, et al. Quantification of flavin-containing monooxygenases 1, 3, and 5 in human liver microsomes by UPLC-MRM-based targeted quantitative proteomics and its application to the study of ontogeny. Drug Metab Dispos. 2016;44(7):975–983.
  • Zane NR, Chen Y, Wang MZ, et al. Cytochrome P450 and flavin-containing monooxygenase families: age-dependent differences in expression and functional activity. Pediatr Res. 2018;83(2):527–535.
  • Xu M, Bhatt DK, Yeung CK, et al. Genetic and nongenetic factors associated with protein abundance of flavin-containing monooxygenase 3 in human liver. J Pharmacol Exp Ther. 2017;363(2):265–274.
  • Edenberg HJ, Bosron WF. 4.06 - Alcohol Dehydrogenases. In: McQueen CABT-CT (Second E, editor. Oxford: Elsevier; 2010. p. 111–130. Available from: http://www.sciencedirect.com/science/article/pii/B9780080468846004061. https://doi.org/10.1016/B978-0-08-046884-6.00406-1
  • Smith M, Hopkinson DA, Harris H. Developmental changes and polymorphism in human alcohol dehydrogenase. Ann Hum Genet. 1971;34(3):251–271.
  • Bhatt DK, Gaedigk A, Pearce RE, et al. Age-dependent protein abundance of cytosolic alcohol and aldehyde dehydrogenases in human liver. Drug Metab Dispos. 2017;45(9):1044–1048.
  • Smith DA, Hammond T, Baillie TA. Safety assessment of acyl glucuronides—a simplified paradigm. Drug Metab Dispos. 2018;46(6):908–912.
  • Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for udp-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCI/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–1208.
  • Kawade N, Onishi S. The prenatal and postnatal development of UDP-glucuronyltransferase activity. Biochem J. 1981;196(1):257–260.
  • Ciotti M, Obaray R, Martín MG, et al. Genetic defects at the UGT1 locus associated with Crigler-Najjar type I disease, including a prenatal diagnosis. Am J Med Genet. 1997;68(2):173–178.
  • Clarke DJ, Moghrabi N, Monaghan G, et al. Genetic defects of the UDP-glucuronosyltransferase-1 (UGT1) gene that cause familial non-haemolytic unconjugated hyperbilirubinaemias. Clin Chim Acta. 1997;266(1):63–74.
  • Bosma PJ, Chowdhury JR, Bakker C, et al. The genetic basis of the reduced expression of bilirubin udp-glucuronosyltransferase 1 in gilbert’s syndrome. N Engl J Med. 1995;333(18):1171–1175.
  • Blake MJ, Castro L, Leeder JS, et al. Ontogeny of drug metabolizing enzymes in the neonate. Semin Fetal Neonatal Med. 2005;10(2):123–138.
  • King CD, Rios GR, Assouline JA, et al. Expression of UDP-glucuronosyltransferases (UGTs) 2B7 and 1A6 in the human brain and identification of 5-hydroxytryptamine as a substrate. Arch Biochem Biophys. 1999;365(1):156–162.
  • Bock KW, Forster A, Gschaidmeier H, et al. Paracetamol glucuronidation by recombinant rat and human phenol UDP-glucuronosyltransferases. Biochem Pharmacol. 1993;45(9):1809–1814.
  • Blanchet M, Bru G, Guerret M, et al. Routine determination of morphine, morphine 3-β-D-glucuronide and morphine 6-β-D-glucuronide in human serum by liquid chromatography coupled to electrospray mass spectrometry. J Chromatogr A. 1999;854(1–2):93–108.
  • Coffman BL, Rios GR, King CD, et al. Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos. 1997;25:1–4.
  • Smith HS. Opioid metabolism. Mayo Clin Proc. 2009;84(7):613–624.
  • Venkatasubramanian R, Fukuda T, Niu J, et al. ABCC3 and OCT1 genotypes influence pharmacokinetics of morphine in children. Pharmacogenomics. 2014;15(10):1297–1309.
  • Glare PA, Walsh TD. Clinical pharmacokinetics of morphine. Ther Drug Monit. 1991;13(1):1–23.
  • Pacifici GM, Säwe J, Kager L, et al. Morphine glucuronidation in human fetal and adult liver. Eur J Clin Pharmacol. 1982;22(6):553–558.
  • Pacifici GM, Franchi M, Giuliani L, et al. Development of the glucuronyltransferase and sulphotransferase towards 2-naphthol in human fetus. Dev Pharmacol Ther. 1990;14:108–114.
  • The ontogeny of drug metabolism enzymes and implications for adverse drug events. Pharmacol Ther [Internet]. 2008 ;118:250–267. cited 2020 May 6. Available from http://www.sciencedirect.com/science/article/pii/S0163725808000375
  • Uchaipichat V, Suthisisang C, Miners JO. The glucuronidation of R- and S-lorazepam: human liver microsomal kinetics, UDP-glucuronosyltransferase enzyme selectivity, and inhibition by drugs. Drug Metab Dispos. 2013;41(6):1273–1284.
  • Blanchard RL, Freimuth RR, Buck J, et al. A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenet Genomics. 2004;14(3):199–211.
  • Hume R, E V B, Coughtrie MWH. Differential expression and immunohistochemical localisation of the phenol and hydroxysteroid sulphotransferase enzyme families in the developing lung. Histochem Cell Biol. 1996;105(2):147–152.
  • Richard K, Hume R, Kaptein E, et al. Sulfation of thyroid hormone and dopamine during human development: ontogeny of phenol sulfotransferases and arylsulfatase in liver, lung, and brain. J Clin Endocrinol Metab. 2001;86:2734–2742.
  • Adjei AA, Gaedigk A, Simon SD, et al. Interindividual variability in acetaminophen sulfation by human fetal liver: implications for pharmacogenetic investigations of drug‐induced birth defects. Birth Defects Res A Clin Mol Teratol. 2008;82(3):155–165.
  • Duanmu Z, Weckle A, Koukouritaki SB, et al. Developmental expression of aryl, estrogen, and hydroxysteroid sulfotransferases in pre-and postnatal human liver. J Pharmacol Exp Ther. 2006;316(3):1310–1317.
  • Mitra A, Hilbelink DR, Dwornik JJ, et al. A novel model to assess developmental toxicity of dihaloalkanes in humans: bioactivation of 1, 2‐dibromoethane by the isozymes of human fetal liver glutathione S‐transferase. Teratog Carcinog Mutagen. 1992;12(3):113–127.
  • Strange RC, Davis BA, Faulder CG, et al. The human glutathione S-transferases: developmental aspects of the GST1, GST2, and GST3 loci. Biochem Genet. 1985;23(11–12):1011–1028.
  • Strange RC, Howie AF, Hume R, et al. The developmental expression of alpha-, mu-and pi-class glutathione S-transferases in human liver. Biochim Biophys Acta. 1989;993(2–3):186–190.
  • Pacifici GM, Rane A. Metabolism of styrene oxide in different human fetal tissues. Drug Metab Dispos. 1982;10:302–305.
  • Pacifici GM, Franchi M, Colizzi C, et al. Glutathione S-transferase in humans: development and tissue distribution. Arch Toxicol. 1988;61(4):265–269.
  • Pacifici GM, Bencini C, Rane A. Acetyltransferase in humans: development and tissue distribution. Pharmacology. 1986;32(5):283–291.
  • Pons G, Rey E, Carrier O, et al. Maturation of AFMU excretion in infants. Fundam Clin Pharmacol. 1989;3(6):589–595.
  • Elmorsi Y, Barber J, Rostami-Hodjegan A. Ontogeny of hepatic drug transporters and relevance to drugs used in pediatrics. Drug Metab Dispos. 2016;44(7):992–998.
  • Balyan R, Zhang X, Chidambaran V, et al. OCT1 genetic variants are associated with postoperative morphine-related adverse effects in children. Pharmacogenomics. 2017;18:621–629.
  • *Emoto C, Johnson TN, Neuhoff S, et al. PBPK model of morphine incorporating developmental changes in hepatic OCT1 and UGT2B7 proteins to explain the variability in clearances in neonates and small infants. CPT Pharmacometrics Syst Pharmacol. 2018;7(7):464–473.
  • Fukuda T, Chidambaran V, Mizuno T, et al. OCT1 genetic variants influence the pharmacokinetics of morphine in children. Pharmacogenomics. 2013;14(10):1141–1151.
  • Haycock GB. Development of glomerular filtration and tubular sodium reabsorption in the human fetus and newborn. Br J Urol. 1998;81(S2):33–38.
  • Bueva A, Guignard JP. Renal function in preterm neonates. Pediatr Res. 1994;36(5):572–577.
  • Alcorn J, McNamara PJ. Pharmacokinetics in the newborn. Adv Drug Deliv Rev. 2003;55(5):667–686.
  • **Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology - drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–1167.
  • Hook JB, Hewitt WR. Development of mechanisms for drug excretion. Am J Med. 1977;62(4):497–506.
  • Fetterman GH, Shuplock NA, Philipp FJ, et al. The growth and maturation of human glomeruli and proximal convolutions from term to adulthood: studies by microdissection. Pediatrics. 1965;35:601–619.
  • Rowland M. Protein binding and drug clearance. Clin Pharmacokinet. 1984;9(Supplement 1):10–17.
  • Hayton WL. Maturation and growth of renal function: dosing renally cleared drugs in children. AAPS PharmSci. 2000;2(1):22–28.
  • Gruskin AB, Edelmann CM, Yuan S. Maturational changes in renal blood flow in piglets. Pediatr Res. 1970;4:7–13.
  • Bueters R, Bael A, Gasthuys E, et al. Ontogeny and cross-species comparison of pathways involved in drug absorption, distribution, metabolism, and excretion in neonates (review): kidney. Drug Metab Dispos. 2020;48(5):353–367.
  • Strolin M, Whomsley R, Baltes EL. Differences in absorption, distribution, metabolism and excretion of xenobiotics between the paediatric and adult populations. Expert Opin Drug Metab Toxicol. 2005;1:447–471.
  • Brown RD, Campoli-Richards DM. Antimicrobial therapy in neonates, infants and children. Clin Pharmacokinet. 1989;17(Supplement 1):105–115.
  • Peterson RG, Simmons MA, Rumack BH, et al. Pharmacology of furosemide in the premature newborn infant. J Pediatr. 1980;97(1):139–143.
  • Kelly MR, Cutler RE, Forrey AW, et al. Pharmacokinetics of orally administered furosemide. Clin Pharmacol Ther. 1974;15(2):178–186.
  • Li CY, Hosey-Cojocari C, Basit A, et al. Optimized renal transporter quantification by using aquaporin 1 and aquaporin 2 as anatomical markers: application in characterizing the ontogeny of renal transporters and its correlation with hepatic transporters in paired human samples. Aaps J. [Internet]. 2019;21(5):88.
  • Cheung KWK, van Groen BD, Spaans E, et al. A comprehensive analysis of ontogeny of renal drug transporters: mRNA analyses, quantitative proteomics, and localization. Clin Pharmacol Ther. 2019;106(5):1083–1092.
  • Jacobs RF, Kearns GL, Brown AL, et al. Renal clearance of imipenem in children. Eur J Clin Microbiol. 1984;3(5):471–474.
  • Linday LA, Engle MA, Reidenberg MM. Maturation and renal digoxin clearance. Clin Pharmacol Ther. 1981;30(6):735–738.
  • Koren G, Hesslein PS, MacLeod SM. Digoxin toxicity associated with amiodarone therapy in children. J Pediatr. 1984;104(3):467–470.
  • Nigam SK, Bhatnagar V. How much do we know about drug handling by SLC and ABC drug transporters in children? Clin Pharmacol Ther. 2013;94(1):27–29.
  • Pavlova A, Sakurai H, Leclercq B, et al. Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. Am J Physiol - Ren Physiol. 2000;278(4):635–643.
  • Eraly SA, Vallon V, Vaughn DA, et al. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J Biol Chem. 2006;281(8):5072–5083.
  • Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123.
  • Yin J, Wang J. Renal drug transporters and their significance in drug-drug interactions. Acta Pharm Sin B [Internet]. 2016;6:363–373.
  • Hua MJ, Kun HY, Jie CS, et al. Urinary microalbumin and retinol-binding protein assay for verifying children’s nephron development and maturation. Clin Chim Acta. 1997;264(1):127–132.
  • Leeder JS. Ontogeny of drug-metabolizing enzymes and its influence on the pathogenesis of adverse drug reactions in children. Curr Ther Res - Clin Exp. 2001;62(12):900–912.
  • Shi D, Yang D, Prinssen EP, et al. Surge in expression of carboxylesterase 1 during the post-neonatal stage enables a rapid gain of the capacity to activate the anti-influenza prodrug oseltamivir. J Infect. 2011;203(7):937–942.
  • Avant D, Baer G, Moore J, et al. Neonatal safety information reported to the FDA during drug development studies. Ther Innov Regul Sci. 2018;52(1):100–108.
  • Rishoej RM, Almarsdóttir AB, Christesen HT, et al. Medication errors in pediatric inpatients: a study based on a national mandatory reporting system. Eur J Pediatr. 2017;176(12):1697–1705.
  • Dean L. Codeine Therapy and CYP2D6 Genotype. 2012 Sep 20 [updated 2017 Mar 16]. In: Pratt VM, McLeod HL, Rubinstein WS, Scott SA, Dean LC, Kattman BL, Malheiro AJ, editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012–. PMID: 28520350.
  • Food and Drug Administration (FDA). Use of codeine and tramadol products in breastfeeding women [Internet]. 2019 cited 2020 Aug 1. Available from: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/use-codeine-and-tramadol-products-breastfeeding-women-questions-and-answers
  • Perry C, Davis G, Conner TM, et al. Utilization of physiologically based pharmacokinetic modeling in clinical pharmacology and therapeutics: an overview. Curr Pharmacol Reports. 2020;6(3):71–84.
  • Pearce RE, Gaedigk R, Twist GP, et al. Developmental expression of CYP2B6: a comprehensive analysis of mRNA expression, protein content and bupropion hydroxylase activity and the impact of genetic variation. Drug Metab Dispos. 2016;44(7):948–958.
  • Zaya MJ, Hines RN, Stevens JC. Epirubicin glucuronidation and UGT2B7 developmental expression. Drug Metab Dispos. 2006;34(12):2097–2101.
  • Kearns GL, Jungbluth GL, Abdel-Rahman SM, et al. Impact of ontogeny on linezolid disposition in neonates and infants. Clin Pharmacol Ther. 2003;74(5):413–422.
  • Payne K, Mattheyse FJ, Liebenberg D, et al. The pharmacokinetics of midazolam in paediatric patients. Eur J Clin Pharmacol. 1989;37(3):267–272.
  • Boberg M, Vrana M, Mehrotra A, et al. Age-dependent absolute abundance of hepatic carboxylesterases (CES1 and CES2) by LC-MS/MS proteomics: application to PBPK modeling of oseltamivir in vivo pharmacokinetics in infants. Drug Metab Dispos. 2017;45(2):216–223.
  • Smits A, Annaert P, Allegaert K. Biomarkers of propofol metabolism in neonates: the quest beyond ontogeny. Biomark Med England. 2017;11(11):933–936.
  • Mian P, Allegaert K, Conings S, et al. Integration of placental transfer in a fetal-maternal physiologically based pharmacokinetic model to characterize acetaminophen exposure and metabolic clearance in the fetus. Clin Pharmacokinet. 2020;59(7):911–925.
  • Emoto C, Fukuda T, Johnson TN, et al. Characterization of contributing factors to variability in morphine clearance through PBPK modeling implemented with OCT1 transporter. CPT Pharmacometrics Syst Pharmacol. 2017;6(2):110–119.
  • Strougo A, Eissing T, Yassen A, et al. First dose in children: physiological insights into pharmacokinetic scaling approaches and their implications in paediatric drug development. J Pharmacokinet Pharmacodyn. 2012;39(2):195–203.
  • Food and Drug Administration. General clinical pharmacology considerations for pediatric studies for drugs and biological products (Draft). 2014;1–25. Available from: https://www.fda.gov/downloads/drugs/guidances/ucm425885.pdf
  • Food and Drug Administration (FDA). 21 CFR 314.108 - New drug product exclusivity. [Internet]. cited 2020 Jul 29. Available from: https://www.govinfo.gov/app/details/CFR-2012-title21-vol5/CFR-2012-title21-vol5-sec314–108
  • Food and Drug Administration. Good Review Practices [Internet]. cited 2020 Jul 29. Available from: https://www.fda.gov/drugs/guidance-compliance-regulatory-information/good-review-practices-grps
  • FDA. Draft guidance for industry - pediatric study plans: content of and process for submitting initial pediatric study plans and amended pediatric study plans. FDA Guid [Internet]. 2016;115:13. Available from http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM360507.pdf.
  • Rodrigues D, Rowland A. From endogenous compounds as biomarkers to plasma-derived nanovesicles as liquid biopsy; has the golden age of translational pharmacokinetics-absorption, distribution, metabolism, excretion-drug-drug interaction science finally arrived? Clin Pharmacol Ther. 2019;105(6):1407–1420.
  • Rowland A, Ruanglertboon W, Dyk M, et al. Plasma extracellular nanovesicle (exosome)‐derived biomarkers for drug metabolism pathways: a novel approach to characterize variability in drug exposure. Br J Clin Pharmacol. 2019;85(1):216–226.
  • Wagner C, Zhao P, Pan Y, et al. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA public workshop on PBPK. CPT Pharmacometrics Syst Pharmacol. 2015;4(4):226–230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.