2,624
Views
6
CrossRef citations to date
0
Altmetric
Review

Novel test strategies for in vitro seizure liability assessment

ORCID Icon & ORCID Icon
Pages 923-936 | Received 03 Nov 2020, Accepted 11 Jan 2021, Published online: 17 Feb 2021

References

  • World Health Organization. WHO | mental disorders affect one in four people. WHO; 2013. Available at: https://www.who.int/news/item/28-09-2001-the-world-health-report-2001-mental-disorders-affect-one-in-four-people [Accessed October 22, 2019].
  • Prince M, Wimo A, Guerchet M, et al. World alzheimer report 2015: the global impact of dementia - an analysis of prevalence, incidence, cost and trends. Alzheimer’s Dis Int. 2015;84. DOI:10.1111/j.0963-7214.2004.00293.x..
  • Roses AD. Pharmacogenetics in drug discovery and development: a translational perspective. Nat Rev Drug Discov. 2008;7(10):807–817.
  • ICH. ICH Topic S 7 A safety pharmacology studies for human pharmaceuticals step 5 note for guidance on safety pharmacology studies for human pharmaceuticals date for coming into operation. 2001. Available at http://www.emea.eu.int [Accessed October 23, 2019.
  • Authier S, Arezzo J, Delatte MS, et al. Safety pharmacology investigations on the nervous system: an industry survey. J Pharmacol Toxicol Methods. 2016;81:37–46.
  • Gotman J. A few thoughts on “what is a seizure?”. Epilepsy Behav. 2011;22(SUPPL. 1):S2.
  • Easter A, Bell ME, Damewood JR, et al. Approaches to seizure risk assessment in preclinical drug discovery. Drug Discov Today. 2009;14(17–18):876–884.
  • Jiruska P, de Curtis M, Jefferys JGR, et al. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol. 2013;591(4):787–797.
  • Gao Z, Chen Y, Cai X, et al. Predict drug permeability to blood–brain-barrier from clinical phenotypes: drug side effects and drug indications. Bioinformatics. 2016;33(6):713.
  • Neher E, Sakaba T. Multiple roles of calcium ions in the regulation of neurotransmitter release. Neuron. 2008;59(6):861–872.
  • Pang ZP, Südhof TC. Cell biology of ca2+-triggered exocytosis. Curr Opinion Cell Biol. 2010 August;22(4):496–505. . Curr Opin Cell Biol.
  • Petroff OAC. GABA and glutamate in the human brain. Neuroscientist. 2002;8(6):562–573.
  • D’Hulst C, Atack JR, Kooy RF. The complexity of the gabaa receptor shapes unique pharmacological profiles. Drug Discov Today. 2009;14(17–18):866–875. .
  • Cleland JC, Griggs RC. Channelopathies of the nervous system. Neurobiol Disease. 2007:pp 319–332. Elsevier. DOI:10.1016/B978-012088592-3/50033-5..
  • Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116–129.
  • Lerche H, Jurkat-Rott K, Lehmann-Horn F. Ion channels and epilepsy. Am J Med Genet - Semin Med Genet. 2001;106(2):146–159.
  • Scharfman HE. The neurobiology of epilepsy. Curr Neurol Neurosci Rep. 2007 July;7(4):pp 348–354. .
  • Antonio LL, Anderson ML, Angamo EA, et al. In vitro seizure like events and changes in ionic concentration. J Neurosci Methods. 2016;260:33–44.
  • Fellin T, Haydon PG. Do astrocytes contribute to excitation underlying seizures? Elsevier Ltd Trend Molecul Med. 2005;1112:pp 530–533. .
  • Walz W. Role of astrocytes in the clearance of excess extracellular potassium. Neurochem Int. 2000;36(4–5):291–300.
  • Coulter DA, Eid T. Astrocytic regulation of glutamate homeostasis in epilepsy. GLIA. 2012 August;60(8):1215–1226. . Glia.
  • Schousboe A. Metabolic signaling in the brain and the role of astrocytes in control of glutamate and GABA neurotransmission. Neuroscience letters. Elsevier Ireland Ltd:2019 Jan 10 11–13. DOI:10.1016/j.neulet.2018.01.038..
  • Walls AB, Waagepetersen HS, Bak LK, et al. The glutamine–glutamate/ GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism In: Springer New York LLC: Neurochemical research; 2014. p. 402–409. DOI:10.1007/s11064-014-1473-1..
  • Eid T, Behar K, Dhaher R, et al. Roles of glutamine synthetase inhibition in epilepsy. Neurochem Res. 2012 November;37(11):2339–2350. . Neurochem Res.
  • Chan F, Lax NZ, Voss CM, et al. The role of astrocytes in seizure generation: insights from a novel in vitro seizure model based on mitochondrial dysfunction. Brain. 2019;142(2):391–411.
  • Johnston D, Brown TH. The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons. Ann Neurol. 1984;16(1 S):S65–S71.
  • Kubista H, Boehm S, Hotka M. The paroxysmal depolarization shift: reconsidering its role in epilepsy, epileptogenesis and beyond. Int J Mol Sci. 2019 Feb 1;20(3):577. . MDPI AG.
  • Tukker AM, Wijnolts FMJ, de Groot A, et al. Vitro techniques for assessing neurotoxicity using human IPSC-derived neuronal models. New York, NY: Humana, 2019:17–35. DOI:10.1007/978-1-4939-9228-7_2..
  • Mackenzie L, Medvedev A, Hiscock JJ, et al. Picrotoxin-induced generalised convulsive seizure in rat: changes in regional distribution and frequency of the power of electroencephalogram rhythms. Clin Neurophysiol. 2002;113(4):586–596.
  • Dhir A. Pentylenetetrazol (PTZ) kindling model of epilepsy. In: Current protocols in neuroscience. Vol. Chapter 9. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2012. p. Unit9.37. .
  • Singh T, Yadav S. Role of micrornas in neurodegeneration induced by environmental neurotoxicants and aging. Ageing Res Rev. 2020;60:p 101068. Elsevier Ireland Ltd July 1. .
  • Salazar P, Tapia R, Rogawski MA. Effects of neurosteroids on epileptiform activity induced by picrotoxin and 4-aminopyridine in the rat hippocampal slice. Epilepsy Res. 2003;55(1–2):71–82.
  • Kumlien E, Lundberg PO. Seizure risk associated with neuroactive drugs: data from the WHO adverse drug reactions database. Seizure. 2010;19(2):69–73.
  • De Sarro A, Zappalá M, Chimirri A, et al. Quinolones potentiate cefazolin-induced seizures in DBA/2 mice. Antimicrob Agents Chemother. 1993;37(7):1497–1503.
  • Kawakami J, Yamamoto K, Asanuma A, et al. Inhibitory effect of new quinolones on GABAA receptor-mediated response and its potentiation with felbinac inxenopusoocytes injected with mouse-brain mrna: correlation with convulsive potencyin vivo. Toxicol Appl Pharmacol. 1997;145(2):246–254.
  • Raposo J, Teotónio R, Bento C, et al. Amoxicillin, a potential epileptogenic drug. Epileptic Disord. 2016;18(4):454–457.
  • Fan J, Thalody G, Kwagh J, et al. Assessing seizure liability using multi-electrode arrays (MEA). Toxicol Vitro. 2019;55:93–100.
  • Alcoreza O, Tewari BP, Bouslog A, et al. Sulfasalazine decreases mouse cortical hyperexcitability. Epilepsia. 2019;60(7):1365–1377.
  • Müller S, Guli X, Hey J, et al. Acute epileptiform activity induced by gabazine involves proteasomal rather than lysosomal degradation of KCa2.2 channels. Neurobiol Dis. 2018;112:79–84.
  • Bradley JA, Strock CJ. Screening for neurotoxicity with microelectrode array. Curr Protoc Toxicol. 2019;79(1):e67.
  • Park HR, Song P, Lee JJ, et al. Endosulfan-induced prolonged super-refractory status epilepticus. J Epilepsy Res. 2018;8(2):93–96.
  • Alachkar A, Łażewska D, Latacz G, et al. Studies on anticonvulsant effects of novel Histamine H3R antagonists in electrically and chemically induced seizures in rats. Int J Mol Sci. 2018;19(11):3386.
  • Boyd-Kimball D, Gonczy K, Lewis B, et al. Classics in chemical neuroscience: chlorpromazine. acschemneuro ACS Chem Neurosci. 2018;10(1):8b00258. .
  • Marchi N, Oby E, Batra A, et al. In Vivo and In Vitro effects of pilocarpine: relevance to ictogenesis. Epilepsia. 2007;48(10):1934–1946.
  • Zimmerman TJ. 4. Pilocarpine. Ophthalmology. 1981;88(1):85–88.
  • Li F, Liu L. Comparison of kainate-induced seizures, cognitive impairment and hippocampal damage in male and female mice. Life Sci. 2019. DOI:10.1016/j.lfs.2019.116621.
  • Peña F, Tapia R. Seizures and neurodegeneration induced by 4-aminopyridine in rat hippocampus in Vivo: role of glutamate- and GABA-mediated neurotransmission and of ion channels. Neuroscience. 2000;101(3):547–561.
  • Codadu NK, Graham RT, Burman RJ, et al. Divergent paths to seizure-like events. Physiol Rep. 2019;7(19). DOI:10.14814/phy2.14226.
  • Maslarova A, Salar S, Lapilover E, et al. Increased susceptibility to acetylcholine in the entorhinal cortex of pilocarpine-treated rats involves alterations in KCNQ channels. Neurobiol Dis. 2013;56:14–24.
  • Qiu C, Johnson BN, Tallent MK. K + M-Current regulates the transition to seizures in immature and adult hippocampus. Epilepsia. 2007;48(11):2047–2058.
  • Ishii MN, Yamamoto K, Shoji M, et al. Human induced pluripotent stem cell (hipsc)-derived neurons respond to convulsant drugs when co-cultured with hipsc-derived astrocytes. Toxicology. 2017;389:130–138. .
  • Grainger AI, King MC, Nagel DA, et al. In vitro models for seizure-liability testing using induced pluripotent stem cells. Front Neurosci. 2018;12:590.
  • Buskila Y, Breen PP, Tapson J, et al. Extending the viability of acute brain slices. Sci Rep. 2015;4(1):5309.
  • Lein PJ, Barnhart CD, Pessah IN. Acute hippocampal slice preparation and hippocampal slice cultures. Methods Mol Biol. 2011;758:115–134.
  • Sakmann, B.; Neher, E. Patch Clamp Techniques for Studying Ionic Channels in Excitable Membranes. Annu. Rev. Physiol., 1984, 46 (1), 455–472. https://doi.org/10.1146/annurev.physiol.46.1.455.
  • Annecchino LA, Schultz SR. Progress in automating patch clamp cellular physiology. Brain Neurosci Adv. 2018;2:239821281877656.
  • Suk HJ, Boyden ES, van Welie I. Advances in the automation of whole-cell patch clamp technology. J Neurosci Methods. 2019 Oct 1;326:108357. Elsevier B.V .
  • Smetters D, Majewska A, Yuste R. Detecting action potentials in neuronal populations with calcium imaging. Method A Compan Method Enzymol. 1999;18(2):215–221.
  • Tukker AM, De Groot MWGDM, Wijnolts FMJ, et al. Is the time right for in vitro neurotoxicity testing using human IPSC-derived neurons? ALTEX. 2016;33(3):261–271.
  • Heusinkveld HJ, Westerink RHS. Caveats and limitations of plate reader-based high-throughput kinetic measurements of intracellular calcium levels. Toxicol Appl Pharmacol. 2011;255(1):1–8.
  • Meijer M, Hendriks HS, Heusinkveld HJ, et al. Comparison of plate reader-based methods with fluorescence microscopy for measurements of intracellular calcium levels for the assessment of in vitro neurotoxicity. Neurotoxicology. 2014;45:31–37.
  • Johnstone AFM, Gross GW, Weiss DG, et al. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. NeuroToxicology. 2010;31(4):331–350. .
  • Westerink RHS. Do we really want to REACH out to in vitro? Neurotoxicology. 2013;39:169–172.
  • Martín-López D, Jiménez-Jiménez D, Cabañés-Martínez L, et al. The role of thalamus versus cortex in epilepsy: evidence from human ictal centromedian recordings in patients assessed for deep brain stimulation. Int J Neural Syst. 2017;27(7):1750010.
  • Tukker AM, Wijnolts FMJ, de Groot A, et al. Applicability of hipsc-derived neuronal co-cultures and rodent primary cortical cultures for in vitro seizure liability assessment. Toxicol Sci. 2020;178(1):71–87. .
  • Cotterill E, Hall D, Wallace K, et al. Characterization of early cortical neural network development in multiwell microelectrode array plates. J Biomol Screen. 2016;21(5):510–519.
  • Dingemans MML, Schütte MG, Wiersma DMM, et al. Chronic 14-day exposure to insecticides or methylmercury modulates neuronal activity in primary rat cortical cultures. Neurotoxicology. 2016;57:194–202.
  • Hyvärinen T, Hyysalo A, Kapucu FE, et al. Functional characterization of human pluripotent stem cell-derived cortical networks differentiated on Laminin-521 substrate: comparison to rat cortical cultures. Sci Rep. 2019;9(1). DOI:10.1038/s41598-019-53647-8.
  • Hondebrink L, Verboven AHA, Drega WS, et al. Neurotoxicity screening of (Illicit) drugs using novel methods for analysis of microelectrode array (MEA) recordings. Neurotoxicology. 2016;55:1–9.
  • McConnell ER, McClain MA, Ross J, et al. Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set. Neurotoxicology. 2012;33(5):1048–1057.
  • Hogberg HT, Sobanski T, Novellino A, et al. Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology. 2011;32(1):158–168.
  • Nicolas J, Hendriksen PJM, van Kleef RGDM, et al. Detection of marine neurotoxins in food safety testing using a multielectrode array. Mol Nutr Food Res. 2014;58(12):2369–2378.
  • Valdivia P, Martin M, LeFew WR, et al. Multi-well microelectrode array recordings detect neuroactivity of toxcast compounds. Neurotoxicology. 2014;44:204–217.
  • Novellino A, Scelfo B, Palosaari T, et al. Development of micro-electrode array based tests for neurotoxicity: assessment of interlaboratory reproducibility with neuroactive chemicals. Front Neuroeng. 2011;4:4..
  • Vassallo A, Chiappalone M, De Camargos Lopes R, et al. A multi-laboratory evaluation of microelectrode array-based measurements of neural network activity for acute neurotoxicity testing. Neurotoxicology. 2017;60:280–292.
  • Bradley JA, Luithardt HH, Metea MR, et al. In vitro screening for seizure liability using microelectrode array technology. Toxicol Sci. 2018;163(1):240–253. .
  • Kreir M, Van Deuren B, Versweyveld S, et al. Do in vitro assays in rat primary neurons predict drug-induced seizure liability in humans? Toxicol Appl Pharmacol. 2018;346:45–57. .
  • Mack CM, Lin BJ, Turner JD, et al. Burst and principal components analyses of mea data for 16 chemicals describe at least three effects classes. Neurotoxicology. 2014;40:75–85.
  • Tukker AM, Van Kleef RGDM, Wijnolts FMJ, et al. Towards animal-free neurotoxicity screening: applicability of hipsc-derived neuronal models for in vitro seizure liability assessment. ALTEX. 2020;37(1):121–135.
  • Clowry G, Molnár Z, Rakic P. Renewed focus on the developing human neocortex. J Anat. 2010;217(4):276–288.
  • Dolmetsch R, Geschwind DH. The human brain in a dish: the promise of IPSC-derived neurons. Cell. Cell Press: Jun 10 2011 831–834. DOI:10.1016/j.cell.2011.05.034..
  • Steffenhagen C, Kraus S, Dechant F-X, et al. Identity, fate and potential of cells grown as neurospheres: species matters. Stem Cell Rev Reports. 2011;7(4):815–835.
  • Arrowsmith J, Miller P. Phase II and phase iii attrition rates 2011–2012. Nat Rev Drug Discov. 2013;12(8):569.
  • Fung M, Thornton A, Mybeck K, et al. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets-1960 to 1999. Drug Inf J. 2001;35(1):293–317.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676.
  • Robinton DA, Daley GQ. The promise of induced pluripotent stem cells in research and therapy. Nature. 2012;481(7381):295–305.
  • Swistowski A, Peng J, Liu Q, et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells. 2010;28(10):1893–1904.
  • Zeng H, Guo M, Martins-Taylor K, et al. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells. PLoS One. 2010;5(7):7.
  • Hu Y, Qu Z-Y, Cao S-Y, et al. Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells. J Neurosci Methods. 2016;266:42–49.
  • Vadodaria KC, Stern S, Marchetto MC, et al. Serotonin in psychiatry: in vitro disease modeling using patient-derived neurons. Cell Tissue Res. 2018;371(1):161–170.
  • Liu H, Zhang SC. Specification of neuronal and glial subtypes from human pluripotent stem cells. Cell Mol Life Sci. 2011 December;68(24):pp 3995–4008. .
  • Emdad L, D’Souza SL, Kothari HP, et al. Efficient differentiation of human embryonic and induced pluripotent stem cells into functional astrocytes. Stem Cells Dev. 2012;21(3):404–410.
  • Juopperi TA, Kim WR, Chiang C-H, et al. Astrocytes generated from patient induced pluripotent stem cells recapitulate features of huntington’s disease patient cells. Mol Brain. 2012;5(1):17.
  • Abud EM, Ramirez RN, Martinez ES, et al. IPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94(2):278–293.e9.
  • Little D, Ketteler R, Gissen P, et al. Using stem cell–derived neurons in drug screening for neurological diseases. Neurobiol Aging. 2019;78:130–141. .
  • Schwartzentruber J, Foskolou S, Kilpinen H, et al. Molecular and functional variation in ipsc-derived sensory neurons. Nat Genet. 2017;50(1):54–61.
  • Odawara A, Katoh H, Matsuda N, et al. Physiological maturation and drug responses of human induced pluripotent stem cell-derived cortical neuronal networks in long-term culture. Sci Rep. 2016;6(1). DOI:10.1038/srep26181.
  • Qi Y, Zhang XJ, Renier N, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35(2):154–163.
  • Hyysalo A, Ristola M, Mäkinen MEL, et al. Laminin Α5 substrates promote survival, network formation and functional development of human pluripotent stem cell-derived neurons in vitro. Stem Cell Res. 2017;24:118–127.
  • Kuijlaars J, Oyelami T, Diels A, et al. Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Sci Rep. 2016;6(1). DOI:10.1038/srep36529.
  • Odawara A, Matsuda N, Ishibashi Y, et al. Toxicological evaluation of convulsant and anticonvulsant drugs in human induced pluripotent stem cell-derived cortical neuronal networks using an MEA system. Sci Rep. 2018;8(1):10416.
  • Odawara A, Saitoh Y, Alhebshi AH, et al. Long-term electrophysiological activity and pharmacological response of a human induced pluripotent stem cell-derived neuron and astrocyte co-culture. Biochem Biophys Res Commun. 2014;443(4):1176–1181. .
  • Taga A, Dastgheyb R, Habela C, et al. Role of human-induced pluripotent stem cell-derived spinal cord astrocytes in the functional maturation of motor neurons in a multielectrode array system. Stem Cells Transl Med. 2019;8(12):1272–1285.
  • Brown JP, Hall D, Frank CL, et al. Evaluation of a microelectrode array-based assay for neural network ontogeny using training set chemicals. Toxicol Sci. 2016;154(1):126–139.
  • Clarke LE, Barres BA. Emerging roles of astrocytes in neural circuit development. Nat Rev Neurosci. 2013;14(5):pp 311–321.
  • Tang X, Zhou L, Wagner AM, et al. Astroglial cells regulate the developmental timeline of human neurons differentiated from induced pluripotent stem cells. Stem Cell Res. 2013;11(2):743–757.
  • Kayama T, Suzuki I, Odawara A, et al. Temporally coordinated spiking activity of human induced pluripotent stem cell-derived neurons co-cultured with astrocytes. Biochem Biophys Res Commun. 2018;495(1):1028–1033.
  • Takemoto T, Ishihara Y, Ishida A, et al. Neuroprotection elicited by nerve growth factor and brain-derived neurotrophic factor released from astrocytes in response to methylmercury. Environ Toxicol Pharmacol. 2015;40(1):199–205.
  • Tukker AM, Wijnolts FMJ, de Groot A, et al. Human IPSC-derived neuronal models for in vitro neurotoxicity assessment. Neurotoxicology. 2018;67:215–225.
  • Iida S, Shimba K, Sakai K, et al. Synchronous firing patterns of induced pluripotent stem cell-derived cortical neurons depend on the network structure consisting of excitatory and inhibitory neurons. Biochem Biophys Res Commun. 2018;501(1):152–157.
  • Kreir M, De Bondt A, Van den Wyngaert I, et al. Role of Kv7.2/Kv7.3 and M1 muscarinic receptors in the regulation of neuronal excitability in HiPSC-derived neurons. Eur J Pharmacol. 2019;858:172474.
  • Konagaya S, Ando T, Yamauchi T, et al. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system. Sci Rep. 2015;5(1). DOI:10.1038/srep16647.
  • Volpato V, Smith J, Sandor C, et al. Reproducibility of molecular phenotypes after long-term differentiation to human ipsc-derived neurons: a multi-site omics study. Stem Cell Reports. 2018;11(4):897–911.
  • Jenkins M, Bilsland J, Allsopp TE, et al. Patient-specific HiPSC bioprocessing for drug screening: bioprocess economics and optimisation. Biochem Eng J. 2016;108:84–97.
  • Bardy C, Van Den Hurk M, Eames T, et al. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro. Proc Natl Acad Sci U S A. 2015;112(20):E2725–E2734.
  • Joshi P, Bodnya C, Ilieva I, et al. Huntington’s disease associated resistance to Mn neurotoxicity is neurodevelopmental stage and neuronal lineage dependent. Neurotoxicology. 2019;75:148–157.
  • D’Aiuto L, Zhi Y, Kumar Das D, et al. Large-scale generation of human IPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis. 2014;10(4):365–377.
  • Wakeman DR, Hiller BM, Marmion DJ, et al. Cryopreservation maintains functionality of human ipsc dopamine neurons and rescues parkinsonian phenotypes in vivo. Stem Cell Reports. 2017;9(1):149–161.
  • Nishiyama Y, Iwanami A, Kohyama J, et al. Safe and efficient method for cryopreservation of human induced pluripotent stem cell-derived neural stem and progenitor cells by a programmed freezer with a magnetic field. Neurosci Res. 2016;107:20–29.
  • Preininger MK, Singh M, Xu C. Cryopreservation of human pluripotent stem cell-derived cardiomyocytes: strategies, challenges, and future directions. Adv Exp Med Biol. 2016;Vol. 951:pp 123–135. Springer New York LLC. .
  • Gabriel E, Gopalakrishnan J. Generation of Ipsc-derived human brain organoids to model early neurodevelopmental disorders. J Vis Exp. 2017;2017(127):122.
  • Leite PEC, Pereira MR, Harris G, et al. Suitability of 3D human brain spheroid models to distinguish toxic effects of gold and poly-lactic acid nanoparticles to assess biocompatibility for brain drug delivery. Part Fibre Toxicol. 2019;16(1). DOI:10.1186/s12989-019-0307-3.
  • Pamies D, Block K, Lau P, et al. Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol Appl Pharmacol. 2018;354:101–114.
  • Pelkonen A, Mzezewa R, Sukki L, et al. A modular brain-on-a-chip for modelling epileptic seizures with functionally connected human neuronal networks. Biosens Bioelectron. 2020;168:112553..
  • Muñoz SS, Engel M, Balez R, et al. A simple differentiation protocol for generation of induced pluripotent stem cell-derived basal forebrain-like cholinergic neurons for alzheimer’s disease and frontotemporal dementia disease modeling. Cells. 2020;9(9):9.
  • Rogawski MA, Löscher W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci. 2004;5(7):553–564.
  • Linville RM, DeStefano JG, Sklar MB, et al. Human IPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials. 2019;190191:24–37.
  • Vatine GD, Barrile R, Workman MJ, et al. Human IPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell. 2019;24(6):995–1005.e6.
  • Bal-Price AK, Suñol C, Weiss DG, et al. Application of in vitro neurotoxicity testing for regulatory purposes: symposium iii summary and research needs. Neurotoxicology. 2008;29(3):520–531.
  • Krewski D, Acosta D, Andersen M, et al. Toxicity testing in the 21st century: a vision and a strategy. J Toxicol Environ Heal Part B. 2010;13(2–4):51–138.
  • Croom EL, Shafer TJ, Evans MV, et al. Improving in vitro to in vivo extrapolation by incorporating toxicokinetic measurements: a case study of lindane-induced neurotoxicity. Toxicol Appl Pharmacol. 2015;283(1):9–19.
  • Sharma RP, Schuhmacher M, Kumar V. Developing integrated pbpk/pd coupled mechanistic pathway model (mirna-bdnf): an approach towards system toxicology. Toxicol Lett. 2017;280:79–91.
  • Hong SG, Dunbar CE, Winkler T. Assessing the risks of genotoxicity in the therapeutic development of induced pluripotent stem cells. Nature Publishing Group Mol Ther. 2013;212:pp 272–281. .
  • Willmann CA, Hemeda H, Pieper LA, et al. To clone or not to clone? induced pluripotent stem cells can be generated in bulk culture. PLoS One. 2013;8(5):5.
  • Nicolson TJ, Mellor HR, Roberts RRA. Gender differences in drug toxicity. Trends Pharmacol Sci. 2010;31(3):108–114.
  • Gochfeld M. Sex Differences in Human and Animal Toxicology: toxicokinetics. Toxicol Pathol. 2017;45(1):172–189.
  • Zhang N, An MC, Montoro D, et al. Characterization of human huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr. 2010 OCT;1–11. DOI:10.1371/currents.RRN1193..
  • Ochalek A, Mihalik B, Avci HX, et al. Neurons derived from sporadic alzheimer’s disease ipscs reveal elevated tau hyperphosphorylation, increased amyloid levels, and GSK3B activation. Alzheimer’s Res Ther. 2017;9(1). DOI:10.1186/s13195-017-0317-z.
  • Schöndorf DC, Aureli M, McAllister FE, et al. IPSC-derived neurons from GBA1-associated parkinson’s disease patients show autophagic defects and impaired calcium homeostasis. Nat Commun. 2014;5(1). DOI:10.1038/ncomms5028.
  • Avior Y, Sagi I, Benvenisty N. Pluripotent stem cells in disease modelling and drug discovery. Nature Publishing Group March 1 Nat Rev Mol Cell Biol. 2016;173:pp 170–182. .