717
Views
29
CrossRef citations to date
0
Altmetric
Review

ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding?

&
Pages 369-396 | Received 07 Oct 2020, Accepted 12 Jan 2021, Published online: 02 Feb 2021

References

  • Turner RM, Park BK, Pirmohamed M. Parsing interindividual drug variability: an emerging role for systems pharmacology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2015 Jul-Aug;; 7(4):221–241. DOI: 10.1002/wsbm.1302
  • Lonergan M, Senn SJ, McNamee C, et al... Defining drug response for stratified medicine. Drug Discovery Today. 2017 Jan; 22;(1)173–179. DOI: 10.1016/j.drudis.2016.10.016
  • Cascorbi I, Haenisch S. Pharmacogenetics of ATP-binding cassette transporters and clinical implications. Methods Mol Biol. 2010;596:95–121.
  • Dean M. The human ATP-binding cassette (ABC) transporter superfamily. Genome Research. 2001 Jul;; 11(7):1156–1166. DOI: 10.1101/gr.GR-1649R
  • Vasiliou V, Vasiliou K, Nebert DW. Human ATP-binding cassette (ABC) transporter family. Human Genomics. 2008 Apr; 3(3):281–290. DOI: 10.1186/1479-7364-3-3-281
  • Drozdzik M, Busch D, Lapczuk J, et al.. Protein Abundance of Clinically Relevant Drug Transporters in the Human Liver and Intestine: A Comparative Analysis in Paired Tissue Specimens. Clinical Pharmacology & Therapeutics. 2019 May; 105;(5)1204–1212. DOI: 10.1002/cpt.1301
  • Cascorbi I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacology & Therapeutics. 2006 Nov;; 112(2):457–473. DOI: 10.1016/j.pharmthera.2006.04.009
  • Bruhn O, Cascorbi I. Polymorphisms of the drug transporters ABCB1, ABCG2, ABCC2 and ABCC3 and their impact on drug bioavailability and clinical relevance. Expert Opin Drug Metab Toxicol. 2014Oct; 10(10):1337–1354. DOI: 10.1517/17425255.2014.952630
  • Zwisler ST, Enggaard TP, Noehr-Jensen L, et al.. The antinociceptive effect and adverse drug reactions of oxycodone in human experimental pain in relation to genetic variations in the OPRM1 and ABCB1 genes. Fundam Clin Pharmacol. 2009 Aug 24;(4)517–524. DOI: 10.1111/j.1472-8206.2009.00781.x
  • Biedler JL, Riehm H. Cellular resistance to actinomycin D in Chinese hamster cells in vitro: cross-resistance, radioautographic, and cytogenetic studies.. Cancer research. 1970 Apr;;30(4):1174–1184.
  • Barbet JL, Snook T, Gay JM, et al.. ABCB 1-1Δ (MDR1-1Δ) genotype is associated with adverse reactions in dogs treated with milbemycin oxime for generalized demodicosis. Vet Dermatol. 2009 Apr; 20;(2)111–114. DOI: 10.1111/j.1365-3164.2008.00725.x
  • Umbenhauer DR, Lankas GR, Pippert TR, et al.. Identification of a P-glycoprotein-deficient subpopulation in the CF-1 mouse strain using a restriction fragment length polymorphism. Toxicol Appl Pharmacol. 1997Sep 146;(1)88–94. DOI: 10.1006/taap.1997.8225
  • Cascorbi I. P-glycoprotein: tissue distribution, substrates, and functional consequences of genetic variations. Handb Exp Pharmacol. 2011;201:261–283.
  • Bodor M, Kelley EJ, Ho RJ. Characterization of the humanMDR1 gene. The AAPS Journal. 2005Feb 16;; 7(1):E1–5. DOI: 10.1208/aapsj070101
  • Bruckmueller H, Martin P, Kähler M, et al.. Clinically Relevant Multidrug Transporters Are Regulated by microRNAs along the Human Intestine. Mol Pharm. 2017 Jul 3; 14;(7)2245–2253. DOI: 10.1021/acs.molpharmaceut.7b00076
  • Lelong-Rebel IH, Cardarelli CO. Differential phosphorylation patterns of P-glycoprotein reconstituted into a proteoliposome system: insight into additional unconventional phosphorylation sites.. Anticancer research. 2005 Nov-Dec;;25(6b):3925–3935.
  • Mealey KL, Bentjen SA, Gay JM, et al.. Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene. Pharmacogenetics. 2001Nov 11;(8)727–733. DOI: 10.1097/00008571-200111000-00012
  • Roulet A, Puel O, Gesta S, et al.. MDR1-deficient genotype in Collie dogs hypersensitive to the P-glycoprotein substrate ivermectin. Eur J Pharmacol. 2003 Jan 24; 460;(2–3)85–91. DOI: 10.1016/S0014-2999(02)02955-2
  • Kim RB, Leake BF, Choo EF, et al.. Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin Pharmacol Ther. 2001 Aug; 70;(2)189–199. DOI: 10.1067/mcp.2001.117412
  • Tang K, Ngoi S-M, Gwee P-C, et al.. Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics. 2002Aug; 12;(6)437–450. DOI: 10.1097/00008571-200208000-00004
  • Kroetz DL, Pauli-Magnus C, Hodges LM, et al.. Sequence diversity and haplotype structure in the human ABCB1 (MDR1, multidrug resistance transporter) gene. Pharmacogenetics. 2003 Aug 13;(8)481–494. DOI: 10.1097/00008571-200308000-00006
  • Wang D, Johnson AD, Papp AC, et al.. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics. 2005 Oct 15;(10)693–704. DOI: 10.1097/01.fpc.0000178311.02878.83
  • Kimchi-Sarfaty C, Oh JM, Kim I-W, et al.. A “Silent” Polymorphism in the MDR1 Gene Changes Substrate Specificity. Science. 2007 Jan 26 315;(5811)525–528. DOI: 10.1126/science.1135308
  • Fung KL, Gottesman MM. A synonymous polymorphism in a common MDR1 (ABCB1) haplotype shapes protein function. Biochim Biophys Acta. 2009 May; 1794(5):860–871. DOI: 10.1016/j.bbapap.2009.02.014
  • Cascorbi I, et al.. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther. 2001 Mar 69;(3)169–174. DOI: 10.1067/mcp.2001.114164
  • Hung -C-C, Chen -C-C, Lin C-J, et al.. Functional evaluation of polymorphisms in the human ABCB1 gene and the impact on clinical responses of antiepileptic drugs. Pharmacogenet Genomics. 2008 May 18;(5)390–402. DOI: 10.1097/FPC.0b013e3282f85e36
  • Schaefer M, Roots I, Gerloff T. In-vitro transport characteristics discriminate wild-type ABCB1 (MDR1) from ALA893SER and ALA893THR polymorphisms. Pharmacogenet Genomics. 2006 Dec; 16(12):855–861. DOI: 10.1097/01.fpc.0000230113.03710.34
  • Plasschaert SL, Groninger E, Boezen M, et al.. Influence of functional polymorphisms of the gene on vincristine pharmacokinetics in childhood acute lymphoblastic leukemia. Clin Pharmacol Ther. 2004 Sep 76;(3)220–229. DOI: 10.1016/j.clpt.2004.05.007
  • Hoffmeyer S, Burk O, von Richter O, et al.. Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 2000 Mar 28 97;(7)3473–3478. DOI: 10.1073/pnas.97.7.3473
  • Horinouchi M, Sakaeda T, Nakamura T, et al.. Significant genetic linkage of MDR1 polymorphisms at positions 3435 and 2677: functional relevance to pharmacokinetics of digoxin. Pharm Res. 2002 Oct 19;(10)1581–1585. DOI: 10.1023/A:1020433422259
  • Kurata Y, Ieiri I, Kimura M, et al.. Role of human MDR1 gene polymorphism in bioavailability and interaction of digoxin, a substrate of P-glycoprotein. Clin Pharmacol Ther. 2002 Aug 72;(2)209–219. DOI: 10.1067/mcp.2002.126177
  • Morita Y, et al.. MDR1 genotype-related duodenal absorption rate of digoxin in healthy Japanese subjects. Pharm Res. 2003 Apr 20;(4)552–556. DOI: 10.1023/A:1023282312757
  • Sakaeda T, Nakamura T, Horinouchi M, et al.. MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm Res. 2001 Oct 18;(10)1400–1404. DOI: 10.1023/A:1012244520615
  • Aarnoudse A-JLH-J, Dieleman JP, Visser LE, et al.. Common ATP-binding cassette B1 variants are associated with increased digoxin serum concentration. Pharmacogenet Genomics. 2008 Apr 18;(4)299–305. DOI: 10.1097/FPC.0b013e3282f70458
  • Niemeijer MN, van den Berg ME, Deckers JW, et al.. ABCB1 gene variants, digoxin and risk of sudden cardiac death in a general population. Heart. 2015 Dec 101;(24)1973–1979. DOI: 10.1136/heartjnl-2014-307419
  • DiDomenico RJ, Bress AP, Na-Thalang K, et al.. Use of a simplified nomogram to individualize digoxin dosing versus standard dosing practices in patients with heart failure. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2014 Nov; 34;(11)1121–1131. DOI: 10.1002/phar.1480
  • Sakaeda T. MDR1 genotype-related pharmacokinetics: fact or fiction? Drug Metab Pharmacokinet. 2005 Dec; 20(6):391–414. DOI: 10.2133/dmpk.20.391
  • Wu L-X, Wen C-J, Li Y, et al.. Interindividual epigenetic variation in ABCB1 promoter and its relationship with ABCB1 expression and function in healthy Chinese subjects. Br J Clin Pharmacol. 2015 Nov 80;(5)1109–1121. DOI: 10.1111/bcp.12675
  • Matthaei J, Tzvetkov MV, Gal V, et al.. Low heritability in pharmacokinetics of talinolol: a pharmacogenetic twin study on the heritability of the pharmacokinetics of talinolol, a putative probe drug of MDR1 and other membrane transporters. Genome Med. 2016 Nov 8 8;(1)119. DOI: 10.1186/s13073-016-0372-2
  • Siegmund W, Ludwig K, Giessmann T, et al.. The effects of the human MDR1 genotype on the expression of duodenal P-glycoprotein and disposition of the probe drug talinolol. Clin Pharmacol Ther. 2002 Nov 72;(5)572–583. DOI: 10.1067/mcp.2002.127739
  • Elens L, Bouamar R, Shuker N, et al.. Clinical implementation of pharmacogenetics in kidney transplantation: calcineurin inhibitors in the starting blocks. British Journal of Clinical Pharmacology. 2014 Apr 77;(4)715–728. DOI: 10.1111/bcp.12253
  • Woillard J-B, Rerolle J-P, Picard N, et al.. Donor P-gp polymorphisms strongly influence renal function and graft loss in a cohort of renal transplant recipients on cyclosporine therapy in a long-term follow-up. . Clinical Pharmacology & Therapeutics. 2010 Jul 88;(1)95–100. DOI: 10.1038/clpt.2010.62
  • Debette-Gratien M, Woillard J-B, Picard N, et al.. Influence of Donor and Recipient CYP3A4, CYP3A5, and ABCB1 Genotypes on Clinical Outcomes and Nephrotoxicity in Liver Transplant Recipients. Transplantation. 2016 Oct 100;(10)2129–2137. DOI: 10.1097/TP.0000000000001394
  • Sallustio BC, Noll BD, Coller JK, et al.. Relationship between allograft cyclosporin concentrations and P-glycoprotein expression in the 1st month following renal transplantation. Br J Clin Pharmacol. 2019 May 85;(5)1015–1020. DOI: 10.1111/bcp.13880
  • Riegersperger M, Plischke M, Jallitsch-Halper A, et al.. A non-randomized trial of conversion from ciclosporin and tacrolimus to tacrolimus MR4 in stable long-term kidney transplant recipients: Graft function and influences of ABCB1 genotypes. PLoS One. 2019;14(7):e0218709. DOI:10.1371/journal.pone.0218709.
  • Renders L, Frisman M, Ufer M, et al.. CYP3A5 genotype markedly influences the pharmacokinetics of tacrolimus and sirolimus in kidney transplant recipients. Clin Pharmacol Ther. 2007 Feb 81;(2)228–234. DOI: 10.1038/sj.clpt.6100039
  • Shao S, Hu L, Han Z, et al.. The effect of ABCB1 polymorphism on sirolimus in renal transplant recipients: a meta-analysis. Translational Andrology and Urology. 2020 Apr 9;(2)673–683. DOI: 10.21037/tau.2020.03.42
  • Jones K, Bray PG, Khoo SH, et al.. P-Glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance? Aids. 2001 Jul 27 15;(11)1353–1358. DOI: 10.1097/00002030-200107270-00004
  • Janneh O, Bray PG, Jones E, et al.. Concentration-dependent effects and intracellular accumulation of HIV protease inhibitors in cultured CD4 T cells and primary human lymphocytes.. J Antimicrob Chemother. 2010 May 65;(5)906–916. DOI: 10.1093/jac/dkq082
  • Colombo S, Soranzo N, Rotger M, et al.. Influence of ABCB1, ABCC1, ABCC2, and ABCG2 haplotypes on the cellular exposure of nelfinavir in vivo. Pharmacogenet Genomics. 2005 Sep 15;(9)599–608. DOI: 10.1097/01.fpc.0000172241.42546.d3
  • Saitoh A, Capparelli E, Aweeka F, et al.. CYP2C19 Genetic Variants Affect Nelfinavir Pharmacokinetics and Virologic Response in HIV-1–Infected Children Receiving Highly Active Antiretroviral Therapy. J Acquir Immune Defic Syndr. 2010 Jul 54;(3)285–289. DOI: 10.1097/QAI.0b013e3181bf648a
  • Solas C, Simon N, Drogoul M-P, et al.. Minimal effect of MDR1 and CYP3A5 genetic polymorphisms on the pharmacokinetics of indinavir in HIV-infected patients. Br J Clin Pharmacol. 2007 Sep 64;(3)353–362. DOI: 10.1111/j.1365-2125.2007.02903.x
  • Winzer R, Langmann P, Zilly M, et al. No influence of the P-glycoprotein genotype (MDR1 C3435T) on plasma levels of lopinavir and efavirenz during antiretroviral treatment.. European journal of medical research. [2003 Dec 9];8(12):531–534.
  • D’Avolio A, Carcieri C, Cusato J, et al.. Intracellular accumulation of atazanavir/ritonavir according to plasma concentrations and OATP1B1, ABCB1 and PXR genetic polymorphisms. J Antimicrob Chemother. 2014 Nov 69;(11)3061–3066. DOI: 10.1093/jac/dku234
  • Singkham N, Avihingsanon A, Thammajaruk N, et al.. Influence of CYP3A5 and SLCO1B1 polymorphisms on atazanavir/r concentrations in Thai HIV-infected patients. Pharmacogenomics. 2019 May 20;(7)517–527. DOI: 10.2217/pgs-2018-0196
  • Janneh O, Chandler B, Hartkoorn R, et al.. Intracellular accumulation of efavirenz and nevirapine is independent of P-glycoprotein activity in cultured CD4 T cells and primary human lymphocytes. J Antimicrob Chemother. 2009 Nov 64;(5)1002–1007. DOI: 10.1093/jac/dkp335
  • Russo G, Paganotti GM, Soeria-Atmadja S, et al.. Pharmacogenetics of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in resource-limited settings: Influence on antiretroviral therapy response and concomitant anti-tubercular, antimalarial and contraceptive treatments. Infection, Genetics and Evolution. 2016 Jan;37:192–207. DOI: 10.1016/j.meegid.2015.11.014.
  • Mugusi S, Habtewold A, Ngaimisi E, et al. Impact of Population and Pharmacogenetics Variations on Efavirenz Pharmacokinetics and Immunologic Outcomes During Anti-Tuberculosis Co-Therapy: A Parallel Prospective Cohort Study in Two Sub-Sahara African Populations. Frontiers in Pharmacology. 2020;11:26.
  • Lu Y, Kham SK, Ariffin H, et al.. Host genetic variants of ABCB1 and IL15 influence treatment outcome in paediatric acute lymphoblastic leukaemia. Br J Cancer. 2014 Mar 18 110;(6)1673–1680. DOI: 10.1038/bjc.2014.7
  • Zgheib NK, Akra-Ismail M, Aridi C, et al.. Genetic polymorphisms in candidate genes predict increased toxicity with methotrexate therapy in Lebanese children with acute lymphoblastic leukemia.. Pharmacogenetics and genomics. 2014 Aug 24;(8)387–396. DOI: 10.1097/FPC.0000000000000069
  • Ramírez-Pacheco A, Moreno-Guerrero S, Alamillo I, et al.. Mexican Childhood Acute Lymphoblastic Leukemia: A Pilot Study of the MDR1 and MTHFR Gene Polymorphisms and Their Associations with Clinical Outcomes. Genet Test Mol Biomarkers. 2016 Oct 20;(10)597–602. DOI: 10.1089/gtmb.2015.0287
  • Zgheib NK, Ghanem KM, Tamim H, et al.. Genetic polymorphisms in candidate genes are not associated with increased vincristine-related peripheral neuropathy in Arab children treated for acute childhood leukemia: a single institution study. Pharmacogenetics and Genomics. 2018 Aug 28;(8)189–195. DOI: 10.1097/FPC.0000000000000345
  • Wang JL, Liu HJ, Li F, et al.. Multidrug resistance gene (MDR1) polymorphisms may not be directly associated with response to imatinib in chronic myeloid leukemia. Genet Mol Res. 2015 Nov 24 14;(4)14967–14978. DOI: 10.4238/2015.November.24.4
  • Dessilly G, Panin N, Elens L, et al.. Impact of ABCB1 1236C > T-2677G > T-3435C > T polymorphisms on the anti-proliferative activity of imatinib, nilotinib, dasatinib and ponatinib. Sci Rep. 2016 Jul 6;(1)29559. DOI: 10.1038/srep29559
  • Galimberti S, Bucelli C, Arrigoni E, et al.. The hOCT1 and ABCB1 polymorphisms do not influence the pharmacodynamics of nilotinib in chronic myeloid leukemia. Oncotarget. 2017 Oct 20 8;(50)88021–88033. DOI: 10.18632/oncotarget.21406
  • Han J-Y, Lim H-S, Yoo Y-K, et al.. Associations ofABCB1, ABCC2, andABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer. 2007 Jul 1 110;(1)138–147. DOI: 10.1002/cncr.22760
  • Isla D, Sarries C, Rosell R, et al.. Single nucleotide polymorphisms and outcome in docetaxel–cisplatin-treated advanced non-small-cell lung cancer. . Annals of Oncology. 2004 Aug 15;(8)1194–1203. DOI: 10.1093/annonc/mdh319
  • Kim H-J, Im S-A, Keam B, et al.. ABCB 1 polymorphism as prognostic factor in breast cancer patients treated with docetaxel and doxorubicin neoadjuvant chemotherapy. Cancer Science. 2015 Jan 106;(1)86–93. DOI: 10.1111/cas.12560
  • Zhang P, Liu B. Genetic polymorphisms and multiple myeloma risk: a meta-analysis. Annals of Hematology. 2020 May; 99(5):1017–1024. DOI: 10.1007/s00277-020-03979-7
  • Kreile M, Rots D, Piekuse L, et al.. Lack of association between polymorphisms in genes MTHFR and MDR1 with risk of childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev. 2014;15(22):9707–9711. DOI:10.7314/APJCP.2014.15.22.9707.
  • Han -L-L, Zuo B-L, Cai W-L, et al.. Association between ABCB1 (3435C>T) polymorphism and susceptibility of colorectal cancer. Medicine (Baltimore). 2020 Feb 99;(8)e19189. DOI: 10.1097/MD.0000000000019189
  • Chang Q, He Z-L, Peng Y-C, et al.. A meta-analysis of MDR1 polymorphisms rs1128503 and rs1045642 and susceptibility to hepatocellular carcinoma. J Int Med Res. 2019 Jul 47;(7)2800–2809. DOI: 10.1177/0300060519855869
  • Taubert D, von Beckerath N, Grimberg G, et al.. Impact of P-glycoprotein on clopidogrel absorption. Clinical Pharmacology & Therapeutics. 2006 Nov 80;(5)486–501. DOI: 10.1016/j.clpt.2006.07.007
  • Nakamura T, Sakaeda T, Horinouchi W, et al.. Effect of the mutation (C3435T) at exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects. Clin Pharmacol Ther. 2002 Apr 71;(4)297–303. DOI: 10.1067/mcp.2002.122055
  • Woodahl EL, Ho RJ. (Section A: Molecular, Structural, and Cellular Biology of Drug Transporters) The Role of MDR1 Genetic Polymorphisms in Interindividual Variability in P-glycoprotein Expression and Function. Curr Drug Metab. 2004 Feb; 5(1):11–19. DOI: 10.2174/1389200043489108
  • Simon T, Verstuyft C, Mary-Krause M, et al.. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009 Jan 22 360;(4)363–375. DOI: 10.1056/NEJMoa0808227
  • Mega JL, Close SL, Wiviott SD, et al.. Genetic variants in ABCB1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the TRITON–TIMI 38 trial: a pharmacogenetic analysis. Lancet. 2010 Oct 16 376;(9749)1312–1319. DOI: 10.1016/S0140-6736(10)61273-1
  • Pan Y, Chen W, Wang Y, et al.. Association Between ABCB1 Polymorphisms and Outcomes of Clopidogrel Treatment in Patients With Minor Stroke or Transient Ischemic Attack. JAMA Neurol. 2019 May 1 76;(5)552–560. DOI: 10.1001/jamaneurol.2018.4775
  • Xie Q, Xiang Q, Mu G, et al.. Effect of ABCB1 Genotypes on the Pharmacokinetics and Clinical Outcomes of New Oral Anticoagulants: A Systematic Review and Meta-analysis. Curr Pharm Des. 2018;24(30):3558–3565. DOI:10.2174/1381612824666181018153641.
  • Sychev DA, Levanov AN, Shelekhova TV, et al. The impact of ABCB1 (rs1045642 and rs4148738) and CES1 (rs2244613) gene polymorphisms on dabigatran equilibrium peak concentration in patients after total knee arthroplasty.. Pharmacogenomics and personalized medicine. 2018;11:127–137.
  • Gouin‐Thibault I, Delavenne X, Blanchard A, et al.. Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB 1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost. 2017 Feb 15;(2)273–283. DOI: 10.1111/jth.13577
  • Ing Lorenzini K, Daali Y, Fontana P, et al. Rivaroxaban-Induced Hemorrhage Associated with ABCB1 Genetic Defect. Frontiers in Pharmacology. 2016;7:494.
  • Kryukov AV, Sychev DA, Andreev DA, et al. Influence of ABCB1 and CYP3A5 gene polymorphisms on pharmacokinetics of apixaban in patients with atrial fibrillation and acute stroke.. Pharmacogenomics and personalized medicine. 2018;11:43–49.
  • Vandell AG, Lee J, Shi M, et al.. An integrated pharmacokinetic/pharmacogenomic analysis of ABCB1 and SLCO1B1 polymorphisms on edoxaban exposure. Pharmacogenomics J. 2018 Jan 18;(1)153–159. DOI: 10.1038/tpj.2016.82
  • Dimatteo C, D’Andrea G, Vecchione G, et al.. ABCB1 SNP rs4148738 modulation of apixaban interindividual variability. Thrombosis Research. 2016 Sep;145:24–26. DOI: 10.1016/j.thromres.2016.07.005.
  • Dombrowski SM, Desai SY, Marroni M, et al.. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia. 2001 Dec 42;(12)1501–1506. DOI: 10.1046/j.1528-1157.2001.12301.x
  • Marchi N, Hallene KL, Kight KM, et al.. Significance of MDR1 and multiple drug resistance in refractory human epileptic brain. BMC Medicine. 2004Oct9 2;(1)37. DOI: 10.1186/1741-7015-2-37
  • Aronica E, Gorter JA, Jansen GH, et al.. Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy: focal cortical dysplasia and glioneuronal tumors. Neuroscience. 2003;118(2):417–429. DOI:10.1016/S0306-4522(02)00992-2.
  • Hughes JR. One of the hottest topics in epileptology: ABC proteins. Their inhibition may be the future for patients with intractable seizures. Neurol Res. 2008 Nov; 30(9):920–925. DOI: 10.1179/174313208X319116
  • Siddiqui A, Kerb R, Weale ME, et al.. Association of Multidrug Resistance in Epilepsy with a Polymorphism in the Drug-Transporter Gene ABCB1. N Engl J Med. 2003 Apr 10 348;(15)1442–1448. DOI: 10.1056/NEJMoa021986
  • Soranzo N, Cavalleri GL, Weale ME, et al.. Identifying candidate causal variants responsible for altered activity of the ABCB1 multidrug resistance gene. Genome Res. 2004 Jul 14;(7)1333–1344. DOI: 10.1101/gr.1965304
  • Hung -C-C, Tai JJ, Lin C-J, et al.. Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response. Pharmacogenomics. 2005 Jun 6;(4)411–417. DOI: 10.1517/14622416.6.4.411
  • Seo T, Ishitsu T, Ueda N, et al.. ABCB1 polymorphisms influence the response to antiepileptic drugs in Japanese epilepsy patients. Pharmacogenomics. 2006 Jun 7;(4)551–561. DOI: 10.2217/14622416.7.4.551
  • Ebid A-HI, Ahmed MM, Mohammed SA. Therapeutic drug monitoring and clinical outcomes in epileptic Egyptian patients: a gene polymorphism perspective study. Therapeutic Drug Monitoring. 2007 Jun; 29(3):305–312. DOI: 10.1097/FTD.0b013e318067ce90
  • Hung -C-C, Jen Tai J, Kao P-J, et al.. Association of polymorphisms in NR1I2 and ABCB1 genes with epilepsy treatment responses. Pharmacogenomics. 2007 Sep 8;(9)1151–1158. 10.2217/14622416.8.9.1151
  • Kwan P, Baum L, Wong V, et al.. Association between ABCB1 C3435T polymorphism and drug-resistant epilepsy in Han Chinese. Epilepsy Behav. 2007 Aug 11;(1)112–117. 10.1016/j.yebeh.2007.04.013
  • Kwan P, Wong V, Ng PW, et al.. Gene-wide tagging study of association between ABCB1 polymorphisms and multidrug resistance in epilepsy in Han Chinese. Pharmacogenomics. 2009 May 10;(5)723–732. 10.2217/pgs.09.32
  • Tan NC, Heron SE, Scheffer IE, et al.. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy. Neurology. 2004 Sep 28 63;(6)1090–1092. 10.1212/01.WNL.0000137051.33486.C7
  • Sills GJ, Mohanraj R, Butler E, et al.. Lack of association between the C3435T polymorphism in the human multidrug resistance (MDR1) gene and response to antiepileptic drug treatment. Epilepsia. 2005 May 46;(5)643–647. 10.1111/j.1528-1167.2005.46304.x
  • Kim YO, Kim MK, Woo YJ, et al.. Single nucleotide polymorphisms in the multidrug resistance 1 gene in Korean epileptics. Seizure. 2006 Jan 15;(1)67–72. 10.1016/j.seizure.2005.11.001
  • Shahwan A, Murphy K, Doherty C, et al.. The controversial association of ABCB1 polymorphisms in refractory epilepsy: an analysis of multiple SNPs in an Irish population. Epilepsy Res. 2007 Feb 73;(2)192–198. 10.1016/j.eplepsyres.2006.10.004
  • Dericioglu N, Babaoglu MO, Yasar U, et al.. Multidrug resistance in patients undergoing resective epilepsy surgery is not associated with C3435T polymorphism in the ABCB1 (MDR1) gene. Epilepsy Res. 2008 Jul 80;(1)42–46. 10.1016/j.eplepsyres.2008.03.004
  • Ozgon GO, Bebek N, Gul G, et al.. Association of MDR1 (C3435T) polymorphism and resistance to carbamazepine in epileptic patients from Turkey. Eur Neurol. 2008;59(1–2):67–70. DOI:10.1159/000109264.
  • Kim DW, Lee SK, Chu K, et al.. Lack of association between ABCB1, ABCG2, and ABCC2 genetic polymorphisms and multidrug resistance in partial epilepsy. Epilepsy Res. 2009 Mar 84;(1)86–90. 10.1016/j.eplepsyres.2008.12.001
  • Lakhan R, Misra UK, Kalita J, et al.. No association of ABCB1 polymorphisms with drug-refractory epilepsy in a north Indian population. Epilepsy Behav. 2009 Jan 14;(1)78–82. 10.1016/j.yebeh.2008.08.019
  • Szoeke C, Sills GJ, Kwan P, et al.. Multidrug-resistant genotype (ABCB1) and seizure recurrence in newly treated epilepsy: Data from international pharmacogenetic cohorts. Epilepsia. 2009 Jul 50;(7)1689–1696. 10.1111/j.1528-1167.2009.02059.x
  • Ufer M, Mosyagin I, Muhle H, et al.. Non-response to antiepileptic pharmacotherapy is associated with the ABCC2 −24C>T polymorphism in young and adult patients with epilepsy. Pharmacogenet Genomics. 2009 May 19;(5)353–362. 10.1097/FPC.0b013e328329940b
  • Vahab SA, Sen S, Ravindran N, et al.. Analysis of genotype and haplotype effects of ABCB1 (MDR1) polymorphisms in the risk of medically refractory epilepsy in an Indian population. Drug Metab Pharmacokinet. 2009;24(3):255–260. DOI:10.2133/dmpk.24.255.
  • Haerian BS, Lim KS, Tan CT, et al.. Association of ABCB1 gene polymorphisms and their haplotypes with response to antiepileptic drugs: a systematic review and meta-analysis. Pharmacogenomics. 2011 May 12;(5)713–725. 10.2217/pgs.10.212
  • Owen A, Pirmohamed M, Tettey JN, et al.. Carbamazepine is not a substrate for P-glycoprotein. British Journal of Clinical Pharmacology. 2001 Apr 51;(4)345–349. 10.1046/j.1365-2125.2001.01359.x
  • Orlandi A, Paolino MC, Striano P, et al.. Clinical reappraisal of the influence of drug-transporter polymorphisms in epilepsy. Expert Opinion on Drug Metabolism & Toxicology. 2018 May 14;(5)505–512. 10.1080/17425255.2018.1473377
  • Lötsch J, Tegeder I, Angst MS, et al.. Antinociceptive effects of morphne-6-glucuronide in homozygous MDR1a P-glycoprotein knockout and in wildtype mice in the hotplate test. Life Sci. 2000 May 5 66;(24)2393–2403. 10.1016/S0024-3205(00)00569-5
  • Skarke C, Jarrar M, Schmidt H, et al.. Effects of ABCB1 (multidrug resistance transporter) gene mutations on disposition and central nervous effects of loperamide in healthy volunteers. Pharmacogenetics. 2003 Nov 13;(11)651–660. 10.1097/00008571-200311000-00001
  • Campa D, Gioia A, Tomei A, et al.. Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther. 2008 Apr 83;(4)559–566. 10.1038/sj.clpt.6100385
  • Gong X-D, Wang J-Y, Liu F, et al.. Gene polymorphisms of OPRM1 A118G and ABCB1 C3435T may influence opioid requirements in Chinese patients with cancer pain. Asian Pac J Cancer Prev. 2013;14(5):2937–2943. DOI:10.7314/APJCP.2013.14.5.2937.
  • Lötsch J, von Hentig N, Freynhagen R, et al.. Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenetics and Genomics. 2009 Jun 19;(6)429–436. 10.1097/FPC.0b013e32832b89da
  • Fujita K, Ando Y, Yamamoto W, et al.. Association of UGT2B7 and ABCB1 genotypes with morphine-induced adverse drug reactions in Japanese patients with cancer. Cancer Chemother Pharmacol. 2010 Jan 65;(2)251–258. 10.1007/s00280-009-1029-2
  • Lam J, Kelly L, Matok I, et al.. Putative Association of ABCB1 2677G>T/A With Oxycodone-Induced Central Nervous System Depression in Breastfeeding Mothers. Ther Drug Monit. 2013 Aug 35;(4)466–472. 10.1097/FTD.0b013e318288f158
  • Kelly LE, Chaudhry SA, Rieder MJ, et al.. A clinical tool for reducing central nervous system depression among neonates exposed to codeine through breast milk. PLoS One. 2013;8(7):e70073. DOI:10.1371/journal.pone.0070073.
  • Sia AT, Sng BL, Lim EC, et al.. The influence of ATP-binding cassette sub-family B member −1 (ABCB1) genetic polymorphisms on acute and chronic pain after intrathecal morphine for caesarean section: a prospective cohort study. International Journal of Obstetric Anesthesia. 2010 Jul 19;(3)254–260. 10.1016/j.ijoa.2010.03.001
  • Benavides R, Vsevolozhskaya O, Cattaneo S, et al.. A functional polymorphism in the ATP-Binding Cassette B1 transporter predicts pharmacologic response to combination of nortriptyline and morphine in neuropathic pain patients. Pain. 2020 Mar 161;(3)619–629. 10.1097/j.pain.0000000000001750
  • Dennis BB, Bawor M, Thabane L, et al.. Impact of ABCB1 and CYP2B6 genetic polymorphisms on methadone metabolism, dose and treatment response in patients with opioid addiction: a systematic review and meta-analysis. PLoS One. 2014;9(1):e86114. DOI:10.1371/journal.pone.0086114.
  • Levran O, O’Hara K, Peles E, et al.. ABCB1 (MDR1) genetic variants are associated with methadone doses required for effective treatment of heroin dependence. Hum Mol Genet. 2008 Jul 15 17;(14)2219–2227. 10.1093/hmg/ddn122
  • Crouthamel MH, Wu D, Yang Z, et al.. A novel MDR1 G1199T variant alters drug resistance and efflux transport activity of P-glycoprotein in recombinant Hek cells. J Pharm Sci. 2006 Dec 95;(12)2767–2777. 10.1002/jps.20743
  • Dessilly G, Elens L, Panin N, et al.. ABCB1 1199G>A polymorphism (rs2229109) affects the transport of imatinib, nilotinib and dasatinib. Pharmacogenomics. 2016 Jun 17;(8)883–890. 10.2217/pgs-2016-0012
  • Skoglund K, Moreno SB, Baytar M, et al. ABCB1 haplotypes do not influence transport or efficacy of tyrosine kinase inhibitors in vitro.. Pharmacogenomics and personalized medicine. 2013;6:63–72.
  • Jakobsen Falk I, Lund J, Gréen H, et al.. Pharmacogenetic study of the impact of ABCB1 single-nucleotide polymorphisms on lenalidomide treatment outcomes in patients with multiple myeloma: results from a phase IV observational study and subsequent phase II clinical trial. Cancer Chemother Pharmacol. 2018 Jan 81;(1)183–193. 10.1007/s00280-017-3481-8
  • Madrid-Paredes A, Casado-Combreras M, Pérez-Ramírez C, et al.. Association of ABCB1 and VEGFA gene polymorphisms with breast cancer susceptibility and prognosis. Pathol Res Pract. 2020 Apr 216;(4)152860. 10.1016/j.prp.2020.152860
  • Dessilly G, Elens L, Panin N, et al.. ABCB1 1199G>A Genetic Polymorphism (Rs2229109) Influences the Intracellular Accumulation of Tacrolimus in HEK293 and K562 Recombinant Cell Lines. PLoS One. 2014;9(3):e91555. DOI:10.1371/journal.pone.0091555.
  • Capron A, Mourad M, De Meyer M, et al.. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. Pharmacogenomics. 2010 May 11;(5)703–714. 10.2217/pgs.10.43
  • Mostafa-Hedeab G, Saber-Ayad MM, Latif IA, et al.. Functional G1199A ABCB1 polymorphism may have an effect on cyclosporine blood concentration in renal transplanted patients. J Clin Pharmacol. 2013 Aug 53;(8)827–833. 10.1002/jcph.105
  • Barratt DT, Coller JK, Hallinan R, et al. ABCB1 haplotype and OPRM1 118A > G genotype interaction in methadone maintenance treatment pharmacogenetics.. Pharmacogenomics and personalized medicine. 2012;5:53–62.
  • Coller JK, Barratt DT, Dahlen K, et al.. ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clin Pharmacol Ther. 2006 Dec 80;(6)682–690. 10.1016/j.clpt.2006.09.011
  • Crettol S, Venetz J-P, Fontana M, et al.. Influence of ABCB1 genetic polymorphisms on cyclosporine intracellular concentration in transplant recipients. Pharmacogenet Genomics. 2008 Apr 18;(4)307–315. 10.1097/FPC.0b013e3282f7046f
  • Sánchez-Lázaro I, Herrero MJ, Jordán-De Luna C, et al.. Association of SNPs with the efficacy and safety of immunosuppressant therapy after heart transplantation. Pharmacogenomics. 2015;16(9):971–979. DOI:10.2217/pgs.15.39.
  • Hu R, Barratt DT, Coller JK, et al.. CYP3A5*3 and ABCB1 61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation. Basic Clin Pharmacol Toxicol. 2018 Sep 123;(3)320–326. 10.1111/bcpt.13016
  • Sadhasivam S, Chidambaran V, Zhang X, et al.. Opioid-induced respiratory depression: ABCB1 transporter pharmacogenetics. Pharmacogenomics J. 2015 Apr 15;(2)119–126. 10.1038/tpj.2014.56
  • Swart M, Ren Y, Smith P, et al. ABCB1 4036A>G and 1236C>T Polymorphisms Affect Plasma Efavirenz Levels in South African HIV/AIDS Patients. Frontiers in Genetics. 2012;3:236.
  • Mukonzo JK, Röshammar D, Waako P, et al.. A novel polymorphism in ABCB1 gene, CYP2B6*6 and sex predict single-dose efavirenz population pharmacokinetics in Ugandans. Br J Clin Pharmacol. 2009 Nov 68;(5)690–699. 10.1111/j.1365-2125.2009.03516.x
  • Ngaimisi E, Habtewold A, Minzi O, et al.. Importance of ethnicity, CYP2B6 and ABCB1 genotype for efavirenz pharmacokinetics and treatment outcomes: a parallel-group prospective cohort study in two sub-Saharan Africa populations. PLoS One. 2013;8(7):e67946. DOI:10.1371/journal.pone.0067946.
  • Uhr M, Tontsch A, Namendorf C, et al.. Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron. 2008 Jan 24 57;(2)203–209. 10.1016/j.neuron.2007.11.017
  • Breitenstein B, Brückl TM, Ising M, et al.. ABCB1 gene variants and antidepressant treatment outcome: A meta-analysis. Am J Med Genet B Neuropsychiatr Genet. 2015 Jun 168;(4)274–283. 10.1002/ajmg.b.32309
  • Doyle LA, Yang W, Abruzzo LV, et al.. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998 Dec 22 95;(26)15665–15670. 10.1073/pnas.95.26.15665
  • Allikmets R, Schriml LM, Hutchinson A, et al. A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance.. Cancer Res. [1998 Dec 1];58(23):5337–5339.
  • Miyake K, Mickley L, Litman T, et al. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes.. Cancer Res. [1999 Jan 1];59(1):8–13.
  • Taylor NMI, Manolaridis I, Jackson SM, et al.. Structure of the human multidrug transporter ABCG2. Nature. 2017 Jun 22 546;(7659)504–509. 10.1038/nature22345
  • Safar Z, Kis E, Erdo F, et al.. ABCG2/BCRP: variants, transporter interaction profile of substrates and inhibitors. Expert Opin Drug Metab Toxicol. 2019 Apr 15;(4)313–328. 10.1080/17425255.2019.1591373
  • Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues.. Cancer Res. [2001 Apr 15];61(8):3458–3464.
  • Woodward OM, Köttgen A, Coresh J, et al.. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009 Jun 23 106;(25)10338–10342. 10.1073/pnas.0901249106
  • van Herwaarden AE, Wagenaar E, Merino G, et al.. Multidrug transporter ABCG2/breast cancer resistance protein secretes riboflavin (vitamin B2) into milk. Mol Cell Biol. 2007 Feb 27;(4)1247–1253. 10.1128/MCB.01621-06
  • Misaghian N, Ligresti G, Steelman LS, et al.. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia. 2009 Jan 23;(1)25–42. 10.1038/leu.2008.246
  • Ono M, Maruyama T, Masuda H, et al.. Side population in human uterine myometrium displays phenotypic and functional characteristics of myometrial stem cells. Proc Natl Acad Sci U S A. 2007 Nov 20 104;(47)18700–18705. 10.1073/pnas.0704472104
  • Uezumi A, Ojima K, Fukada S, et al.. Functional heterogeneity of side population cells in skeletal muscle. Biochem Biophys Res Commun. 2006 Mar 17 341;(3)864–873. 10.1016/j.bbrc.2006.01.037
  • Oh H, Chi X, Bradfute SB, et al.. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Annals of the New York Academy of Sciences. 2004 May 1015;(1)182–189. 10.1196/annals.1302.015
  • Gorczyca L, Aleksunes LM. Transcription factor-mediated regulation of the BCRP/ ABCG2 efflux transporter: a review across tissues and species. Expert Opin Drug Metab Toxicol. 2020 Mar; 16(3):239–253. 10.1080/17425255.2020.1732348
  • Arrigoni E, Galimberti S, Petrini M, et al.. ATP-binding cassette transmembrane transporters and their epigenetic control in cancer: an overview. Expert Opinion on Drug Metabolism & Toxicology. 2016 Dec 12;(12)1419–1432. 10.1080/17425255.2016.1215423
  • Li X, Pan Y-Z, Seigel GM, et al.. Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, −519c and −520h) and their differential expression in stem-like ABCG2+ cancer cells. Biochem Pharmacol. 2011 Mar 15 81;(6)783–792. 10.1016/j.bcp.2010.12.018
  • Kaehler M, Ruemenapp J, Gonnermann D, et al.. MicroRNA-212/ABCG2-axis contributes to development of imatinib-resistance in leukemic cells. Oncotarget. 2017 Nov 3 8;(54)92018–92031. 10.18632/oncotarget.21272
  • Nakagawa H, Wakabayashi-Nakao K, Tamura A, et al.. Disruption of N-linked glycosylation enhances ubiquitin-mediated proteasomal degradation of the human ATP-binding cassette transporter ABCG2. FEBS Journal. 2009 Dec 276;(24)7237–7252. 10.1111/j.1742-4658.2009.07423.x
  • Whirl-Carrillo M, McDonagh EM, Hebert JM, et al.. Pharmacogenomics knowledge for personalized medicine. Clinical Pharmacology & Therapeutics. 2012 Oct 92;(4)414–417. 10.1038/clpt.2012.96
  • Imai Y, Nakane M, Kage K, et al. C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance.. Mol Cancer Ther. [2002 Jun];1(8):611–616.
  • Kobayashi D, Ieiri I, Hirota T, et al.. FUNCTIONAL ASSESSMENT OF ABCG2 (BCRP) GENE POLYMORPHISMS TO PROTEIN EXPRESSION IN HUMAN PLACENTA. Drug Metab Dispos. 2005 Jan 33;(1)94–101. 10.1124/dmd.104.001628
  • Tamura A, Wakabayashi K, Onishi Y, et al.. Re-evaluation and functional classification of non-synonymous single nucleotide polymorphisms of the human ATP-binding cassette transporter ABCG2. Cancer Science. 2007 Feb 98;(2)231–239. 10.1111/j.1349-7006.2006.00371.x
  • Furukawa T, Wakabayashi K, Tamura A, et al.. Major SNP (Q141K) variant of human ABC transporter ABCG2 undergoes lysosomal and proteasomal degradations. Pharm Res. 2009 Feb 26;(2)469–479. 10.1007/s11095-008-9752-7
  • Sarankó H, Tordai H, Telbisz Á, et al.. Effects of the gout-causing Q141K polymorphism and a CFTR ΔF508 mimicking mutation on the processing and stability of the ABCG2 protein. Biochem Biophys Res Commun. 2013 Jul 19 437;(1)140–145. 10.1016/j.bbrc.2013.06.054
  • Woodward OM, Tukaye DN, Cui J, et al.. Gout-causing Q141K mutation in ABCG2 leads to instability of the nucleotide-binding domain and can be corrected with small molecules. Proc Natl Acad Sci U S A. 2013 Mar 26 110;(13)5223–5228. 10.1073/pnas.1214530110
  • Mizuarai S, Aozasa N, Kotani H. Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2. Int J Cancer. 2004 Mar 20; 109(2):238–246. 10.1002/ijc.11669
  • Morisaki K, Robey RW, Ozvegy-Laczka C, et al.. Single nucleotide polymorphisms modify the transporter activity of ABCG2. Cancer Chemother Pharmacol. 2005 Aug 56;(2)161–172. 10.1007/s00280-004-0931-x
  • Polgar O, Ediriwickrema LS, Robey RW, et al.. Arginine 383 is a crucial residue in ABCG2 biogenesis. Biochim Biophys Acta. 2009 Jul 1788;(7)1434–1443. 10.1016/j.bbamem.2009.04.016
  • Cleophas MC, Joosten LA, Stamp LK, et al. ABCG2 polymorphisms in gout: insights into disease susceptibility and treatment approaches.. Pharmacogenomics and personalized medicine. 2017;10:129–142.
  • Higashino T, Takada T, Nakaoka H, et al.. Multiple common and rare variants of ABCG2 cause gout. RMD Open. 2017;3(2):e000464. DOI:10.1136/rmdopen-2017-000464.
  • Sparreboom A, Gelderblom H, Marsh S, et al.. Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype*1. Clin Pharmacol Ther. 2004 Jul 76;(1)38–44. 10.1016/j.clpt.2004.03.003
  • Sparreboom A, Loos WJ, Burger H, et al.. Effect of ABCG2 genotype on the oral vioavailability of topotecan. Cancer Biol Ther. 2005 Jun 4;(6)650–653. 10.4161/cbt.4.6.1731
  • Li N, Song Y, Du P, et al.. Oral topotecan: Bioavailability, pharmacokinetics and impact of ABCG2 genotyping in Chinese patients with advanced cancers. Biomed Pharmacother. 2013 Oct 67;(8)801–806. 10.1016/j.biopha.2013.08.002
  • de Jong FA, Marsh S, Mathijssen RHJ, et al.. ABCG2 pharmacogenetics: ethnic differences in allele frequency and assessment of influence on irinotecan disposition. Clin Cancer Res. 2004 Sep 1 10;(17)5889–5894. 10.1158/1078-0432.CCR-04-0144
  • Jada SR, Lim R, Wong CI, et al. Role of UGT1A1*6, UGT1A1*28 and ABCG2 c.421C>A polymorphisms in irinotecan-induced neutropenia in Asian cancer patients.. Sci C. 2007 Sep;98(9):1461–1467. Cancer science 10.1111/j.1349-7006.2007.00541.x
  • Sai K, Saito Y, Maekawa K, et al.. Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemotherapy and Pharmacology. 2010 May 66;(1)95–105. 10.1007/s00280-009-1138-y
  • Jandu H, Aluzaite K, Fogh L, et al.. Molecular characterization of irinotecan (SN-38) resistant human breast cancer cell lines. BMC Cancer. 2016 Jan 22 16;(1)34. 10.1186/s12885-016-2071-1
  • Lal S, Wong ZW, Sandanaraj E, et al.. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Science. 2008 Apr 99;(4)816–823. 10.1111/j.1349-7006.2008.00744.x
  • Varatharajan S, Panetta JC, Abraham A, et al.. Population pharmacokinetics of Daunorubicin in adult patients with acute myeloid leukemia. Cancer Chemotherapy and Pharmacology. 2016 Nov 78;(5)1051–1058. 10.1007/s00280-016-3166-8
  • Ghafouri H, Ghaderi B, Amini S, et al.. Association of ABCB1 and ABCG2 single nucleotide polymorphisms with clinical findings and response to chemotherapy treatments in Kurdish patients with breast cancer. Tumour Biol. 2016 Jun 37;(6)7901–7906. 10.1007/s13277-015-4679-1
  • Chew S-C, Singh O, Chen X, et al.. The effects of CYP3A4, CYP3A5, ABCB1, ABCC2, ABCG2 and SLCO1B3 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of docetaxel in nasopharyngeal carcinoma patients. Cancer Chemother Pharmacol. 2011 Jun 67;(6)1471–1478. 10.1007/s00280-011-1625-9
  • Sobek KM, Cummings JL, Bacich DJ, et al.. Contrasting roles of the ABCG2 Q141K variant in prostate cancer. Exp Cell Res. 2017 May 1 354;(1)40–47. 10.1016/j.yexcr.2017.03.020
  • El Mesallamy HO, Rashed WM, Hamdy NM, et al.. High-dose methotrexate in Egyptian pediatric acute lymphoblastic leukemia: the impact of ABCG2 C421A genetic polymorphism on plasma levels, what is next? J Cancer Res Clin Oncol. 2014 Aug 140;(8)1359–1365. 10.1007/s00432-014-1670-y
  • Hegyi M, Arany A, Semsei AF, et al.. Pharmacogenetic analysis of high-dose methotrexate treatment in children with osteosarcoma. Oncotarget. 2017 Feb 7 8;(6)9388–9398. 10.18632/oncotarget.11543
  • Inoue Y, Morita T, Onozuka M, et al.. Impact of Q141K on the Transport of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors by ABCG2. Cells. 2019 Jul 23 8;(7)7. 10.3390/cells8070763
  • Dohse M, Scharenberg C, Shukla S, et al.. Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metabolism and Disposition. 2010 Aug 38;(8)1371–1380. 10.1124/dmd.109.031302
  • Li J, Cusatis G, Brahmer J, et al.. Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther. 2007 Mar 6;(3)432–438. 10.4161/cbt.6.3.3763
  • Wan Z, Guo L, Li P, et al.. Determinants of gefitinib pharmacokinetics in healthy Chinese male subjects: A pharmacogenomic study of cytochrome p450 enzymes and transporters. J Clin Pharm Ther. 20. 2020 Jun 45;(5).
  • Akasaka K, Kaburagi T, Yasuda S, et al.. Impact of functional ABCG2 polymorphisms on the adverse effects of gefitinib in Japanese patients with non–small-cell lung cancer. Cancer Chemother Pharmacol. 2010 Sep 66;(4)691–698. 10.1007/s00280-009-1211-6
  • Lemos C, Giovannetti E, Zucali PA, et al.. Impact of ABCG2 polymorphisms on the clinical outcome and toxicity of gefitinib in non-small-cell lung cancer patients. Pharmacogenomics. 2011 Feb 12;(2)159–170. 10.2217/pgs.10.172
  • Kobayashi H, Sato K, Niioka T, et al.. Relationship Among Gefitinib Exposure, Polymorphisms of Its Metabolizing Enzymes and Transporters, and Side Effects in Japanese Patients With Non–Small-Cell Lung Cancer. Clinical Lung Cancer. 2015 Jul 16;(4)274–281. 10.1016/j.cllc.2014.12.004
  • Svedberg A, Jacobs L, Vikingsson S, et al.. The influence of ABCG2 polymorphism on erlotinib efflux in the K562 cell line. Pharmacol Res Perspect. 2020 Apr 8;(2)e00581. 10.1002/prp2.581
  • Rudin CM, Liu W, Desai A, et al.. Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J Clin Oncol. 2008 Mar 1 26;(7)1119–1127. 10.1200/JCO.2007.13.1128
  • Thomas F, Rochaix P, White-Koning M, et al.. Population pharmacokinetics of erlotinib and its pharmacokinetic/pharmacodynamic relationships in head and neck squamous cell carcinoma. European Journal of Cancer. 2009 Sep 45;(13)2316–2323. 10.1016/j.ejca.2009.05.007
  • Fukudo M, Ikemi Y, Togashi Y, et al.. Population pharmacokinetics/pharmacodynamics of erlotinib and pharmacogenomic analysis of plasma and cerebrospinal fluid drug concentrations in Japanese patients with non-small cell lung cancer. Clinical Pharmacokinetics. 2013 Jul 52;(7)593–609. 10.1007/s40262-013-0058-5
  • Mizuno T, Fukudo M, Terada T, et al.. Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics. Drug Metab Pharmacokinet. 2012;27(6):631–639. DOI:10.2133/dmpk.DMPK-12-RG-026.
  • Low S-K, Fukunaga K, Takahashi A, et al.. Association Study of a Functional Variant on ABCG2 Gene with Sunitinib-Induced Severe Adverse Drug Reaction. PLoS One. 2016;11(2):e0148177. DOI:10.1371/journal.pone.0148177.
  • Kato R, Kato Y, Matsuura T, et al.. Characteristics of early-onset hematotoxicity of sunitinib in Japanese patients with renal cell carcinoma. BMC Cancer. 2017 Mar 23 17;(1)214. 10.1186/s12885-017-3205-9
  • Gardner ER, Burger H, van Schaik RH, et al.. Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clinical Pharmacology & Therapeutics. 2006 Aug 80;(2)192–201. 10.1016/j.clpt.2006.05.003
  • Skoglund K, Boiso Moreno S, Jönsson J-I, et al.. Single-nucleotide polymorphisms of ABCG2 increase the efficacy of tyrosine kinase inhibitors in the K562 chronic myeloid leukemia cell line. Pharmacogenet Genomics. 2014 Jan 24;(1)52–61. 10.1097/FPC.0000000000000022
  • Yamakawa Y, Hamada A, Nakashima R, et al.. Association of genetic polymorphisms in the influx transporter SLCO1B3 and the efflux transporter ABCB1 with imatinib pharmacokinetics in patients with chronic myeloid leukemia.. Ther Drug Monit. 2011 Apr 33;(2)244–250. 10.1097/FTD.0b013e31820beb02
  • Seong SJ, Lim M, Sohn SK, et al.. Influence of enzyme and transporter polymorphisms on trough imatinib concentration and clinical response in chronic myeloid leukemia patients. Annals of Oncology. 2013 Mar 24;(3)756–760. 10.1093/annonc/mds532
  • Francis J, Dubashi B, Sundaram R, et al.. Influence of Sokal, Hasford, EUTOS scores and pharmacogenetic factors on the complete cytogenetic response at 1 year in chronic myeloid leukemia patients treated with imatinib. Med Oncol. 2015 Aug 32;(8)213. 10.1007/s12032-015-0665-0
  • Jiang Z-P, Zhao X-L, Takahashi N, et al.. Trough concentration and ABCG2 polymorphism are better to predict imatinib response in chronic myeloid leukemia: a meta-analysis. Pharmacogenomics. 2017 Jan 18;(1)35–56. 10.2217/pgs-2016-0103
  • Zhang W, Yu B-N, He Y-J, et al.. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in healthy Chinese males. Clin Chim Acta. 2006 Nov 373;(1–2)99–103. 10.1016/j.cca.2006.05.010
  • Keskitalo JE, Zolk O, Fromm MF, et al.. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin Pharmacol Ther. 2009 Aug 86;(2)197–203. 10.1038/clpt.2009.79
  • Tomlinson B, Hu M, Lee VW, et al.. ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin. Clin Pharmacol Ther. 2010 May 87;(5)558–562. 10.1038/clpt.2009.232
  • Lee H-K, Hu M, Lui S, et al.. Effects of polymorphisms in ABCG2, SLCO1B1, SLC10A1 and CYP2C9 / 19 on plasma concentrations of rosuvastatin and lipid response in Chinese patients. Pharmacogenomics. 2013 Aug 14;(11)1283–1294. 10.2217/pgs.13.115
  • Birmingham BK, Bujac SR, Elsby R, et al.. Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in Caucasian and Asian subjects: a class effect? Eur J Clin Pharmacol. 2015 Mar 71;(3)341–355. 10.1007/s00228-014-1801-z
  • Liu M, Wu X-J, Zhao G-L, et al.. Effects of Polymorphisms in NR1H4, NR1I2, SLCO1B1, and ABCG2 on the Pharmacokinetics of Rosuvastatin in Healthy Chinese Volunteers. J Cardiovasc Pharmacol. 2016 Nov 68;(5)383–390. 10.1097/FJC.0000000000000426
  • Choi HY, Bae K-S, Cho S-H, et al.. Impact of CYP2D6, CYP3A5, CYP2C19, CYP2A6, SLCO1B1, ABCB1, and ABCG2 gene polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid. Pharmacogenet Genomics. 2015 Dec 25;(12)595–608. 10.1097/FPC.0000000000000176
  • Tsamandouras N, Dickinson G, Guo Y, et al.. Identification of the effect of multiple polymorphisms on the pharmacokinetics of simvastatin and simvastatin acid using a population-modeling approach. Clinical Pharmacology & Therapeutics. 2014 Jul 96;(1)90–100. 10.1038/clpt.2014.55
  • Xiang Q, Wu W, Zhao N, et al.. The influence of genetic polymorphisms in drug metabolism enzymes and transporters on the pharmacokinetics of different fluvastatin formulations. Asian Journal of Pharmaceutical Sciences. 2020 Mar 15;(2)264–272. 10.1016/j.ajps.2019.06.002
  • Keskitalo JE, Pasanen MK, Neuvonen PJ, et al.. Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin.. Pharmacogenomics. 2009 Oct 10;(10)1617–1624. 10.2217/pgs.09.85
  • Fang G, Zheng J, Yi-Jun D, et al.. The association of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms with the pharmacokinetics of mycophenolic acid and its phenolic glucuronide metabolite in Chinese individuals. Clin Chim Acta. 2012 Apr 11 413;(7–8)683–690. 10.1016/j.cca.2011.12.003
  • Urquhart BL, Ware JA, Tirona RG, et al.. Breast cancer resistance protein (ABCG2) and drug disposition: intestinal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet Genomics. 2008 May 18;(5)439–448. 10.1097/FPC.0b013e3282f974dc
  • Yamasaki Y, Ieiri I, Kusuhara H, et al.. Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin Pharmacol Ther. 2008 Jul 84;(1)95–103. 10.1038/sj.clpt.6100459
  • Kashihara Y, Ieiri I, Yoshikado T, et al.. Small-Dosing Clinical Study: Pharmacokinetic, Pharmacogenomic (SLCO2B1 and ABCG2), and Interaction (Atorvastatin and Grapefruit Juice) Profiles of 5 Probes for OATP2B1 and BCRP. J Pharm Sci. 2017 Sep 106;(9)2688–2694. 10.1016/j.xphs.2017.03.010
  • Gotanda K, Tokumoto T, Hirota T, et al.. Sulfasalazine disposition in a subject with 376C>T (nonsense mutation) and 421C>A variants in the ABCG2 gene. Br J Clin Pharmacol. 2015 Nov 80;(5)1236–1237. 10.1111/bcp.12654
  • Adkison KK, Vaidya SS, Lee DY, et al.. Oral sulfasalazine as a clinical BCRP probe substrate: pharmacokinetic effects of genetic variation (C421A) and pantoprazole coadministration. J Pharm Sci. 2010 Feb 99;(2)1046–1062. 10.1002/jps.21860
  • Kis E, Nagy T, Jani M, et al.. Leflunomide and its metabolite A771726 are high affinity substrates of BCRP: implications for drug resistance. Ann Rheum Dis. 2009 Jul 68;(7)1201–1207. 10.1136/ard.2007.086264
  • Kim K-A, Joo H-J, Park J-Y. Effect of ABCG2 genotypes on the pharmacokinetics of A771726, an active metabolite of prodrug leflunomide, and association of A771726 exposure with serum uric acid level. Eur J Clin Pharmacol. 2011 Feb; 67(2):129–134. 10.1007/s00228-010-0916-0
  • Yao X, Wu Y, Jiang J, et al.. A population pharmacokinetic study to accelerate early phase clinical development for a novel drug, teriflunomide sodium, to treat systemic lupus erythematosus. European Journal of Pharmaceutical Sciences. 2019 Aug 1 136;(136)104942. 10.1016/j.ejps.2019.05.020
  • Yao X, Wu Y, Jiang J, et al.. Safety, Pharmacokinetics, and Pharmacogenetics of Single-Dose Teriflunomide Sodium and Leflunomide in Healthy Chinese Subjects. Clinical Drug Investigation. 2019 Jul 39;(7)643–651. 10.1007/s40261-019-00786-5
  • Kile DA, MaWhinney S, Aquilante CL, et al.. A population pharmacokinetic-pharmacogenetic analysis of atazanavir. AIDS Research and Human Retroviruses. 2012 Oct 28;(10)1227–1234. 10.1089/aid.2011.0378
  • Kim H-S, Sunwoo YE, Ryu JY, et al.. The effect of ABCG2 V12M, Q141K and Q126X, known functional variants in vitro, on the disposition of lamivudine. Br J Clin Pharmacol. 2007 Nov 64;(5)645–654. 10.1111/j.1365-2125.2007.02944.x
  • Zhu P, Zhu Q, Zhang Y, et al.. ABCB1 variation and treatment response in AIDS patients: initial results of the Henan cohort. PLoS One. 2013;8(1):e55197. DOI:10.1371/journal.pone.0055197.
  • Tsuchiya K, Hayashida T, Hamada A, et al.. High plasma concentrations of dolutegravir in patients with ABCG2 genetic variants. Pharmacogenet Genomics. 2017 Nov 27;(11)416–419. 10.1097/FPC.0000000000000308
  • Baxi SM, Greenblatt RM, Bacchetti P, et al.. Evaluating the association of single-nucleotide polymorphisms with tenofovir exposure in a diverse prospective cohort of women living with HIV. The Pharmacogenomics Journal. 2018 Apr 18;(2)245–250. 10.1038/tpj.2017.3
  • Dickinson L, Gurjar R, Stöhr W, et al.. Population pharmacokinetics and pharmacogenetics of ritonavir-boosted darunavir in the presence of raltegravir or tenofovir disoproxil fumarate/emtricitabine in HIV-infected adults and the relationship with virological response: a sub-study of the NEAT001/ANRS143 randomized trial.. J Antimicrob Chemother. 2020 Mar 1 75;(3)628–639. 10.1093/jac/dkz479
  • Tsuchiya K, Hayashida T, Hamada A, et al.. Brief Report: High Peak Level of Plasma Raltegravir Concentration in Patients With ABCB1 and ABCG2 Genetic Variants. J Acquir Immune Defic Syndr. 2016 May 1 72;(1)11–14. 10.1097/QAI.0000000000000893
  • Zhou Y, Wang X, Li H, et al.. Polymorphisms of ABCG2, ABCB1 and HNF4α are associated with Lamotrigine trough concentrations in epilepsy patients. Drug Metab Pharmacokinet. 2015 Aug 30;(4)282–287. 10.1016/j.dmpk.2015.05.002
  • Shen C-H, Zhang Y-X, Lu R-Y, et al.. Specific OCT1 and ABCG2 polymorphisms are associated with Lamotrigine concentrations in Chinese patients with epilepsy. Epilepsy Research. 2016 Nov;127:186–190. 10.1016/j.eplepsyres.2016.09.004.
  • Wang -Z-Z, Zhang Y-F, Huang W-C, et al. Effects of Comedication and Genetic Factors on the Population Pharmacokinetics of Lamotrigine: A Prospective Analysis in Chinese Patients With Epilepsy. . Frontiers in Pharmacology. 2019;10:832.
  • Klarica Domjanović I, Lovrić M, Trkulja V, et al.. Interaction between ABCG2 421C>A polymorphism and valproate in their effects on steady-state disposition of lamotrigine in adults with epilepsy. Br J Clin Pharmacol. 2018 Sep 84;(9)2106–2119. 10.1111/bcp.13646
  • Ueshima S, Hira D, Fujii R, et al.. Impact of ABCB1, ABCG2, and CYP3A5 polymorphisms on plasma trough concentrations of apixaban in Japanese patients with atrial fibrillation. Pharmacogenet Genomics. 2017 Sep 27;(9)329–336. 10.1097/FPC.0000000000000294
  • Ueshima S, Hira D, Kimura Y, et al.. Population pharmacokinetics and pharmacogenomics of apixaban in Japanese adult patients with atrial fibrillation. British Journal of Clinical Pharmacology. 2018 Jun 84;(6)1301–1312. 10.1111/bcp.13561
  • Huppertz A, Grond-Ginsbach C, Dumschat C, et al.. Unexpected excessive apixaban exposure: case report of a patient with polymorphisms of multiple apixaban elimination pathways. BMC Pharmacol Toxicol. 2019 Aug 29 20;(1)53. 10.1186/s40360-019-0331-9
  • Mózner O, Bartos Z, Zámbó B, et al.. Cellular Processing of the ABCG2 Transporter—Potential Effects on Gout and Drug Metabolism. Cells. 2019 Oct 8 8;(10)10. 10.3390/cells8101215
  • Zhou D, Liu Y, Zhang X, et al.. Functional polymorphisms of the ABCG2 gene are associated with gout disease in the Chinese Han male population. Int J Mol Sci. 2014 May 22 15;(5)9149–9159. 10.3390/ijms15059149
  • Stiburkova B, Pavelcova K, Zavada J, et al.. Functional non-synonymous variants of ABCG2 and gout risk. Rheumatology (Oxford). 2017 Nov 1 56;(11)1982–1992. 10.1093/rheumatology/kex295
  • Chen X, Chen D, Yang S, et al.. Impact of ABCG2 polymorphisms on the clinical outcome of TKIs therapy in Chinese advanced non-small-cell lung cancer patients. Cancer Cell International. 2015;15(1):43. DOI:10.1186/s12935-015-0191-3.
  • Kim DH (Dennis), Sriharsha L, Xu W, et al.. Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res. 2009 Jul 15 15;(14)4750–4758. 10.1158/1078-0432.CCR-09-0145
  • van der Veldt AAM, Eechoute K, Gelderblom H, et al.. Genetic polymorphisms associated with a prolonged progression-free survival in patients with metastatic renal cell cancer treated with sunitinib.. Clin Cancer Res. 2011 Feb 1 17;(3)620–629. 10.1158/1078-0432.CCR-10-1828
  • Tandia M, Mhiri A, Paule B, et al.. Correlation between clinical response to sorafenib in hepatocellular carcinoma treatment and polymorphisms of P-glycoprotein (ABCB1) and of breast cancer resistance protein (ABCG2): monocentric study. Cancer Chemother Pharmacol. 2017 Apr 79;(4)759–766. 10.1007/s00280-017-3268-y
  • Hampras SS, Sucheston L, Weiss J, et al. Genetic polymorphisms of ATP-binding cassette (ABC) proteins, overall survival and drug toxicity in patients with Acute Myeloid Leukemia.. Int J Mol Epidemiol Genet. 2010;1(3):201–207.
  • Zaïr ZM, Singer DR. Efflux transporter variants as predictors of drug toxicity in lung cancer patients: systematic review and meta-analysis. Pharmacogenomics. 2016 Jun; 17(9):1089–1112. 10.2217/pgs-2015-0006
  • Han J-Y, Lim H-S, Park YH, et al.. Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung Cancer. 2009 Jan; 63;(1)115–120. 10.1016/j.lungcan.2007.12.003
  • Fu L, Wang R, Yin L, et al.. A meta-analysis of ABCG2 gene polymorphism and non-small cell lung cancer outcomes. Genet Mol Biol. 2019;42(4):e20180234. DOI:10.1590/1678-4685-gmb-2018-0234.
  • Kim I-S, Kim H-G, Kim DC, et al.. ABCG2 Q141K polymorphism is associated with chemotherapy-induced diarrhea in patients with diffuse large B-cell lymphoma who received frontline rituximab plus cyclophosphamide/doxorubicin/ vincristine/prednisone chemotherapy. Cancer Science. 2008 Dec 99;(12)2496–2501. 10.1111/j.1349-7006.2008.00985.x
  • Matsuo H, Takada T, Ichida K, et al.. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population. Science Translational Medicine. 2009 Nov 4 1;(5)5ra11. 10.1126/scitranslmed.3000237
  • Li R, Miao L, Qin L, et al. A meta-analysis of the associations between the Q141K and Q126X ABCG2 gene variants and gout risk.. Int J Clin Exp Pathol. 2015;8(9):9812–9823.
  • Yoshioka S, Katayama K, Okawa C, et al.. The identification of two germ-line mutations in the human breast cancer resistance protein gene that result in the expression of a low/non-functional protein. Pharmaceutical Research. 2007 Jun 24;(6)1108–1117. 10.1007/s11095-007-9235-2
  • Toyoda T, Mančíková M, Krylov K, et al.. Functional Characterization of Clinically-Relevant Rare Variants in ABCG2 Identified in a Gout and Hyperuricemia Cohort. Cells. 2019 Apr 18 8;(4)4. 10.3390/cells8040363
  • Heyes N, Kapoor P, Kerr ID. Polymorphisms of the Multidrug Pump ABCG2: A Systematic Review of Their Effect on Protein Expression, Function, and Drug Pharmacokinetics. Drug Metab Dispos. 2018 Dec; 46(12):1886–1899. 10.1124/dmd.118.083030
  • Poonkuzhali B, Lamba J, Strom S, et al.. Association of breast cancer resistance protein/ABCG2 phenotypes and novel promoter and intron 1 single nucleotide polymorphisms. Drug Metab Dispos. 2008 Apr 36;(4)780–795. 10.1124/dmd.107.018366
  • Boudou-Rouquette P, Narjoz C, Golmard JL, et al.. Early sorafenib-induced toxicity is associated with drug exposure and UGTIA9 genetic polymorphism in patients with solid tumors: a preliminary study. PLoS One. 2012;7(8):e42875. DOI:10.1371/journal.pone.0042875.
  • Warren RB, Smith RL, Campalani E, et al.. Genetic variation in efflux transporters influences outcome to methotrexate therapy in patients with psoriasis. Journal of Investigative Dermatology. 2008 Aug 128;(8)1925–1929. 10.1038/jid.2008.16
  • Cole SP, Bhardwaj G, Gerlach JH, et al.. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992 Dec 4 258;(5088)1650–1654. 10.1126/science.1360704
  • König J, Nies AT, Cui Y, et al.. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2-mediated drug resistance. Biochim Biophys Acta. 1999 Dec 6 1461;(2)377–394. 10.1016/S0005-2736(99)00169-8
  • Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem. 2019;26(7):1185–1223.
  • Tocchetti GN, Rigalli JP, Arana MR, et al.. Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics. Toxicology and Applied Pharmacology. 2016 Jul 15;303:45–57. 10.1016/j.taap.2016.05.002.
  • Takechi T, Hirota T, Sakai T, et al.. Interindividual Differences in the Expression of ATP-Binding Cassette and Solute Carrier Family Transporters in Human Skin: DNA Methylation Regulates Transcriptional Activity of the Human ABCC3 Gene. Drug Metab Dispos. 2018 May 46;(5)628–635. 10.1124/dmd.117.079061
  • Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metabolism Reviews. 2010 Aug; 42(3):482–538. 10.3109/03602531003654915
  • Haenisch S, Laechelt S, Bruckmueller H, et al.. Down-regulation of ATP-binding cassette C2 protein expression in HepG2 cells after rifampicin treatment is mediated by microRNA-379. Mol Pharmacol. 2011 Aug 80;(2)314–320. 10.1124/mol.110.070714
  • Perego P, Gatti L, Beretta GL. The ABC of glycosylation. Nature Reviews Cancer. 2010 Jul; 10(7):523. 10.1038/nrc2789-c1
  • Szakács G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov. [2006 Mar];5(3):219–234.
  • Young AM, Allen CE, Audus KL. Efflux transporters of the human placenta. Adv Drug Deliv Rev. 2003 Jan 21; 55(1):125–132. 10.1016/S0169-409X(02)00174-6
  • Meyer Zu Schwabedissen HE, Jedlitschky G, Gratz M, et al.. Variable expression of MRP2 (ABCC2) in human placenta: influence of gestational age and cellular differentiation. Drug Metab Dispos. 2005 Jul 33;(7)896–904. 10.1124/dmd.104.003335
  • Sandusky GE, Mintze KS, Pratt SE, et al.. Expression of multidrug resistance-associated protein 2 (MRP2) in normal human tissues and carcinomas using tissue microarrays. Histopathology. 2002 Jul 41;(1)65–74. 10.1046/j.1365-2559.2002.01403.x
  • van der Kolk DM, de Vries EG, Koning JA, et al. Activity and expression of the multidrug resistance proteins MRP1 and MRP2 in acute myeloid leukemia cells, tumor cell lines, and normal hematopoietic CD34+ peripheral blood cells.. Clin Cancer Res. [1998 Jul];4(7):1727–1736.
  • Borst P, de Wolf C, van de Wetering K. van de Wetering K. Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch. 2007 Feb; 453(5):661–673. 10.1007/s00424-006-0054-9
  • Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch. 2007 Feb; 453(5):643–659. 10.1007/s00424-006-0109-y
  • König J, Rost D, Cui Y, et al.. Characterization of the human multidrug resistance protein isoform MRP3 localized to the basolateral hepatocyte membrane. Hepatology. 1999 Apr 29;(4)1156–1163. 10.1002/hep.510290404
  • Rost D, Mahner S, Sugiyama Y, et al.. Expression and localization of the multidrug resistance-associated protein 3 in rat small and large intestine. Am J Physiol Gastrointest Liver Physiol. 2002 Apr 282;(4)G720–6. 10.1152/ajpgi.00318.2001
  • Shoji T, Suzuki H, Kusuhara H, et al.. vATP-dependent transport of organic anions into isolated basolateral membrane vesicles from rat intestine. American Journal of Physiology-Gastrointestinal and Liver Physiology. 2004 Oct 287;(4)G749–56. 10.1152/ajpgi.00065.2003
  • Scheffer GL, Kool M, de Haas M, et al.. Tissue distribution and induction of human multidrug resistant protein 3. Lab Invest. 2002 Feb 82;(2)193–201. 10.1038/labinvest.3780411
  • van der Schoor LW, Verkade HJ, Kuipers F, et al.. New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition. Expert Opin Drug Metab Toxicol. 2015 Feb 11;(2)273–293. 10.1517/17425255.2015.981152
  • Hellmann F, Völler S, Krischke M, et al.. Genetic Polymorphisms Affecting Cardiac Biomarker Concentrations in Children with Cancer: an Analysis from the “European Paediatric Oncology Off-patents Medicines Consortium” (EPOC) Trial. Eur J Drug Metab Pharmacokinet. 2020 Jun 45;(3)413–422. 10.1007/s13318-019-00592-6
  • Megías-Vericat JE, Montesinos P, Herrero MJ, et al.. Impact of ABC single nucleotide polymorphisms upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leukemia & Lymphoma. 2017 May 58;(5)1197–1206. 10.1080/10428194.2016.1231405
  • Visscher H, Ross CJD, Rassekh SR, et al.. Pharmacogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol. 2012 May 1 30;(13)1422–1428. 10.1200/JCO.2010.34.3467
  • Yao S, Sucheston LE, Zhao H, et al.. Germline genetic variants in ABCB1, ABCC1 and ALDH1A1, and risk of hematological and gastrointestinal toxicities in a SWOG Phase III trial S0221 for breast cancer. Pharmacogenomics J. 2014 Jun 14;(3)241–247. 10.1038/tpj.2013.32
  • Cao H-X, Miao C-F, Yan L, et al.. Polymorphisms at microRNA binding sites of Ara-C and anthracyclines-metabolic pathway genes are associated with outcome of acute myeloid leukemia patients. J Transl Med. 2017 Nov 15 15;(1)235. 10.1186/s12967-017-1339-9
  • Li M, Seiser EL, Baldwin RM, et al.. ABC transporter polymorphisms are associated with irinotecan pharmacokinetics and neutropenia. The Pharmacogenomics Journal. 2018 Jan 18;(1)35–42. 10.1038/tpj.2016.75
  • Innocenti F, Kroetz DL, Schuetz E, et al.. Comprehensive pharmacogenetic analysis of irinotecan neutropenia and pharmacokinetics. J Clin Oncol. 2009 Jun 1 27;(16)2604–2614. 10.1200/JCO.2008.20.6300
  • Franca R, Rebora P, Bertorello N, et al.. Pharmacogenetics and induction/consolidation therapy toxicities in acute lymphoblastic leukemia patients treated with AIEOP-BFM ALL 2000 protocol. Pharmacogenomics J. 2017 Jan 17;(1)4–10. 10.1038/tpj.2015.83
  • Lima A, Bernardes M, Azevedo R, et al.. Pharmacogenomics of Methotrexate Membrane Transport Pathway: Can Clinical Response to Methotrexate in Rheumatoid Arthritis Be Predicted? Int J Mol Sci. 2015 Jun 16 16;(12)13760–13780. 10.3390/ijms160613760
  • Bulatovic M, Heijstek MW, Van Dijkhuizen EH, et al.. Prediction of clinical non-response to methotrexate treatment in juvenile idiopathic arthritis. Annals of the Rheumatic Diseases. 2012 Sep 71;(9)1484–1489. 10.1136/annrheumdis-2011-200942
  • Lui G, Treluyer J-M, Fresneau B, et al.. A Pharmacokinetic and Pharmacogenetic Analysis of Osteosarcoma Patients Treated With High-Dose Methotrexate: Data From the OS2006/Sarcoma-09 Trial. J Clin Pharmacol. 2018 Dec 58;(12)1541–1549. 10.1002/jcph.1252
  • Steeghs N, Gelderblom H, Wessels J, et al.. Pharmacogenetics of telatinib, a VEGFR-2 and VEGFR-3 tyrosine kinase inhibitor, used in patients with solid tumors. Invest New Drugs. 2011 Feb 29;(1)137–143. 10.1007/s10637-009-9347-0
  • Coelho AVC, Silva SPS, de Alencar LCA, et al.. ABCB1 and ABCC1 variants associated with virological failure of first-line protease inhibitors antiretroviral regimens in Northeast Brazil patients. J Clin Pharmacol. 2013 Dec 53;(12)1286–1293. 10.1002/jcph.165
  • Dubin IN, Johnson FB. Chronic idiopathic jaundice with unidentified pigment in liver cells; a new clinicopathologic entity with a report of 12 cases. Medicine (Baltimore). 1954 Sep; 33(3):155–198. 10.1097/00005792-195409000-00001
  • Lee J-H, Chen H-L, Chen H-L, et al.. Neonatal Dubin-Johnson syndrome: long-term follow-up and MRP2 mutations study. Pediatr Res. 2006 Apr 59;(4 Part 1)584–589. 10.1203/01.pdr.0000203093.10908.bb
  • Paulusma CC, Oude Elferink RPJO. The canalicular multispecific organic anion transporter and conjugated hyperbilirubinemia in rat and man. Journal of Molecular Medicine. 1997 Jun; 75(6):420–428. 10.1007/s001090050127
  • Erlinger S, Arias IM, Dhumeaux D. Inherited disorders of bilirubin transport and conjugation: new insights into molecular mechanisms and consequences. Gastroenterology. 2014 Jun; 146(7):1625–1638. 10.1053/j.gastro.2014.03.047
  • Nguyen TD, Markova S, Liu W, et al.. Functional characterization of ABCC2 promoter polymorphisms and allele-specific expression. Pharmacogenomics J. 2013 Oct 13;(5)396–402. 10.1038/tpj.2012.20
  • Haenisch S, Zimmermann U, Dazert E, et al.. Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex. Pharmacogenomics J. 2007 Feb 7;(1)56–65. 10.1038/sj.tpj.6500403
  • Haenisch S, May K, Wegner D, et al.. Influence of genetic polymorphisms on intestinal expression and rifampicin-type induction of ABCC2 and on bioavailability of talinolol. Pharmacogenet Genomics. 2008 Apr 18;(4)357–365. 10.1097/FPC.0b013e3282f974b7
  • Laechelt S, Turrini E, Ruehmkorf A, et al.. Impact of ABCC2 haplotypes on transcriptional and posttranscriptional gene regulation and function. Pharmacogenomics J. 2011 Feb 11;(1)25–34. 10.1038/tpj.2010.20
  • Qian C-Y, Zheng Y, Wang Y, et al.. Associations of genetic polymorphisms of the transporters organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1), and ATP-binding cassette subfamily C member 2 (ABCC2) with platinum-based chemotherapy response and toxicity in non-small cell lung cancer patients. . Chinese journal of cancer. 2016 Sep 2 35;(1)85. 10.1186/s40880-016-0145-8
  • Han Z-G, Tao J, Yu -T-T, et al.. Effect of GSTP1 and ABCC2 Polymorphisms on Treatment Response in Patients with Advanced Non-Small Cell Lung Cancer Undergoing Platinum-Based Chemotherapy: A Study in a Chinese Uygur Population. Medical Science Monitor. 2017 Apr 26;23:1999–2006. 10.12659/MSM.904156.
  • Sun N, Sun X, Chen B, et al.. MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2010 Feb 65;(3)437–446. 10.1007/s00280-009-1046-1
  • Sprowl JA, Gregorc V, Lazzari C, et al.. Associations between ABCC2 polymorphisms and cisplatin disposition and efficacy. Clin Pharmacol Ther. 2012 Jun 91;(6)1022–1026. 10.1038/clpt.2011.330
  • Windsor RE, Strauss SJ, Kallis C, et al.. Germline genetic polymorphisms may influence chemotherapy response and disease outcome in osteosarcoma: a pilot study. Cancer. 2012 Apr 1 118;(7)1856–1867. 10.1002/cncr.26472
  • De Troia B, Dalu D, Filipazzi V, et al.. ABCB1 c.3435C>T polymorphism is associated with platinum toxicity: a preliminary study. Cancer Chemother Pharmacol. 2019 Apr 83;(4)803–808. 10.1007/s00280-019-03794-6
  • Marsh S, Paul J, King CR, et al.. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: the Scottish Randomised Trial in Ovarian Cancer. J Clin Oncol. 2007 Oct 10 25;(29)4528–4535. 10.1200/JCO.2006.10.4752
  • Hattinger CM, Biason P, Iacoboni E, et al.. Candidate germline polymorphisms of genes belonging to the pathways of four drugs used in osteosarcoma standard chemotherapy associated with risk, survival and toxicity in non-metastatic high-grade osteosarcoma. Oncotarget. 2016 Sep 20 7;(38)61970–61987. 10.18632/oncotarget.11486
  • Nichetti F, Falvella FS, Miceli R, et al.. Is a pharmacogenomic panel useful to estimate the risk of oxaliplatin-related neurotoxicity in colorectal cancer patients? The Pharmacogenomics Journal. 2019 Oct 19;(5)465–472. 10.1038/s41397-019-0078-0
  • Chang C, Hu Y, Hogan SL, et al.. Pharmacogenomic Variants May Influence the Urinary Excretion of Novel Kidney Injury Biomarkers in Patients Receiving Cisplatin. International Journal of Molecular Sciences. 2017 Jun 22 18;(7)7. 10.3390/ijms18071333
  • Belohlavkova P, Vrbacky F, Voglova J, et al.. The significance of enzyme and transporter polymorphisms for imatinib plasma levels and achieving an optimal response in chronic myeloid leukemia patients. Archives of Medical Science. 2018 Oct 14;(6)1416–1423. 10.5114/aoms.2018.73538
  • Ravegnini G, Urbini M, Simeon V, et al.. An exploratory study by DMET array identifies a germline signature associated with imatinib response in gastrointestinal stromal tumor. The Pharmacogenomics Journal. 2019 Aug 19;(4)390–400. 10.1038/s41397-018-0050-4
  • Razali RH, Noorizhab MNF, Jamari H, et al.. Association of ABCC2 with levels and toxicity of methotrexate in Malaysian Childhood Acute Lymphoblastic Leukemia (ALL). Pediatr Hematol Oncol. 2020 Apr 37;(3)185–197. 10.1080/08880018.2019.1705949
  • Rau T, Erney B, Göres R, et al.. High-dose methotrexate in pediatric acute lymphoblastic leukemia: impact of ABCC2 polymorphisms on plasma concentrations. Clin Pharmacol Ther. 2006 Nov 80;(5)468–476. 10.1016/j.clpt.2006.08.012
  • Simon N, Marsot A, Villard E, et al.. Impact of ABCC2 polymorphisms on high-dose methotrexate pharmacokinetics in patients with lymphoid malignancy. Pharmacogenomics J. 2013 Dec 13;(6)507–513. 10.1038/tpj.2012.37
  • Gervasini G, de Murillo SG, Jiménez M, et al.. Effect of polymorphisms in transporter genes on dosing, efficacy and toxicity of maintenance therapy in children with acute lymphoblastic leukemia. Gene. 2017 Sep 10;628:72–77. 10.1016/j.gene.2017.07.025.
  • Yanagimachi M, Goto H, Kaneko T, et al.. Influence of pre-hydration and pharmacogenetics on plasma methotrexate concentration and renal dysfunction following high-dose methotrexate therapy. International Journal of Hematology. 2013 Dec 98;(6)702–707. 10.1007/s12185-013-1464-z
  • Sharifi MJ, Bahoush G, Zaker F, et al.. Association of −24CT, 1249GA, and 3972CT ABCC2 gene polymorphisms with methotrexate serum levels and toxic side effects in children with acute lymphoblastic leukemia. Pediatr Hematol Oncol. 2014 Mar 31;(2)169–177. 10.3109/08880018.2013.870625
  • Ellis LCJ, Hawksworth GM, Weaver RJ. ATP-dependent transport of statins by human and rat MRP2/Mrp2. Toxicol Appl Pharmacol. 2013 Jun 1; 269(2):187–194. 10.1016/j.taap.2013.03.019
  • Becker ML, Elens LL, Visser LE, et al.. Genetic variation in the ABCC2 gene is associated with dose decreases or switches to other cholesterol-lowering drugs during simvastatin and atorvastatin therapy. Pharmacogenomics J. 2013 Jun 13;(3)251–256. 10.1038/tpj.2011.59
  • Prado Y, Arencibia A, Zambrano T, et al.. Gender-Specific Association Between ABCC2 −24C>T SNP and Reduction in Triglycerides in Chilean Patients Treated With Atorvastatin. Basic Clin Pharmacol Toxicol. 2018 May 122;(5)517–522. 10.1111/bcpt.12943
  • Ide T, Sasaki T, Maeda K, et al.. Quantitative Population Pharmacokinetic Analysis of Pravastatin Using an Enterohepatic Circulation Model Combined With Pharmacogenomic Information on SLCO1B1 and ABCC2 Polymorphisms. J Clin Pharmacol. 2009 Nov 49;(11)1309–1317. 10.1177/0091270009341960
  • Oh ES, Kim CO, Cho SK, et al.. Impact of ABCC2, ABCG2 and SLCO1B1 polymorphisms on the pharmacokinetics of pitavastatin in humans. Drug Metab Pharmacokinet. 2013;28(3):196–202. DOI:10.2133/dmpk.DMPK-12-RG-068.
  • Qian L, Fang S, Yan Y-L, et al.. The ABCC2 c.-24C>T polymorphism increases the risk of resistance to antiepileptic drugs: A meta-analysis. J Clin Neurosci. 2017 Mar;37:6–14. 10.1016/j.jocn.2016.10.014.
  • Westley IS, Brogan LR, Morris RG, et al.. Role of Mrp2 in the hepatic disposition of mycophenolic acid and its glucuronide metabolites: effect of cyclosporine. Drug Metab Dispos. 2006 Feb 34;(2)261–266. 10.1124/dmd.105.006122
  • Lévesque E, Benoit-Biancamano M-O, Delage R, et al.. Pharmacokinetics of mycophenolate mofetil and its glucuronide metabolites in healthy volunteers. Pharmacogenomics. 2008 Jul 9;(7)869–879. 10.2217/14622416.9.7.869
  • Baldelli S, Merlini S, Perico N, et al.. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics. 2007 Sep 8;(9)1127–1141. 10.2217/14622416.8.9.1127
  • Miura M, Satoh S, Inoue K, et al.. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007 Dec 63;(12)1161–1169. 10.1007/s00228-007-0380-7
  • Zhang W-X, Chen B, Jin Z, et al.. Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients. Xenobiotica. 2008 Nov 38;(11)1422–1436. 10.1080/00498250802488585
  • Romano-Aguilar M, Reséndiz-Galván JE, Medellín-Garibay SE, et al. Population pharmacokinetics of mycophenolic acid in Mexican patients with lupus nephritis. Lupus. 2020 Jun;15:961203320931567.
  • Rodríguez‐Nóvoa S, Labarga P, Soriano V, et al.. Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin Infect Dis. 2009 Jun 1 48;(11)e108–16. 10.1086/598507
  • Izzedine H, Hulot J-S, Villard E, et al.. Association between ABCC2 Gene Haplotypes and Tenofovir-Induced Proximal Tubulopathy. J Infect Dis. 2006 Dec 1 194;(11)1481–1491. 10.1086/508546
  • Neary M, Olagunju A, Sarfo F, et al.. Do genetic variations in proximal tubule transporters influence tenofovir-induced renal dysfunction? An exploratory study in a Ghanaian population. J Antimicrob Chemother. 2020 May 1 75;(5)1267–1271. 10.1093/jac/dkaa008
  • Rungtivasuwan K, Avihingsanon A, Thammajaruk N, et al.. Pharmacogenetics-based population pharmacokinetic analysis of tenofovir in Thai HIV-infected patients. Pharmacogenomics. 2017 Nov 18;(16)1481–1490. 10.2217/pgs-2017-0128
  • Imaoka T, Kusuhara H, Adachi M, et al.. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol Pharmacol. 2007 Feb 71;(2)619–627. 10.1124/mol.106.028233
  • Neumanova Z, Cerveny L, Ceckova M, et al.. Interactions of tenofovir and tenofovir disoproxil fumarate with drug efflux transporters ABCB1, ABCG2, and ABCC2; role in transport across the placenta. Aids. 2014 Jan 2 28;(1)9–17. 10.1097/QAD.0000000000000112
  • Moss DM, Neary M, Owen A. The role of drug transporters in the kidney: lessons from tenofovir. Frontiers in Pharmacology. 2014;5:248.
  • Tian C, Ambrosone CB, Darcy KM, et al.. Common variants in ABCB1, ABCC2 and ABCG2 genes and clinical outcomes among women with advanced stage ovarian cancer treated with platinum and taxane-based chemotherapy: a Gynecologic Oncology Group study. Gynecol Oncol. 2012 Mar 124;(3)575–581. 10.1016/j.ygyno.2011.11.022
  • Ranganathan P, Culverhouse R, Marsh S, et al. Methotrexate (MTX) pathway gene polymorphisms and their effects on MTX toxicity in Caucasian and African American patients with rheumatoid arthritis.. The Journal of rheumatology. [2008 Apr];35(4):572–579.
  • Zajc Avramovič M, Dolžan V, Toplak N, et al.. Relationship Between Polymorphisms in Methotrexate Pathway Genes and Outcome of Methotrexate Treatment in a Cohort of 119 Patients with Juvenile Idiopathic Arthritis. J Rheumatol. 2017 Aug 44;(8)1216–1223. 10.3899/jrheum.160950
  • Ho RH, Choi L, Lee W, et al.. Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants. Pharmacogenetics and Genomics. 2007 Aug 17;(8)647–656. 10.1097/FPC.0b013e3280ef698f
  • Woo HI, Kim SR, Huh W, et al. Association of genetic variations with pharmacokinetics and lipid-lowering response to atorvastatin in healthy Korean subjects. <![CDATA[Drug Design, Development and Therapy]]>. 2017;11:1135–1146.
  • Yang X, Yan Y, Fang S, et al.. Comparison of oxcarbazepine efficacy and MHD concentrations relative to age and BMI: Associations among ABCB1, ABCC2, UGT2B7, and SCN2A polymorphisms. Medicine (Baltimore). 2019 Mar 98;(12)e14908. 10.1097/MD.0000000000014908
  • Shen C, Zhang B, Liu Z, et al.. Effects of ABCB1, ABCC2, UGT2B7 and HNF4α genetic polymorphisms on oxcarbazepine concentrations and therapeutic efficacy in patients with epilepsy. Seizure. 2017 Oct;51:102–106. 10.1016/j.seizure.2017.07.015.
  • Chen J, Su Q-B, Tao Y-Q, et al.. ABCC2 rs2273697 is associated with valproic acid concentrations in patients with epilepsy on valproic acid monotherapy.. Die Pharmazie. 2018 May 1 73;(5)279–282. 10.1691/ph.2018.7344
  • Al-Eitan LN, Al-Dalalah IM, Mustafa MM, et al. Effects of MTHFR and ABCC2 gene polymorphisms on antiepileptic drug responsiveness in Jordanian epileptic patients.. Pharmacogenomics and personalized medicine. 2019;12:87–95.
  • Xue T, Lu ZN. Association between the polymorphisms in the ATP-binding cassette genes ABCB1 and ABCC2 and the risk of drug-resistant epilepsy in a Chinese Han population. Genetics and Molecular Research. 2016 Nov 25; 15(4):4. 10.4238/gmr15048752
  • Qu J, Zhou B-T, Yin J-Y, et al.. ABCC2 polymorphisms and haplotype are associated with drug resistance in Chinese epileptic patients. CNS Neurosci Ther. 2012 Aug 18;(8)647–651. 10.1111/j.1755-5949.2012.00336.x
  • Olivera GG, Yáñez Y, Gargallo P, et al.. MTHFR and VDR Polymorphisms Improve the Prognostic Value of MYCN Status on Overall Survival in Neuroblastoma Patients. International Journal of Molecular Sciences. 2020 Apr 14 21;(8)8. 10.3390/ijms21082714
  • Ruzzo A, Graziano F, Galli F, et al.. Sex-Related Differences in Impact on Safety of Pharmacogenetic Profile for Colon Cancer Patients Treated with FOLFOX-4 or XELOX Adjuvant Chemotherapy. Sci Rep. 2019 Aug 8 9;(1)11527. 10.1038/s41598-019-47627-1
  • Cecchin E, D’Andrea M, Lonardi S, et al.. A prospective validation pharmacogenomic study in the adjuvant setting of colorectal cancer patients treated with the 5-fluorouracil/leucovorin/oxaliplatin (FOLFOX4) regimen. Pharmacogenomics J. 2013 Oct 13;(5)403–409. 10.1038/tpj.2012.31
  • Sági JC, Egyed B, Kelemen A, et al.. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer. 2018 Jul 3 18;(1)704. 10.1186/s12885-018-4629-6
  • Lopez-Lopez E, Ballesteros J, Piñan MA, et al.. Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenetics and Genomics. 2013 Feb 23;(2)53–61. 10.1097/FPC.0b013e32835c3b24
  • Ogasawara K, Chitnis SD, Gohh RY, et al.. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin Pharmacokinet. 2013 Sep 52;(9)751–762. 10.1007/s40262-013-0069-2
  • Ruiz J, Herrero MJ, Bosó V, et al.. Impact of Single Nucleotide Polymorphisms (SNPs) on Immunosuppressive Therapy in Lung Transplantation. Int J Mol Sci. 2015 Aug 25 16;(9)20168–20182. 10.3390/ijms160920168
  • Yap DYH, Tam CH, Yung S, et al.. Pharmacokinetics and pharmacogenomics of mycophenolic acid and its clinical correlations in maintenance immunosuppression for lupus nephritis. Nephrol Dial Transplant. 2020 May 1 35;(5)810–818. 10.1093/ndt/gfy284
  • Chen J, Su Q, Qin J, et al.. Correlation of MCT1 and ABCC2 gene polymorphisms with valproic acid resistance in patients with epilepsy on valproic acid monotherapy. Drug Metab Pharmacokinet. 2019 Jun 34;(3)165–171. 10.1016/j.dmpk.2018.01.006
  • Escalante-Santiago D, Feria-Romero IA, Ribas-Aparicio RM, et al. MDR-1 and MRP2 Gene Polymorphisms in Mexican Epileptic Pediatric Patients with Complex Partial Seizures. Frontiers in Neurology. 2014;5:184.
  • Grover S, Kukreti R. A systematic review and meta-analysis of the role of ABCC2 variants on drug response in patients with epilepsy. Epilepsia. 2013 May; 54(5):936–945. 10.1111/epi.12132
  • Lang T, Hitzl M, Burk O, et al.. Genetic polymorphisms in the multidrug resistance-associated protein 3 (ABCC3, MRP3) gene and relationship to its mRNA and protein expression in human liver. Pharmacogenetics. 2004 Mar 14;(3)155–164. 10.1097/00008571-200403000-00003
  • Steinbach D, Lengemann J, Voigt A, et al. Response to chemotherapy and expression of the genes encoding the multidrug resistance-associated proteins MRP2, MRP3, MRP4, MRP5, and SMRP in childhood acute myeloid leukemia.. Clin Cancer Res. [2003 Mar];9(3):1083–1086.
  • Steinbach D, Wittig S, Cario G, et al.. The multidrug resistance-associated protein 3 (MRP3) is associated with a poor outcome in childhood ALL and may account for the worse prognosis in male patients and T-cell immunophenotype. Blood. 2003 Dec 15 102;(13)4493–4498. 10.1182/blood-2002-11-3461
  • Doerfel C, Rump A, Sauerbrey A, et al.. In acute leukemia, the polymorphism −211C>T in the promoter region of the multidrug resistance-associated protein 3 (MRP3) does not determine the expression level of the gene. Pharmacogenet Genomics. 2006 Feb 16;(2)149–150. 10.1097/01.fpc.0000189802.34339.a4
  • Luchessi AD, Silbiger VN, Cerda A, et al.. Increased clopidogrel response is associated with ABCC3 expression: a pilot study. Clin Chim Acta. 2012 Feb 18 413;(3–4)417–421. 10.1016/j.cca.2011.10.018
  • Zou -J-J, Fan H-W, Chen S-L, et al.. Efffect of the ABCC3 −211 C/T polymorphism on clopidogrel responsiveness in patients with percutaneous coronary intervention. Clin Exp Pharmacol Physiol. 2013 Aug 40;(8)504–509. 10.1111/1440-1681.12118
  • Venkatasubramanian R, Fukuda T, Niu J, et al.. ABCC3 and OCT1 genotypes influence pharmacokinetics of morphine in children. Pharmacogenomics. 2014 Jul 15;(10)1297–1309. 10.2217/pgs.14.99
  • Chidambaran V, Venkatasubramanian R, Zhang X, et al.. ABCC3 genetic variants are associated with postoperative morphine-induced respiratory depression and morphine pharmacokinetics in children. Pharmacogenomics J. 2017 Mar 17;(2)162–169. 10.1038/tpj.2015.98
  • Zelcer N, van de Wetering K, Hillebrand M, et al.. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci U S A. 2005 May 17 102;(20)7274–7279. 10.1073/pnas.0502530102
  • de Rotte MAURITSCFJ, Bulatovic M, Heijstek MW, et al.. ABCB1 and ABCC3 Gene Polymorphisms Are Associated with First-year Response to Methotrexate in Juvenile Idiopathic Arthritis. J Rheumatol. 2012 Oct 39;(10)2032–2040. 10.3899/jrheum.111593
  • de Rotte M, Pluijm SMF, de Jong PHP, et al.. Development and validation of a prognostic multivariable model to predict insufficient clinical response to methotrexate in rheumatoid arthritis. PLoS One. 2018;13(12):e0208534. DOI:10.1371/journal.pone.0208534.
  • Petrykey K, Lippé S, Robaey P, et al.. Influence of genetic factors on long-term treatment related neurocognitive complications, and on anxiety and depression in survivors of childhood acute lymphoblastic leukemia: The Petale study. PLoS One. 2019;14(6):e0217314. DOI:10.1371/journal.pone.0217314.
  • Caronia D, Patiño-Garcia A, Peréz-Martínez A, et al.. Effect of ABCB1 and ABCC3 polymorphisms on osteosarcoma survival after chemotherapy: a pharmacogenetic study. PLoS One. 2011;6(10):e26091. DOI:10.1371/journal.pone.0026091.
  • Yang J, Wang Z-G, Cai H-Q, et al.. Effect of variation of ABCB1 and ABCC3 genotypes on the survival of bone tumor cases after chemotherapy. Asian Pac J Cancer Prev. 2013;14(8):4595–4598. DOI: 10.7314/APJCP.2013.14.8.4595.
  • Liu N, Yang G, Hu M, et al.. Association of ABCC2 polymorphism and gender with high-density lipoprotein cholesterol response to simvastatin. Pharmacogenomics. 2018 Sep 1 19;(14)1125–1132. DOI: 10.2217/pgs-2018-0084
  • Ansari M, Sauty G, Labuda M, et al.. Polymorphism in multidrug resistance-associated protein gene 3 is associated with outcomes in childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2012 Oct 12;(5)386–394. DOI: 10.1038/tpj.2011.17
  • Pellegatta P, Di Ianni I, Pessina P, et al.. ABCC3 Expressed by CD56dim CD16+ NK Cells Predicts Response in Glioblastoma Patients Treated with Combined Chemotherapy and Dendritic Cell Immunotherapy. . International Journal of Molecular Sciences. 2019 Nov 23 20;(23)23. DOI: 10.3390/ijms20235886
  • Yee SW, Mefford JA, Singh N, et al.. Impact of polymorphisms in drug pathway genes on disease-free survival in adults with acute myeloid leukemia. Journal of Human Genetics. 2013 Jun 58;(6)353–361. DOI: 10.1038/jhg.2013.38
  • Lagas JS, Fan L, Wagenaar E, et al.. P-glycoprotein (P-gp/Abcb1), Abcc2, and Abcc3 determine the pharmacokinetics of etoposide. Clin Cancer Res. 2010 Jan 1 16;(1)130–140. DOI: 10.1158/1078-0432.CCR-09-1321
  • Lee Y-MA, Cui Y, K??nig J, et al.. Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3). Pharmacogenetics. 2004 Apr 14;(4)213–223. DOI: 10.1097/00008571-200404000-00001
  • Kobayashi K, Ito K, Takada T, et al.. Functional analysis of nonsynonymous single nucleotide polymorphism type ATP-binding cassette transmembrane transporter subfamily C member 3. Pharmacogenet Genomics. 2008 Sep 18;(9)823–833. DOI: 10.1097/FPC.0b013e328306e9ae
  • Singh H, Lata S, Choudhari R, et al.. Prevalence of ABCC3 −1767G/A polymorphism among patients with antiretroviral-associated hepatotoxicity. Molecular Genetics & Genomic Medicine. 2020 Jun 8;(6)e1124. DOI: 10.1002/mgg3.1124
  • Werk AN, Lefeldt S, Bruckmueller H, et al.. Identification and characterization of a defective CYP3A4 genotype in a kidney transplant patient with severely diminished tacrolimus clearance. Clin Pharmacol Ther. 2014 Apr 95;(4)416–422. DOI: 10.1038/clpt.2013.210
  • Kozyra M, Ingelman-Sundberg M, Lauschke VM. Rare genetic variants in cellular transporters, metabolic enzymes, and nuclear receptors can be important determinants of interindividual differences in drug response. Genetics in Medicine. 2017 Jan; 19(1):20–29. DOI: 10.1038/gim.2016.33
  • Yee SW, Brackman DJ, Ennis EA, et al.. Influence of Transporter Polymorphisms on Drug Disposition and Response: A Perspective From the International Transporter Consortium. Clinical Pharmacology & Therapeutics. 2018 Nov 104;(5)803–817. DOI: 10.1002/cpt.1098

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.