535
Views
15
CrossRef citations to date
0
Altmetric
Review

Interactions of janus kinase inhibitors with drug transporters and consequences for pharmacokinetics and toxicity

, , , , , & show all
Pages 259-271 | Received 13 Aug 2020, Accepted 07 Dec 2020, Published online: 11 Jan 2021

References

  • Roskoski R Jr. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Pharmacol Res. 2016 Sep;111:784–803.
  • Muller R. JAK inhibitors in 2019, synthetic review in 10 points. Eur J Intern Med. 2019 Aug;66:9–17.
  • Bechman K, Yates M, Galloway JB. The new entries in the therapeutic armamentarium: the small molecule JAK inhibitors. Pharmacol Res. 2019 Sep;147:104392.
  • Kisseleva T, Bhattacharya S, Braunstein J, et al. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002 Feb 20;285(1–2):1–24.
  • O’Shea JJ, Schwartz DM, Villarino AV, et al. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med. 2015;66:311–328.
  • Villarino AV, Kanno Y, O’Shea JJ. Mechanisms and consequences of Jak-STAT signaling in the immune system. Nat Immunol. 2017 Mar 22;18(4):374–384.
  • Macchi P, Villa A, Giliani S, et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature. 1995 Sep 7;377(6544):65–68.
  • Febvre-James M, Lecureur V, Augagneur Y, et al. Repression of interferon β-regulated cytokines by the JAK1/2 inhibitor ruxolitinib in inflammatory human macrophages. Int Immunopharmacol. 2018 Jan;54:354–365.
  • James C, Ugo V, Le Couédic JP, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005 Apr 28;434(7037):1144–1148.
  • Clark JD, Flanagan ME, Telliez JB. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J Med Chem. 2014 Jun 26;57(12):5023–5038.
  • Schwartz DM, Kanno Y, Villarino A, et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov. 2017 Dec;16(12):843–862.
  • Griesshammer M, Sadjadian P. The BCR-ABL1-negative myeloproliferative neoplasms: a review of JAK inhibitors in the therapeutic armamentarium. Expert Opin Pharmacother. 2017 Dec;18(18):1929–1938.
  • Vainchenker W, Leroy E, Gilles L, et al. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. F1000Res. 2018;7:82.
  • Taylor PC. Clinical efficacy of launched JAK inhibitors in rheumatoid arthritis. Rheumatology (Oxford). 2019 Feb 1;58(Suppl 1):i17–i26.
  • Przepiorka D, Luo L, Subramaniam S, et al. FDA approval summary: ruxolitinib for treatment of steroid-refractory acute graft-versus-host disease. Oncologist. 2020 Feb;25(2):e328–e334.
  • Fragoulis GE, McInnes IB, Siebert S. JAK-inhibitors. New players in the field of immune-mediated diseases, beyond rheumatoid arthritis. Rheumatology (Oxford). 2019 Feb 1;58(Suppl 1):i43–i54.
  • Ahmed A, Merrill SA, Alsawah F, et al. Ruxolitinib in adult patients with secondary haemophagocytic lymphohistiocytosis: an open-label, single-centre, pilot trial. Lancet Haematol. 2019 Dec;6(12):e630–e637.
  • Luo W, Li YX, Jiang LJ, et al. Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19. Trends Pharmacol Sci. 2020 Aug;41(8):531–543.
  • Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010 Mar;9(3):215–236.
  • König J, Müller F, Fromm MF. Transporters and drug-drug interactions: important determinants of drug disposition and effects. Pharmacol Rev. 2013 Jul;65(3):944–966.
  • Veeravalli V, Dash RP, Thomas JA, et al. Critical assessment of pharmacokinetic drug-drug interaction potential of tofacitinib, baricitinib and upadacitinib, the three approved janus kinase inhibitors for rheumatoid arthritis treatment. Drug Saf. 2020 May 4;43(8):711–725.
  • Shibata M, Toyoshima J, Kaneko Y, et al. A drug-drug interaction study to evaluate the impact of peficitinib on OCT1- and MATE1-mediated transport of metformin in healthy volunteers. Eur J Clin Pharmacol. 2020 Aug;76(8):1135–1141.
  • Febvre-James M, Bruyère A, Le Vée M, et al. The JAK1/2 inhibitor ruxolitinib reverses interleukin-6-mediated suppression of drug-detoxifying proteins in cultured human hepatocytes. Drug Metab Dispos. 2018 Feb;46(2):131–140.
  • Mishra J, Simonsen R, Kumar N. Intestinal breast cancer resistance protein (BCRP) requires Janus kinase 3 activity for drug efflux and barrier functions in obesity. J Biol Chem. 2019 Nov 29;294(48):18337–18348.
  • Zhang Q, Zhang Y, Diamond S, et al. The Janus kinase 2 inhibitor fedratinib inhibits thiamine uptake: a putative mechanism for the onset of Wernicke’s encephalopathy. Drug Metab Dispos. 2014 Oct;42(10):1656–1662.
  • Babon JJ, Lucet IS, Murphy JM, et al. The molecular regulation of Janus kinase (JAK) activation. Biochem J. 2014 Aug 15;462(1):1–13.
  • Iwata S, Tanaka Y. Progress in understanding the safety and efficacy of Janus kinase inhibitors for treatment of rheumatoid arthritis. Expert Rev Clin Immunol. 2016 Oct;12(10):1047–1057.
  • Fridman JS, Scherle PA, Collins R, et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J Immunol. 2010 May 1;184(9):5298–5307.
  • Mogul A, Corsi K, McAuliffe L. Baricitinib: the second FDA-approved JAK inhibitor for the treatment of rheumatoid arthritis. Ann Pharmacother. 2019 Sep;53(9):947–953.
  • Wernig G, Kharas MG, Okabe R, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell. 2008 Apr;13(4):311–320.
  • Talpaz M, Kiladjian JJ. Fedratinib, a newly approved treatment for patients with myeloproliferative neoplasm-associated myelofibrosis. Leukemia. 2020 Jul 9. DOI:10.1038/s41375-020-0954-2.
  • Ito M, Yamazaki S, Yamagami K, et al. A novel JAK inhibitor, peficitinib, demonstrates potent efficacy in a rat adjuvant-induced arthritis model. J Pharmacol Sci. 2017 Jan;133(1):25–33.
  • Qiu Q, Feng Q, Tan X, et al. JAK3-selective inhibitor peficitinib for the treatment of rheumatoid arthritis. Expert Rev Clin Pharmacol. 2019 Jun;12(6):547–554.
  • Quintás-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood. 2010 Apr 15;115(15):3109–3117.
  • Ali H, Salhotra A, Modi B, et al. Ruxolitinib for the treatment of graft-versus-host disease. Expert Rev Clin Immunol. 2020 Apr;16(4):347–359.
  • Meyer DM, Jesson MI, Li X, et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J Inflamm (Lond). 2010 Aug 11;7:41.
  • You H, Xu D, Zhao J, et al. JAK inhibitors: prospects in connective tissue diseases. Clin Rev Allergy Immunol. 2020 Mar 28;59(3):334–351.
  • Parmentier JM, Voss J, Graff C, et al. In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494). BMC Rheumatol. 2018;2:23.
  • Mysler E, Lizarraga A. Evaluating upadacitinib for the treatment of rheumatoid arthritis. Expert Opin Pharmacother. 2020 Jun;9:1–9.
  • Ma J, Xing W, Coffey G, et al. Cerdulatinib, a novel dual SYK/JAK kinase inhibitor, has broad anti-tumor activity in both ABC and GCB types of diffuse large B cell lymphoma. Oncotarget. 2015 Dec 22;6(41):43881–43896.
  • Tyner JW, Bumm TG, Deininger J, et al. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood. 2010 Jun 24;115(25):5232–5240.
  • Xu L, Feng J, Gao G, et al. Momelotinib for the treatment of myelofibrosis. Expert Opin Pharmacother. 2019 Nov;20(16):1943–1951.
  • Meydan N, Grunberger T, Dadi H, et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature. 1996 Feb 15;379(6566):645–648.
  • Wang LH, Kirken RA, Erwin RA, et al. JAK3, STAT, and MAPK signaling pathways as novel molecular targets for the tyrphostin AG-490 regulation of IL-2-mediated T cell response. J Immunol. 1999 Apr 1;162(7):3897–3904.
  • Gooderham MJ, Forman SB, Bissonnette R, et al. Efficacy and safety of oral janus kinase 1 inhibitor abrocitinib for patients with atopic dermatitis: a phase 2 randomized clinical trial. JAMA Dermatol. 2019 Oct 2;155(12):1371–1379.
  • Van Rompaey L, Galien R, van der Aar EM, et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J Immunol. 2013 Oct 1;191(7):3568–3577.
  • Smolen JS, Landewé RBM, Bijlsma JWJ, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis. 2020 Jun;79(6):685–699.
  • Kettle JG, Åstrand A, Catley M, et al. Inhibitors of JAK-family kinases: an update on the patent literature 2013-2015, part 1. Expert Opin Ther Pat. 2017 Feb;27(2):127–143.
  • Schroeder MA, Khoury HJ, Jagasia M, et al. A phase 1 trial of itacitinib, a selective JAK1 inhibitor, in patients with acute graft-versus-host disease. Blood Adv. 2020 Apr 28;4(8):1656–1669.
  • Kahl L, Patel J, Layton M, et al. Safety, tolerability, efficacy and pharmacodynamics of the selective JAK1 inhibitor GSK2586184 in patients with systemic lupus erythematosus. Lupus. 2016 Nov;25(13):1420–1430.
  • Dugan BJ, Gingrich DE, Mesaros EF, et al. A selective, orally bioavailable 1,2,4-triazolo[1,5-a]pyridine-based inhibitor of Janus kinase 2 for use in anticancer therapy: discovery of CEP-33779. J Med Chem. 2012 Jun 14;55(11):5243–5254.
  • Seavey MM, Lu LD, Stump KL, et al. Therapeutic efficacy of CEP-33779, a novel selective JAK2 inhibitor, in a mouse model of colitis-induced colorectal cancer. Mol Cancer Ther. 2012 Apr;11(4):984–993.
  • Berdeja J, Palandri F, Baer MR, et al. Phase 2 study of gandotinib (LY2784544) in patients with myeloproliferative neoplasms. Leuk Res. 2018 Aug;71:82–88.
  • Mascarenhas J, Baer MR, Kessler C, et al. Phase II trial of Lestaurtinib, a JAK2 inhibitor, in patients with myelofibrosis. Leuk Lymphoma. 2019 May;60(5):1343–1345.
  • Baffert F, Régnier CH, De Pover A, et al. Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805. Mol Cancer Ther. 2010 Jul;9(7):1945–1955.
  • William AD, Lee AC, Blanchard S, et al. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25), 2(26),3,5,8,10,12(27),16,21,23-decaene(SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lymphoma. J Med Chem. 2011 Jul 14;54(13):4638–4658.
  • Mascarenhas J, Hoffman R, Talpaz M, et al. Pacritinib vs Best available therapy, including ruxolitinib, in patients with myelofibrosis: a randomized clinical trial. JAMA Oncol. 2018 May 1;4(5):652–659.
  • Verstovsek S, Tam CS, Wadleigh M, et al. Phase I evaluation of XL019, an oral, potent, and selective JAK2 inhibitor. Leuk Res. 2014 Mar;38(3):316–322.
  • Farmer LJ, Ledeboer MW, Hoock T, et al. Discovery of VX-509 (Decernotinib): a potent and selective janus kinase 3 inhibitor for the treatment of autoimmune diseases. J Med Chem. 2015 Sep 24;58(18):7195–7216.
  • Wrobleski ST, Moslin R, Lin S, et al. Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. J Med Chem. 2019 Oct 24;62(20):8973–8995.
  • Gonzales AJ, Bowman JW, Fici GJ, et al. Oclacitinib (APOQUEL(®)) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. J Vet Pharmacol Ther. 2014 Aug;37(4):317–324.
  • Bodenmiller B, Zunder ER, Finck R, et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat Biotechnol. 2012 Sep;30(9):858–867.
  • Albeituni S, Verbist KC, Tedrick PE, et al. Mechanisms of action of ruxolitinib in murine models of hemophagocytic lymphohistiocytosis. Blood. 2019 Jul 11;134(2):147–159.
  • Salas A, Hernandez-Rocha C, Duijvestein M, et al. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020 Jun;17(6):323–337.
  • Lescoat A, Lelong M, Jeljeli M, et al. Combined anti-fibrotic and anti-inflammatory properties of JAK-inhibitors on macrophages in vitro and in vivo: perspectives for scleroderma-associated interstitial lung disease. Biochem Pharmacol. 2020 Jun;17(178):114103.
  • Damsky W, King BA. JAK inhibitors in dermatology: the promise of a new drug class. J Am Acad Dermatol. 2017 Apr;76(4):736–744.
  • Febvre-James M, Lecureur V, Fardel O. Potent repression of C-reactive protein (CRP) expression by the JAK1/2 inhibitor ruxolitinib in inflammatory human hepatocytes. Inflamm Res. 2020 Jan;69(1):51–62.
  • Akcora B, Dathathri E, Ortiz-Perez A, et al. TG101348, a selective JAK2 antagonist, ameliorates hepatic fibrogenesis in vivo. Faseb J. 2019 Aug;33(8):9466–9475.
  • Cao Y, Wei J, Zou L, et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): a multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol. 2020 Jul;146(1):137–146.e3.
  • Sudsakorn S, Bahadduri P, Fretland J, et al. FDA drug-drug interaction guidance -comparison analysis and action plan by pharmaceutical industrial scientists. Curr Drug Metab. 2020;21(6):403–426.
  • In Vitro Drug Interaction Studies. Cytochrome P450 enzyme- and transporter-mediated drug interactions guidance for industry. U.S. Food and Drug Administration, 2020 [cited 2020 Jun 8]. January. https://www.fda.gov/media/134582/download
  • Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett. 2006 Feb 13;580(4):998–1009.
  • Fardel O, Lecureur V, Guillouzo A. The P-glycoprotein multidrug transporter. Gen Pharmacol. 1996 Dec;27(8):1283–1291.
  • Polgar O, Robey RW, Bates SE. ABCG2: structure, function and role in drug response. Expert Opin Drug Metab Toxicol. 2008 Jan;4(1):1–15.
  • Murakami T, Takano M. Intestinal efflux transporters and drug absorption. Expert Opin Drug Metab Toxicol. 2008 Jul;4(7):923–939.
  • Vähäkangas K, Myllynen P. Drug transporters in the human blood-placental barrier. Br J Pharmacol. 2009 Oct;158(3):665–678.
  • Scherrmann JM. Expression and function of multidrug resistance transporters at the blood-brain barriers. Expert Opin Drug Metab Toxicol. 2005 Aug;1(2):233–246.
  • Fedratinib. Multi-discipline review, center for drug evaluation and research. U.S. Food and Drug Administration, [cited 2020 Jun 28]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212327Orig1s000MultidisciplineR.pdf
  • Ruxolitinib. Clinical pharmacology and biopharmaceutics review(s), center for drug evaluation and research. U.S. Food and Drug Administration, [cited 2020 Jun 26]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202192Orig1s000ClinPharmR.pdf
  • Ruxolitinib. CHMP assessment report. European Medecines Agency [cited 2020 Jun 26]. https://www.ema.europa.eu/en/documents/assessment-report/jakavi-epar-public-assessment-report_en.pdf
  • Shi JG, Fraczkiewicz G, Williams WV, et al. Predicting drug-drug interactions involving multiple mechanisms using physiologically based pharmacokinetic modeling: a case study with ruxolitinib. Clin Pharmacol Ther. 2015 Feb;97(2):177–185.
  • Baricitinib. Clinical pharmacology and biopharmaceutics review, center for drug evaluation and research. U.S. Food and Drug Administration. [cited 2020 Jun 26]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/207924Orig1s000ClinPharmR.pdf
  • Payne C, Zhang X, Shary N, et al. Evaluation of potential drug-drug interactions with baricitinib. Ann Rheum Dis. 2015;74:1063.
  • Peficitinib. Review Report, pharmaceuticals and medical devices agency. [cited 2020 Jul 2]. https://www.pmda.go.jp/files/000233074.pdf
  • Zhu T, Moy S, Valluri U, et al. Investigation of potential drug-drug interactions between peficitinib (ASP015K) and methotrexate in patients with rheumatoid arthritis. Clin Drug Investig. 2020 Jun 26;40(9):827–838.
  • Namour F, Desrivot J, Van der Aa A, et al. Clinical confirmation that the selective JAK1 inhibitor filgotinib (GLPG0634) has a low liability for drug-drug interactions. Drug Metab Lett. 2016;10(1):38–48.
  • Cheon JH, Kim KS, Yadav DK, et al. The JAK2 inhibitors CEP-33779 and NVP-BSK805 have high P-gp inhibitory activity and sensitize drug-resistant cancer cells to vincristine. Biochem Biophys Res Commun. 2017 Sep 2;490(4):1176–1182.
  • Cheon JH, Kim JY, Lee BM, et al. P-gp inhibition by XL019, a JAK2 inhibitor, increases apoptosis of vincristine-treated resistant KBV20C cells with increased p21 and pH2AX expression. Anticancer Res. 2017 Dec;37(12):6761–6769.
  • Posada MM, Cannady EA, Payne CD, et al. Prediction of transporter-mediated drug-drug interactions for baricitinib. Clin Transl Sci. 2017 Nov;10(6):509–519.
  • Tofacitinib. CHMP assessment report, European medecines agency. [cited 2020 Jun 26]. https://www.ema.europa.eu/en/documents/assessment-report/xeljanz-epar-public-assessment-report_en.pdf
  • Lecureur V, Courtois A, Payen L, et al. Expression and regulation of hepatic drug and bile acid transporters. Toxicology. 2000 Nov 16;153(1–3):203–219.
  • Hillgren KM, Keppler D, Zur AA, et al. Emerging transporters of clinical importance: an update from the International transporter consortium. Clin Pharmacol Ther. 2013 Jul;94(1):52–63.
  • Guideline on the investigation of drug interactions, June 2012, European Medicines Agency [cited 2020 July 6]. Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-drug-interactions-revision-1_en.pdf
  • Sampson A, Peterson BG, Tan KW, et al. Doxorubicin as a fluorescent reporter identifies novel MRP1 (ABCC1) inhibitors missed by calcein-based high content screening of anticancer agents. Biomed Pharmacother. 2019 Oct;118:109289.
  • Stieger B. Role of the bile salt export pump, BSEP, in acquired forms of cholestasis. Drug Metab Rev. 2010 Aug;42(3):437–445.
  • Liu X. Overview: role of drug transporters in drug disposition and its clinical significance. Adv Exp Med Biol. 2019;1141:1–12.
  • Pan G. Roles of hepatic drug transporters in drug disposition and liver toxicity. Adv Exp Med Biol. 2019;1141:293–340.
  • Morrissey KM, Stocker SL, Wittwer MB, et al. Renal transporters in drug development. Annu Rev Pharmacol Toxicol. 2013;53:503–529.
  • Koepsell H. Organic cation transporters in health and disease. Pharmacol Rev. 2020 Jan;72(1):253–319.
  • Guideline on drug interaction for drug development and appropriate provision of information. Pharmaceutical and Medical Devices Agency, Japanese Ministry of Labor and Welfare, July 2018. [cited 2020 Jul 10]. https://www.pmda.go.jp/files/000228122.pdf
  • Zamek-Gliszczynski MJ, Taub ME, Chothe PP, et al. Transporters in drug development: 2018 ITC recommendations for transporters of emerging clinical importance. Clin Pharmacol Ther. 2018 Nov;104(5):890–899.
  • Giacomini MM, Hao J, Liang X, et al. Interaction of 2,4-diaminopyrimidine-containing drugs including fedratinib and trimethoprim with thiamine transporters. Drug Metab Dispos. 2017 Jan;45(1):76–85.
  • Zhang Y, Warren MS, Zhang X, et al. Impact on creatinine renal clearance by the interplay of multiple renal transporters: a case study with INCB039110. Drug Metab Dispos. 2015 Apr;43(4):485–489.
  • Ogasawara K, LoRusso PM, Olszanski AJ, et al. Assessment of effects of repeated oral doses of fedratinib on inhibition of cytochrome P450 activities in patients with solid tumors using a cocktail approach. Cancer Chemother Pharmacol. 2020 Jul;86(1):87–95.
  • Nakada T, Kudo T, Kume T, et al. Estimation of changes in serum creatinine and creatinine clearance caused by renal transporter inhibition in healthy subjects. Drug Metab Pharmacokinet. 2019 Aug;34(4):233–238.
  • Pardanani A, Harrison C, Cortes JE, et al. Safety and efficacy of fedratinib in patients with primary or secondary myelofibrosis: a randomized clinical trial. JAMA Oncol. 2015 Aug;1(5):643–651.
  • Arakawa H, Omote S, Tamai I. Inhibitory effect of crizotinib on creatinine uptake by renal secretory transporter OCT2. J Pharm Sci. 2017 Sep;106(9):2899–2903.
  • Omote S, Matsuoka N, Arakawa H, et al. Effect of tyrosine kinase inhibitors on renal handling of creatinine by MATE1. Sci Rep. 2018 Jun 18;8(1):9237.
  • Sechi G, Serra A. Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol. 2007 May;6(5):442–455.
  • Hazell AS, Afadlal S, Cheresh DA, et al. Treatment of rats with the JAK-2 inhibitor fedratinib does not lead to experimental Wernicke’s encephalopathy. Neurosci Lett. 2017 Mar 6;642:163–167.
  • Mullally A, Hood J, Harrison C, et al. Fedratinib in myelofibrosis. Blood Adv. 2020 Apr 28;4(8):1792–1800.
  • Vora B, Green EAE, Khuri N, et al. Drug-nutrient interactions: discovering prescription drug inhibitors of the thiamine transporter ThTR-2 (SLC19A3). Am J Clin Nutr. 2020 Jan 1;111(1):110–121.
  • Wigler PW, Patterson FK. Inhibition of the multidrug resistance efflux pump. Biochim Biophys Acta. 1993 Oct 29;1154(2):173–181.
  • Sprowl JA, Ong SS, Gibson AA, et al. A phosphotyrosine switch regulates organic cation transporters. Nat Commun. 2016 Mar;16(7):10880.
  • Ebert C, Perner F, Wolleschak D, et al. Expression and function of ABC-transporter protein ABCB1 correlates with inhibitory capacity of Ruxolitinib in vitro and in vivo. Haematologica. 2016 Mar;101(3):e81–5.
  • Durmus S, Xu N, Sparidans RW, et al. P-glycoprotein (MDR1/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) restrict brain accumulation of the JAK1/2 inhibitor, CYT387. Pharmacol Res. 2013 Oct;76:9–16.
  • Chow V, Weissman A, O’Connell CL, et al. Emerging treatment options for myelofibrosis: focus on pacritinib. Onco Targets Ther. 2016;9:2655–2665.
  • Agarwal S, Chinn L, Zhang L. An overview of transporter information in package inserts of recently approved new molecular entities. Pharm Res. 2013 Mar;30(3):899–910.
  • Geier EG, Chen EC, Webb A, et al. Profiling solute carrier transporters in the human blood-brain barrier. Clin Pharmacol Ther. 2013 Dec;94(6):636–639.
  • Tofacitinib. Clinical pharmacology and biopharmaceutics review(s), center for drug evaluation and research. U.S. Food and Drug Administration, [cited 2020 Jun 28]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203214Orig1s000ClinPharmR.pdf
  • Upadacitinib. Clinical pharmacology and biopharmaceutics review(s), center for drug evaluation and research. U.S. Food and Drug Administration, [cited 2020 Jul 2]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/211675Orig1s000ClinPharmR.pdf
  • Zamek-Gliszczynski MJ, Patel M, Yang X, et al. Intestinal P-gp and putative hepatic OATP1B induction: international transporter consortium perspective on drug development implications. Clin Pharmacol Ther. 2020 May;27.
  • Kast HR, Goodwin B, Tarr PT, et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J Biol Chem. 2002 Jan 25;277(4):2908–2915.
  • Urquhart BL, Tirona RG, Kim RB. Nuclear receptors and the regulation of drug-metabolizing enzymes and drug transporters: implications for interindividual variability in response to drugs. J Clin Pharmacol. 2007 May;47(5):566–578.
  • Zhang J, Liu C, You G. AG490, a JAK2-specific inhibitor, downregulates the expression and activity of organic anion transporter-3. J Pharmacol Sci. 2018 Mar;136(3):142–148.
  • Fardel O, Le Vée M. Regulation of human hepatic drug transporter expression by pro-inflammatory cytokines. Expert Opin Drug Metab Toxicol. 2009 Dec;5(12):1469–1481.
  • Le Vée M, Bruyère A, Jouan E, et al. Janus kinase-dependent regulation of drug detoxifying protein expression by interleukin-22 in human hepatic cells. Int Immunopharmacol. 2020 Jun;83:106439.
  • Aitken AE, Richardson TA, Morgan ET. Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol. 2006;46:123–149.
  • Nguyen PM, Putoczki TL, Ernst M. STAT3-activating cytokines: a therapeutic opportunity for inflammatory bowel disease? J Interferon Cytokine Res. 2015 May;35(5):340–350.
  • Schmitt C, Kuhn B, Zhang X, et al. Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther. 2011 May;89(5):735–740.
  • Lee EB, Daskalakis N, Xu C, et al. Disease-drug interaction of sarilumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacokinet. 2017 Jun;56(6):607–615.
  • Zhuang Y, de Vries DE, Xu Z, et al. Evaluation of disease-mediated therapeutic protein-drug interactions between an anti-interleukin-6 monoclonal antibody (sirukumab) and cytochrome P450 activities in a phase 1 study in patients with rheumatoid arthritis using a cocktail approach. J Clin Pharmacol. 2015 Dec;55(12):1386–1394.
  • Jiang X, Zhuang Y, Xu Z, et al. Development of a physiologically based pharmacokinetic model to predict disease-mediated therapeutic protein-drug interactions: modulation of multiple cytochrome P450 enzymes by interleukin-6. Aaps J. 2016 May;18(3):767–776.
  • Tátrai P, Schweigler P, Poller B, et al. A systematic in vitro investigation of the inhibitor preincubation effect on multiple classes of clinically relevant transporters. Drug Metab Dispos. 2019 Jul;47(7):768–778.
  • Shitara Y, Sugiyama Y. Preincubation-dependent and long-lasting inhibition of organic anion transporting polypeptide (OATP) and its impact on drug-drug interactions. Pharmacol Ther. 2017 Sep;177:67–80.
  • Alluri RV, Li R, Varma MVS. Transporter-enzyme interplay and the hepatic drug clearance: what have we learned so far? Expert Opin Drug Metab Toxicol. 2020 May;16(5):387–401.
  • Zhang L, Zhang Y, Huang SM. Scientific and regulatory perspectives on metabolizing enzyme-transporter interplay and its role in drug interactions: challenges in predicting drug interactions. Mol Pharm. 2009 Nov-Dec;6(6):1766–1774.
  • Nies AT, Koepsell H, Damme K, et al. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the importance in drug therapy. Handb Exp Pharmacol. 2011(201):105–167
  • Minematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther. 2011 Mar;10(3):531–539.
  • Damaraju VL, Scriver T, Mowles D, et al. Erlotinib, gefitinib, and vandetanib inhibit human nucleoside transporters and protect cancer cells from gemcitabine cytotoxicity. Clin Cancer Res. 2014 Jan 1;20(1):176–186.
  • Damaraju VL, Kuzma M, Mowles D, et al. Interactions of multitargeted kinase inhibitors and nucleoside drugs: achilles heel of combination therapy? Mol Cancer Ther. 2015 Jan;14(1):236–245.
  • Mayati A, Moreau A, Jouan E, et al. mRNA Expression and activity of nucleoside transporters in human hepatoma HepaRG cells. Pharmaceutics. 2018 Nov 21;10(4):246.
  • Soler C, García-Manteiga J, Valdés R, et al. Macrophages require different nucleoside transport systems for proliferation and activation. Faseb J. 2001 Sep;15(11):1979–1988.
  • da Cunha Vasconcelos F, Mauricio Scheiner MA, Moellman-Coelho A, et al. Low ABCB1 and high OCT1 levels play a favorable role in the molecular response to imatinib in CML patients in the community clinical practice. Leuk Res. 2016 Dec;51:3–10.
  • Eadie LN, Hughes TP, White DL. Patients with low OCT- 1activity and high ABCB1 fold rise have poor long-term outcomes in response to tyrosine kinase inhibitor therapy. Leukemia. 2018 Oct;32(10):2288–2291.
  • Eechoute K, Sparreboom A, Burger H, et al. Drug transporters and imatinib treatment: implications for clinical practice. Clin Cancer Res. 2011 Feb 1;17(3):406–415.
  • Narazaki M, Tanaka T, Kishimoto T. The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Rev Clin Immunol. 2017 Jun;13(6):535–551.
  • Hermouet S, Bigot-Corbel E, Gardie B. Pathogenesis of myeloproliferative neoplasms: role and mechanisms of chronic inflammation. Mediators Inflamm. 2015;2015:145293.
  • Lussana F, Rambaldi A. Inflammation and myeloproliferative neoplasms. J Autoimmun. 2017 Dec;85:58–63.
  • Geyer HL, Dueck AC, Scherber RM, et al. Impact of inflammation on myeloproliferative neoplasm symptom development. Mediators Inflamm. 2015;2015:284706.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.