561
Views
1
CrossRef citations to date
0
Altmetric
Review

Renal and non-renal response of ABC and SLC transporters in chronic kidney disease

ORCID Icon, , &
Pages 515-542 | Received 28 Oct 2020, Accepted 02 Mar 2021, Published online: 27 Apr 2021

References

  • Nigam SK. What do drug transporters really do? Nat Rev Drug Discov. 2015;14:29–44.
  • Wu W, Dnyanmote AV, Nigam SK. Remote communication through solute carriers and ATP binding cassette drug transporter pathways: an update on the remote sensing and signaling hypothesis. Mol Pharmacol. 2011;79(5):795–805.
  • Mills KT, Xu Y, Zhang WD, et al. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015;88(5):950–957.
  • Pedraza-Chaverri J, Sanchez-Lozada LG, Osorio-Alonso H, et al. New pathogenic concepts and therapeutic approaches to oxidative stress in chronic kidney disease. In: Oxid med cell longev. 2016;2016.
  • Hodgkins KS, Schnaper HW. Tubulointerstitial injury and the progression of chronic kidney disease. Pediatr Nephrol. 2012;27(6):901–909.
  • Morrison AB. Experimentally induced chronic renal insufficiency in rat. Lab Invest. 1962;11:321.
  • Torres AM, Mac Laughlin M, Muller A, et al. Altered renal elimination of organic anions in rats with chronic renal failure. Bba-Mol Basis Dis. 2005;1740(1):29–37.
  • Griffin KA, Picken M, Bidani AK. Method of Renal Mass Reduction Is A Critical Modulator Of Subsequent Hypertension And Glomerular Injury. J Am Soc Nephrol. 1994;4(12):2023–2031.
  • Arcidiacono MV, Ramirez LA, Dalmau V, et al. Remnant Kidney Model. In: Experimental Surgical Models in the Laboratory Rat. 2009. p. 195–198.
  • Owen WF. Patterns of care for patients with chronic kidney disease in the united states: dying for improvement. J Am Soc Nephrol. 2003;14(90002):S76–S80.
  • Gai ZB, Chu L, Hiller C, et al. Effect of chronic renal failure on the hepatic, intestinal, and renal expression of bile acid transporters. Am J Physiol-Renal. 2014;306(1):F130–F137.
  • Drozdzik M, Czekawy I, Oswald S, et al. Intestinal drug transporters in pathological states: an overview. In Pharmacol Rep. 2020.
  • Joy MS, Frye RF, Nolin TD, et al. In vivo alterations in drug metabolism and transport pathways in patients with chronic kidney diseases. Pharmacotherapy. 2014;34(2):114–122.
  • Ahn SY, Nigam SK. Toward a systems level understanding of organic anion and other multispecific drug transporters: a remote sensing and signaling hypothesis. Mol Pharmacol. 2009;76(3):481–490.
  • Nigam SK, Bush KT. Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nat Rev Nephrol. 2019;15(5):301–316.
  • Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (oat) family: a systems biology perspective. Physiol Rev. 2015;95(1):83–123.
  • Nigam SK, Wu W, Bush KT, et al. Handling of drugs, metabolites, and uremic toxins by kidney proximal tubule drug transporters. Clin J Am Soc Nephro. 2015;10(11):2039–2049.
  • Rosenthal SB, Bush KT, Nigam SK. A network of SLC and ABC Transporter and DME genes involved in remote sensing and signaling in the gut-liver-kidney axis. Sci Rep. 2019;9(1):11879.
  • Nigam SK, Bush KT, Bhatnagar V, et al. The systems biology of drug metabolizing enzymes and transporters: relevance to quantitative systems pharmacology. Clin Pharmacol Ther. 2020;108(1):40–53.
  • Bush KT, Wu W, Lun C, et al. The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut-liver-kidney axis. J Biol Chem. 2017;292(38):15789–15803.
  • Bodo A, Bakos E, Szeri F, et al. The role of multidrug, transporters in drug availability, metabolism and toxicity. Toxicol Lett. 2003;140:133–143.
  • Leslie EM, Deeley RG, Cole SPC. Multidrug resistance proteins: role of P-glycoprotein, MRP1, MRP2, and BCRP (ABCG2) in tissue defense. Toxicol Appl Pharm. 2005;204(3):216–237.
  • Masereeuw R, Russel FGM. Therapeutic implications of renal anionic drug transporters. Pharmacol Therapeut. 2010;126(2):200–216.
  • Masereeuw R, Russel FGM. Regulatory pathways for ATP-binding cassette transport proteins in kidney proximal tubules. Aaps J. 2012;14(4):883–894.
  • Miners JO, Yang X, Knights KM, et al. The role of the kidney in drug elimination: transport, metabolism, and the impact of kidney disease on drug clearance. Clin Pharmacol Ther. 2017;102(3):436–449.
  • Shen H, Scialis RJ, Lehman-mckeeman L. Xenobiotic transporters in the kidney: function and role in toxicity. Semin Nephrol. 2019;39(2):159–175.
  • Croop JM, Raymond M, Haber D, et al. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol Cell Biol. 1989;9(3):1346–1350.
  • Sun H, Frassetto L, Benet LZ. Effects of renal failure on drug transport and metabolism. Pharmacol Therapeut. 2006;109(1–2):1–11.
  • Laouari D, Yang RC, Veau C, et al. Two apical multidrug transporters, P-gp and MRP2, are differently altered in chronic renal failure. Am J Physiol-Renal. 2001;280(4):F636–F645.
  • Naud J, Laurin LP, Michaud J, et al. Effects of chronic renal failure on brain drug transporters in rats. Drug Metab Dispos. 2012;40(1):39–46.
  • Naud J, Michaud J, Beauchemin S, et al. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab Dispos. 2011;39(8):1363–1369.
  • Naud J, Michaud J, Boisvert C, et al. Down-regulation of intestinal drug transporters in chronic renal failure in rats. J Pharmacol Exp Ther. 2007;320(3):978–985.
  • Lu H, Klaassen C. Gender differences in mRNA expression of ATP-binding cassette efflux and bile acid transporters in kidney, liver, and intestine of 5/6 nephrectomized rats. Drug Metab Dispos. 2008;36(1):16–23.
  • Naud J, Michaud J, Leblond FA, et al. Effects of chronic renal failure on liver drug transporters. Drug Metab Dispos. 2008;36(1):124–128.
  • Nolin TD, Frye RF, Le P, et al. ESRD impairs nonrenal clearance of fexofenadine but not midazolam. J Am Soc Nephrol. 2009;20(10):2269–2276.
  • Veau C, Leroy C, Banide H, et al. Effect of chronic renal failure on the expression and function of rat intestinal P-glycoprotein in drug excretion. Nephrol Dial Transpl. 2001;16(8):1607–1614.
  • Hirsch-Ernst KI, Ziemann C, Foth H, et al. Induction of mdr1b mRNA and P-glycoprotein expression by tumor necrosis factor alpha in primary rat hepatocyte cultures. J Cell Physiol. 1998;176(3):506–515.
  • Machado TS, Poitevin S, Paul P, et al. Indoxyl sulfate upregulates liver p-glycoprotein expression and activity through aryl hydrocarbon receptor signaling. J Am Soc Nephrol. 2018;29(3):906–918.
  • Machado TS, Cerini C, Burtey S. Emerging Roles of Aryl Hydrocarbon Receptors in the Altered Clearance of Drugs during Chronic Kidney Disease. In: Toxins. 2019;11(4).
  • Shibata N, Morimoto J, Hoshino N, et al. Factors that affect absorption behavior of cyclosporin A in gentamicin-induced acute renal failure in rats. Ren Fail. 2000;22(2):181–194.
  • Sukhai M, Yong A, Pak A, et al. Decreased expression of P-glycoprotein in interleukin-1 beta and interleukin-6 treated rat hepatocytes. Inflamm Res. 2001;50(7):362–370.
  • Von Wedel-parlow M, Wolte P, Galla HJ. Regulation of major efflux transporters under inflammatory conditions at the blood-brain barrier in vitro. J Neurochem. 2009;111(1):111–118.
  • Morgan ET, Goralski KB, Piquette-Miller M, et al. Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab Dispos. 2008;36(2):205–216.
  • Tsujimoto M, Hatozaki D, Shima D, et al. Influence of serum in hemodialysis patients on the expression of intestinal and hepatic transporters for the excretion of pravastatin. Ther Apher Dial. 2012;16(6):580–587.
  • Masereeuw R, Mutsaers HA, Toyohara T, et al. The kidney and uremic toxin removal: glomerulus or tubule? Semin Nephrol. 2014;34(2):191–208.
  • Leier I, Hummel-Eisenbeiss J, Cui YH, et al. ATP-dependent para-aminohippurate transport by apical multidrug resistance protein MRP2. Kidney Int. 2000;57(4):1636–1642.
  • Deguchi T, Isozaki K, Yousuke K, et al. Involvement of organic anion transporters in the efflux of uremic toxins across the blood-brain barrier. J Neurochem. 2006;96(4):1051–1059.
  • Deguchi T, Kusuhara H, Takadate A, et al. Characterization of uremic toxin transport by organic anion transporters in the kidney. Kidney Int. 2004;65(1):162–174.
  • Deguchi T, Takemoto M, Uehara N, et al. Renal clearance of endogenous hippurate correlates with expression levels of renal organic anion transporters in uremic rats. J Pharmacol Exp Ther. 2005;314(2):932–938.
  • Reyes M, Benet LZ. Effects of uremic toxins on transport and metabolism of different biopharmaceutics drug disposition classification system xenobiotics. J Pharm Sci-Us. 2011;100(9):3831–3842.
  • Enomoto A, Takeda M, Tojo A, et al. Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J Am Soc Nephrol. 2002;13(7):13.
  • Niwa T. Organic acids and the uremic syndrome: protein metabolite hypothesis in the progression of chronic renal failure. Semin Nephrol. 1996;16(3):167–182.
  • Niwa T, Ise M. Indoxyl sulfate, a circulating uremic toxin, stimulates the progression of glomerular sclerosis. J Lab Clin Med. 1994;124(1):96–104.
  • Niwa T, Ise M, Miyazaki T. Progression of glomerular sclerosis in experimental uremic rats by administration of indole, a precursor of indoxyl sulfate. Am J Nephrol. 1994;14(3):207–212.
  • Niwa T, Tsukushi S, Ise M, et al. Indoxyl sulfate and progression of renal failure: effects of a low-protein diet and oral sorbent on indoxyl sulfate production in uremic rats and undialyzed uremic patients. Miner Electrol Metab. 1997;23:179–184.
  • Nigam SK, Bhatnagar V. The systems biology of uric acid transporters: the role of remote sensing and signaling. Curr Opin Nephrol Hy. 2018;27(4):305–313.
  • Kauffmann HM, Schrenk D. Sequence analysis and functional characterization of the 5 ‘-flanking region of the rat multidrug resistance protein 2 (MRP2) gene. Biochem Biophys Res Commun. 1998;245(2):325–331.
  • Terzi F, Burtin M, Friedlander G. Early molecular mechanisms in the progression of renal failure: role of growth factors and protooncogenes. In: Kidney Int. 1998. p. S68–S73.
  • Itagaki S, Chiba M, Kobayashi M, et al. Contribution of multidrug resistance-associated protein 2 to secretory intestinal transport of organic anions. Biol Pharm Bull. 2008;31(1):146–148.
  • Gehr TWB, Sica DA, Slugg PH, et al. The pharmacokinetics of pravastatin in patients on chronic hemodialysis. Eur J Clin Pharmacol. 1997;53(2):117–121.
  • Slitt AL, Cherrington NJ, Maher JM, et al. Induction of multidrug resistance protein 3 in rat liver is associated with altered vectorial excretion of acetaminophen metabolites. Drug Metab Dispos. 2003;31(9):1176–1186.
  • Borst P, De Wolf C, De Wetering KV. Multidrug resistance-associated proteins 3, 4, and 5. Pflug Arch Eur J Phy. 2007;453(5):661–673.
  • Enomoto A, Niwa T. Roles of organic anion transporters in the progression of chronic renal failure. Ther Apher Dial. 2007;11(s1):S27–S31.
  • Weigand KM, Schirris TJJ, Houweling M, et al. Uremic solutes modulate hepatic bile acid handling and induce mitochondrial toxicity. Toxicol in Vitro. 2019;56:52–61.
  • Yao Q, Axelsson J, Stenvinkel P, et al. Chronic systemic inflammation in dialysis patients: an update on causes and consequences. Asaio J. 2004;50(6):Lii–Lvii.
  • Lee G, Piquette-Miller M. Cytokines alter the expression and activity of the multidrug resistance transporters in human hepatoma cell lines; Analysis using RT-PCR and cDNA microarrays. J Pharm Sci-Us. 2003;92(11):2152–2163.
  • Yang K, Kock K, Sedykh A, et al. An updated review on drug-induced cholestasis: mechanisms and investigation of physicochemical properties and pharmacokinetic parameters. J Pharm Sci-Us. 2013;102(9):3037–3057.
  • Mutsaers HAM, Van Den Heuvel LP, Ringens LHJ, et al. Uremic Toxins Inhibit Transport by Breast Cancer Resistance Protein and Multidrug Resistance Protein 4 at Clinically Relevant Concentrations. In: Plos One. 2011;6(4).
  • Van Aubel RA, Smeets PH, Van Den Heuvel JJ, et al. Human organic anion transporter MRP4 (ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites. Am J Physiol Renal Physiol. 2005;288(2):F327–333.
  • Le Vee M, Lecureur V, Stieger B, et al. Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-6. Drug Metab Dispos. 2009;37(3):685–693.
  • Ose A, Ito M, Kusuhara H, et al. Limited brain distribution of [3R,4R,5S]-4-Acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate Phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4). Drug Metab Dispos. 2009;37(2):315–321.
  • Leggas M, Adachi M, Scheffer GL, et al. Mrp4 confers resistance to topotecan and protects the brain from chemotherapy. Mol Cell Biol. 2004;24(17):7612–7621.
  • Takada T, Yamamoto T, Matsuo H, et al. Identification of ABCG2 as an Exporter of Uremic Toxin Indoxyl Sulfate in Mice and as a Crucial Factor Influencing CKD Progression. In: Sci Rep-Uk. 2018;8.
  • Hosomi A, Nakanishi T, Fujita T, et al. Extra-Renal Elimination of Uric Acid via Intestinal Efflux Transporter BCRP/ABCG2. In: Plos One. 2012;7(2).
  • Lu Y, Nakanishi T, Hosomi A, et al. In-vitro evidence of enhanced breast cancer resistance protein-mediated intestinal urate secretion by uremic toxins in Caco-2 cells. J Pharm Pharmacol. 2015;67(2):170–177.
  • Woodward OM. ABCG2: the molecular mechanisms of urate secretion and gout. Am J Physiol-Renal. 2015;309(6):F485–F488.
  • Huls M, Brown CDA, Windass AS, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane. Kidney Int. 2008;73(2):220–225.
  • Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001;61(8):3458–3464.
  • Tachikawa M, Watanabe M, Hori S, et al. Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain. J Neurochem. 2005;95:294–304.
  • Tomioka NH, Tamura Y, Takada T, et al. Immunohistochemical and in situ hybridization study of urate transporters GLUT9/URATv1, ABCG2, and URAT1 in the murine brain. In: Fluids Barriers Cns. 2016;13.
  • Mao QC, Unadkat JD. Role of the breast cancer resistance protein (bcrp/abcg2) in drug transport-an update. Aaps J. 2015;17(1):65–82.
  • Nagura M, Tamura Y, Kumagai T, et al. Uric acid metabolism of kidney and intestine in a rat model of chronic kidney disease. Nucleos Nucleot Nucl. 2016;35(10–12):550–558.
  • Yano H, Tamura Y, Kobayashi K, et al. Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clin Exp Nephrol. 2014;18(1):50–55.
  • Staud F, Pavek P. Breast cancer resistance protein (BCRP/ABCG2). Int J Biochem Cell B. 2005;37(4):720–725.
  • Krishnamurthy P, Ross DD, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem. 2004;279(23):24218–24225.
  • Ee PLR, Kamalakaran S, Tonetti D, et al. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) Gene. Cancer Res. 2004;64(4):1247–1251.
  • Lu H, Lei X, Klaassen C. Gender differences in renal nuclear receptors and aryl hydrocarbon receptor in 5/6 nephrectomized rats. Kidney Int. 2006;70(11):1920–1928.
  • Oberbach A, Neuhaus J, Jehmlich N, et al. A global proteome approach in uric acid stimulated human aortic endothelial cells revealed regulation of multiple major cellular pathways. Int J Cardiol. 2014;176(3):746–752.
  • Sachs L, Batra KL, Zimmermann B. Medical implications of hyperuricemia. Med Health R I. 2009;92:353–355.
  • Nakayama A, Matsuo H, Takada T, et al. Abcg2 Is a high-capacity urate transporter and its genetic impairment increases serum uric acid levels in humans. Nucleos Nucleot Nucl. 2011;30(12):1091–1097.
  • Nakayama A, Matsuo H, Nakaoka H, et al. Common dysfunctional variants of ABCG2 have stronger impact on hyperuricemia progression than typical environmental risk factors. In: Sci Rep-Uk. 2014;4.
  • Bhatnagar V, Richard EL, Wu W, et al. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling. Clin Kidney J. 2016;9(3):444–453.
  • Hewitt WR, Wagner PA, Bostwick EF, et al. Transport ontogeny and selective substrate stimulation as models for identification of multiple renal organic anion transport-systems. J Pharmacol Exp Ther. 1977;202(3):711–723.
  • Hirsch GH, Hook JB. Maturation of renal organic acid transport. substrate stimulation by penicillin and p-aminohippurate (Pah). J Pharmacol Exp Ther. 1970;171:103.
  • Chen M, Lu XY, Lu C, et al. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway. Arthritis Res Ther. 2018;20.
  • Chen XQ, Wu GH, Schwarzschild MA. Urate in parkinson’s disease: more than a biomarker? Curr Neurol Neurosci. 2012;12(4):367–375.
  • Bowman GL, Shannon J, Frei B, et al. Uric Acid as a CNS Antioxidant. J Alzheimers Dis. 2010;19:1331–1336.
  • Nigam SK. The SLC22 transporter family: a paradigm for the impact of drug transporters on metabolic pathways, signaling, and disease. Ann Rev Pharmacol. 2018;58(1):663–687.
  • Drueke TB. Cell biology of parathyroid gland hyperplasia in chronic renal failure. J Am Soc Nephrol. 2000;11(6):1141–1152.
  • Sugimoto R, Watanabe H, Ikegami K, et al. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism. Kidney Int. 2017;91(3):658–670.
  • Huo XK, Liu KX. Renal organic anion transporters in drug-drug interactions and diseases. Eur J Pharm Sci. 2018;112:8–19.
  • Lai RE, Jay CE, Sweet DH. Organic solute carrier 22 (SLC22) family: potential for interactions with food, herbal/dietary supplements, endogenous compounds, and drugs. J Food Drug Anal. 2018;26(2):S45–S60.
  • Wang L, Sweet DH. Renal organic anion transporters (SLC22 Family): expression, regulation, roles in toxicity, and impact on injury and disease. Aaps J. 2013;15(1):53–69.
  • Hagenbuch B, Meier PJ. Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflug Arch Eur J Phy. 2004;447(5):653–665.
  • Mikkaichi T, Suzuki T, Tanemoto M, et al. The organic anion transporter (OATP) family. Drug Metab Pharmacokinet. 2004;19(3):171–179.
  • Ose A, Kusuhara H, Endo C, et al. Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier. Drug Metab Dispos. 2010;38(1):168–176.
  • Roth M, Obaidat A, Hagenbuch B. OATPs, OATs and OCTs: the organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Brit J Pharmacol. 2012;165:1260–1287.
  • Slitt AL, Allen K, Morrone J, et al. Regulation of transporter expression in mouse liver, kidney, and intestine during extrahepatic cholestasis. Bba-Biomembranes. 2007;1768(3):637–647.
  • Van Montfoort JE, Schmid TE, Adler ID, et al. Functional characterization of the mouse organic-anion-transporting polypeptide 2. Bba-Biomembranes. 2002;1564(1):183–188.
  • Hagenbuch B, Gui C. Xenobiotic transporters of the human organic anion transporting polypeptides (OATP) family. Xenobiotica. 2008;38(7–8):778–801.
  • Holzer B, Stieger B, Folkers G, et al. Differential regulation of basolateral and canalicular transporter expression in rat liver in chronic renal failure. Clin Pharmacol Ther. 2005;77(2):P34.
  • Akiyama Y, Kikuchi K, Saigusa D, et al. Indoxyl Sulfate Down-Regulates SLCO4C1 Transporter through Up-Regulation of GATA3. In: Plos One. 2013;8(7).
  • Toyohara T, Suzuki T, Morimoto R, et al. SLCO4C1 transporter eliminates uremic toxins and attenuates hypertension and renal inflammation. J Am Soc Nephrol. 2009;20(12):2546–2555.
  • Suzuki T, Toyohara T, Akiyama Y, et al. Transcriptional regulation of organic anion transporting polypeptide SLCO4C1 as a new therapeutic modality to prevent chronic kidney disease. J Pharm Sci-Us. 2011;100(9):3696–3707.
  • Zhang J, Wang H, Fan Y, et al. Regulation of organic anion transporters: role in physiology, pathophysiology, and drug elimination. Pharmacol Ther. 2020;107647.
  • Ahn SY, Jamshidi N, Mo ML, et al. Linkage of organic anion transporter-1 to metabolic pathways through integrated “omics”-driven network and functional analysis. J Biol Chem. 2011;286(36):31522–31531.
  • Kaler G, Truong DM, Khandelwal A, et al. Structural variation governs substrate specificity for organic anion transporter (OAT) homologs. Potential remote sensing by OAT family members. J Biol Chem. 2007;282:23841–23853.
  • Engelhart DC, Granados JC, Shi D, et al. Systems biology analysis reveals eight SLC22 transporter subgroups, including OATs, OCTs, and OCTNs. Int J Mol Sci. 2020;21(5):1791.
  • Zhu C, Nigam KB, Date RC, et al. Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: structure-Function Implications and Analysis of Sequence Motifs. In: Plos One. 2015;10(11).
  • Wikoff WR, Nagle MA, Kouznetsova VL, et al. Untargeted metabolomics identifies enterobiome metabolites and putative uremic toxins as substrates of organic anion transporter 1 (Oat1). J Proteome Res. 2011;10(6):2842–2851.
  • Vanwert AL, Srimaroeng C, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a8) Interacts with Carboxyfluoroquinolones, And Deletion Increases Systemic Exposure To Ciprofloxacin. Mol Pharmacol. 2008;74(1):122–131.
  • Wu W, Jamshidi N, Eraly SA, et al. Multispecific drug transporter Slc22a8 (Oat3) regulates multiple metabolic and signaling pathways. Drug Metab Dispos. 2013;41(10):1825–1834.
  • Eraly SA, Liu HC, Jamshidi N, et al. Transcriptome-based reconstructions from the murine knockout suggest involvement of the urate transporter, URAT1 (slc22a12), in novel metabolic pathways. Biochem Biophys Rep. 2015;3:51–61.
  • Nigam AK, Li, J. L. G., et al. Unique metabolite preferences of the drug transporters OAT1 and OAT3 analyzed by machine learning. J Biol Chem. 2020;295:1829–1842.
  • Torres AM, Dnyanmote AV, Bush KT, et al. Deletion of multispecific organic anion transporter oat1/Slc22a6 protects against mercury-induced kidney injury. J Biol Chem. 2011;286(30):26391–26395.
  • Vallon V, Rieg T, Ahn SY, et al. Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. Am J Physiol Renal Physiol. 2008;294(4):F867–873.
  • Wu W, Bush KT, Nigam SK. Key Role for the Organic Anion Transporters, OAT1 and OAT3, in the in vivo Handling of Uremic Toxins and Solutes. Sci Rep-Uk. 2017;7.
  • Engelhart DC, Azad P, Ali S, et al. Drosophila SLC22 Orthologs Related to OATs, OCTs, and OCTNs Regulate Development and Responsiveness to Oxidative Stress. Int J Mol Sci. 2020;21(6).
  • Pavlova A, Sakurai H, Leclercq B, et al. Developmentally regulated expression of organic ion transporters NKT(OAT1), OCT1, NLT(OAT2), and Roct. Am J Physiol-Renal. 2000;278(4):F635–F643.
  • Vallon V, Eraly SA, Wikoff WR, et al. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol. 2008;19(9):1732–1740.
  • LopezNieto CE, You GF, Bush KT, et al. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J Biol Chem. 1997;272(10):6471–6478.
  • Eraly SA, Vallon V, Vaughn DA, et al. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock-out mice. J Biol Chem. 2006;281(8):5072–5083.
  • Liu HC, Jamshidi N, Chen YC, et al. An organic anion transporter 1 (OAT1)-centered metabolic network. J Biol Chem. 2016;291(37):19474–19486.
  • Vriend J, Hoogstraten CA, Venrooij KR, et al. Organic anion transporters 1 and 3 influence cellular energy metabolism in renal proximal tubule cells. Biol Chem. 2019;400(10):1347–1358.
  • Xu D, Wang HX, Zhang Q, et al. Nedd4-2 but not Nedd4-1 is critical for protein kinase C-regulated ubiquitination, expression, and transport activity of human organic anion transporter 1. Am J Physiol-Renal. 2016;310(9):F821–F831.
  • Lee W, Ha JM, Sugiyama Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion transporting polypeptides. J Biol Chem. 2020;295(50):17349–17364.
  • Xu D, Zhang JH, Zhang Q, et al. PKC/Nedd4-2 signaling pathway regulates the cell surface expression of drug transporter hOAT1. Drug Metab Dispos. 2017;45(8):887–895.
  • Sakurai Y, Motohashi H, Ueo H, et al. Expression levels of renal organic anion transporters (OATs) and their correlation with anionic drug excretion in patients with renal diseases. Pharm Res-Dordr. 2004;21(1):61–67.
  • Bush KT, Singh P, Nigam SK. Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease. In: Jci Insight. 2020;5(7).
  • Hsueh CH, Yoshida K, Zhao P, et al. Identification and quantitative assessment of uremic solutes as inhibitors of renal organic anion transporters, OAT1 and OAT3. Mol Pharm. 2016;13(9):3130–3140.
  • Brandoni A, Torres AM. Altered renal expression of relevant clinical drug transporters in different models of acute uremia in rats. role of urea levels. Cell Physiol Biochem. 2015;36(3):907–916.
  • Mori S, Takanaga H, Ohtsuki S, et al. Rat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells. J Cerebr Blood F Met. 2003;23(4):432–440.
  • Zhang Q, Suh W, Pan Z, et al. Short-term and long-term effects of protein kinase C on the trafficking and stability of human organic anion transporter 3. Int J Biochem Mol Biol. 2012;3(2):242–249.
  • Wang H, Zhang J, You G. Activation of protein kinase a stimulates sumoylation, expression, and transport activity of organic anion transporter 3. Aaps J. 2019;21(2):30.
  • Nagle MA, Wu W, Eraly SA, et al. Organic anion transport pathways in antiviral handling in choroid plexus in Oat1 (Slc22a6) and Oat3 (Slc22a8) deficient tissue. Neurosci Lett. 2013;534:133–138.
  • Ohtsuki S, Asaba H, Takanaga H, et al. Role of blood-brain barrier organic anion transporter 3 (OAT3) in the efflux of indoxyl sulfate, a uremic toxin: its involvement in neurotransmitter metabolite clearance from the brain. J Neurochem. 2002;83(1):57–66.
  • Hosoya K, Tachikawa M. Roles of organic anion/cation transporters at the blood-brain and blood-cerebrospinal fluid barriers involving uremic toxins. Clin Exp Nephrol. 2011;15(4):478–485.
  • Lowenstein J, Grantham JJ. Residual renal function: a paradigm shift. Kidney Int. 2017;91(3):561–565.
  • Saito H. Pathophysiological regulation of renal SLC22A organic ion transporters in acute kidney injury: pharmacological and toxicological implications. Pharmacol Therapeut. 2010;125(1):79–91.
  • Wanchai K, Yasom S, Tunapong W, et al. Prebiotic prevents impaired kidney and renal Oat3 functions in obese rats. J Endocrinol. 2018;237(1):29–42.
  • Peng YH, Sweet DH, Lin SP, et al. Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure. In: Sci Rep-Uk. 2015;5.
  • VanWert AL, Gionfriddo MR, Sweet DH. Organic anion transporters: discovery, pharmacology, regulation and roles in pathophysiology. Biopharm Drug Dispos. 2010;31(1):1–71.
  • Vanwert AL, Bailey RM, Sweet DH. Organic anion transporter 3 (Oat3/Slc22a) knockout mice exhibit altered clearance and distribution of penicillin G. Am J Physiol Renal Physiol. 2007;293(4):F1332–1341.
  • Yu CP, Sweet DH, Peng YH, et al. Effects of nonsteroidal anti-inflammatory drugs on the renal excretion of indoxyl sulfate, a nephro-cardiovascular toxin, in rats. Eur J Pharm Sci. 2017;101:66–70.
  • Hosoyamada M, Ichida K, Enomoto A, et al. Function and localization of urate transporter 1 in mouse kidney. J Am Soc Nephrol. 2004;15:261–268.
  • Imaoka T, Kusuhara H, Adachi-Akahane S, et al. The renal-specific transporter mediates facilitative transport of organic anions at the brush border membrane of mouse renal tubules. J Am Soc Nephrol. 2004;15(8):2012–2022.
  • Eraly SA, Vallon V, Rieg T, et al. Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiol Genomics. 2008;33:180–192.
  • Desai J, Steiger S, Anders HJ. Molecular Pathophysiology of Gout. Trends Mol Med. 2017;23(8):756–768.
  • Mandal AK, Mount DB. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2015;77(1):323–345.
  • Chen CY, Lu JM, Yao QZ. Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: an overview. Med Sci Monit. 2016;22:2501–2512.
  • Pascart T, Liote F. Gout: state of the art after a decade of developments. Rheumatology. 2019;58(1):27–44.
  • Nishihara K, Masuda S, Ji L, et al. Pharmacokinetic significance of luminal multidrug and toxin extrusion 1 in chronic renal failure rats. Biochem Pharmacol. 2007;73(9):1482–1490.
  • Masuda S, Terada T, Yonezawa A, et al. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J Am Soc Nephrol. 2006;17:2127–2135.
  • Terada T, Masuda S, Asaka J, et al. Molecular cloning, functional characterization and tissue distribution of rat H+/organic cation antiporter MATE1. Pharm Res. 2006;23(8):1696–1701.
  • Cheung KWK, Hsueh CH, Zhao P, et al. The effect of uremic solutes on the organic cation transporter 2. J Pharm Sci. 2017;106(9):2551–2557.
  • Kimura N, Masuda S, Katsura T, et al. Transport of guanidine compounds by human organic cation transporters, hOCT1 and hOCT2. Biochem Pharmacol. 2009;77(8):1429–1436.
  • Schophuizen CM, Wilmer MJ, Jansen J, et al. Cationic uremic toxins affect human renal proximal tubule cell functioning through interaction with the organic cation transporter. Pflugers Arch. 2013;465(12):1701–1714.
  • Miyake T, Mizuno T, Mochizuki T, et al. Involvement of organic cation transporters in the kinetics of trimethylamine N-oxide. J Pharm Sci. 2017;106(9):2542–2550.
  • Gessner A, Konig J, Fromm MF. Contribution of multidrug and toxin extrusion protein 1 (MATE1) to renal secretion of trimethylamine-N-oxide (TMAO). Sci Rep. 2018;8(1):6659.
  • Ji L, Masuda S, Saito H, et al. Down-regulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int. 2002;62(2):514–524.
  • Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev. 2010;62:1–96.
  • Denneberg T, Lindberg T, Berg NO, et al. Morphology, dipeptidases and disaccharidases of small intestinal mucosa in chronic renal failure. Acta Med Scand. 1974;195(1–6):465–470.
  • Haines DJ, Swan CH, Green JR, et al. Mucosal peptide hydrolase and brush-border marker enzyme activities in three regions of the small intestine of rats with experimental uraemia. Clin Sci (Lond). 1990;79(6):663–668.
  • Nakamura N, Masuda S, Takahashi K, et al. Decreased expression of glucose and peptide transporters in rat remnant kidney. Drug Metab Pharmacokinet. 2004;19(1):41–47.
  • Shimizu Y, Masuda S, Nishihara K, et al. Increased protein level of PEPT1 intestinal H+ -peptide cotransporter upregulates absorption of glycylsarcosine and ceftibuten in 5/6 nephrectomized rats. Am J Physiol Gastrointest Liver Physiol. 2005;288(4):G664–670.
  • Takahashi K, Masuda S, Nakamura N, et al. Upregulation of H(+)-peptide cotransporter PEPT2 in rat remnant kidney. Am J Physiol Renal Physiol. 2001;281:F1109–1116.
  • Shayakul C, Clemencon B, Hediger MA. The urea transporter family (SLC14): physiological, pathological and structural aspects. Mol Aspects Med. 2013;34(2–3):313–322.
  • Duchesne R, Klein JD, Velotta JB, et al. UT-A urea transporter protein in heart - Increased abundance during uremia, hypertension, and heart failure. Circ Res. 2001;89(2):139–145.
  • Klein JD, Blount MA, Sands JM. Molecular mechanisms of urea transport in health and disease. Pflug Arch Eur J Phy. 2012;464(6):561–572.
  • Liu J, Xie L, Yin A. [Expression of urea transporters in sweat gland tissue of normal subjects and uremic patients]. Nan Fang Yi Ke Da Xue Xue Bao. 2013;33(7):951–955.
  • Trinh-Trang-Tan MM, Bankir L. Integrated function of urea transporters in the mammalian kidney. Exp Nephrol. 1998;6(6):471–479.
  • Hu MC, Bankir L, Michelet S, et al. Massive reduction of urea transporters in remnant kidney and brain of uremic rats. Kidney Int. 2000;58(3):1202–1210.
  • Klein JD, Timmer RT, Rouillard P, et al. UT-A urea transporter protein expressed in liver: upregulation by uremia. J Am Soc Nephrol. 1999;10(10):2076–2083.
  • Inoue H, Kozlowski SD, Klein JD, et al. Regulated expression of renal and intestinal UT-B urea transporter in response to varying urea load. Am J Physiol-Renal. 2005;289:F451–F458.
  • Jimenez F, Monte MJ, El-Mir MY, et al. Chronic renal failure-induced changes in serum and urine bile acid profiles. Dig Dis Sci. 2002;47:2398–2406.
  • Buerkert J, Martin D, Prasad J, et al. Response of deep nephrons and the terminal collecting duct to a reduction in renal mass. Am J Physiol. 1979;236(5):F454–464.
  • Biber J, Custer M, Magagnin S, et al. Renal Na/Pi-cotransporters. Kidney Int. 1996;49:981–985.
  • Castrop H, Schiessl IM. Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2). Am J Physiol Renal Physiol. 2014;307(9):F991–F1002.
  • Marunaka Y. Characteristics and pharmacological regulation of epithelial Na+ channel (ENaC) and epithelial Na+ transport. J Pharmacol Sci. 2014;126(1):21–36.
  • Moes AD, Van Der Lubbe N, Zietse R, et al. The sodium chloride cotransporter SLC12A3: new roles in sodium, potassium, and blood pressure regulation. Pflugers Arch. 2014;466(1):107–118.
  • Orlowski J, Grinstein S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch. 2004;447(5):549–565.
  • Segawa H, Shiozaki Y, Kaneko I, et al. The role of sodium-dependent phosphate transporter in phosphate homeostasis. J Nutr Sci Vitaminol (Tokyo). 2015;61(Suppl):S119–121.
  • Wagner CA, Hernando N, Forster IC, et al. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch. 2014;466(1):139–153.
  • Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med. 2013;34(2–3):183–196.
  • Jensen JM, Mose FH, Kulik AE, et al. Abnormal urinary excretion of NKCC2 and AQP2 in response to hypertonic saline in chronic kidney disease: an intervention study in patients with chronic kidney disease and healthy controls. BMC Nephrol. 2014;15(1):101.
  • Kwon TH, Frokiaer J, Fernandez-Llama P, et al. Altered expression of Na transporters NHE-3, NaPi-II, Na-K-ATPase, BSC-1, and TSC in CRF rat kidneys. Am J Physiol. 1999;277(2):F257–270.
  • Brooks DP, Ali SM, Contino LC, et al. Phosphate excretion and phosphate transporter messenger RNA in uremic rats treated with phosphonoformic acid. J Pharmacol Exp Ther. 1997;281(3):1440–1445.
  • Hatch M, Freel RW. Increased colonic sodium absorption in rats with chronic renal failure is partially mediated by AT 1 receptor agonism. Am J Physiol Gastrointest Liver Physiol. 2008;295(2):G348–356.
  • Kim EJ, Jung YW, Kwon TH. Angiotensin II AT1 receptor blockade changes expression of renal sodium transporters in rats with chronic renal failure. J Korean Med Sci. 2005;20(2):248–255.
  • Kim S, Heo NJ, Jung JY, et al. Changes in the sodium and potassium transporters in the course of chronic renal failure. Nephron Physiol. 2010;115(4):p31–41.
  • Marks J, Churchill LJ, Srai SK, et al. Intestinal phosphate absorption in a model of chronic renal failure. Kidney Int. 2007;72(2):166–173.
  • Ladda MA, Goralski KB. The Effects of CKD on Cytochrome P450-Mediated Drug Metabolism. Adv Chronic Kidney Dis. 2016;23(2):67–75.
  • Deri MT, Kiss AF, Toth K, et al. End-stage renal disease reduces the expression of drug-metabolizing cytochrome P450s. In: Pharmacol Rep. 2020.
  • Tan ML, Yoshida K, Zhao P, et al. Effect of chronic kidney disease on nonrenal elimination pathways: a systematic assessment of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP. Clin Pharmacol Ther. 2018;103(5):854–867.
  • Leblond F, Guevin C, Demers C, et al. Downregulation of hepatic cytochrome P450 in chronic renal failure. J Am Soc Nephrol. 2001;12(2):326–332.
  • Uchida N, Kurata N, Shimada K, et al. Changes of hepatic microsomal oxidative drug metabolizing enzymes in chronic renal failure (CRF) rats by partial nephrectomy. Jpn J Pharmacol. 1995;68:431–439.
  • Leblond FA, Giroux L, Villeneuve JP, et al. Decreased in vivo metabolism of drugs in chronic renal failure. Drug Metab Dispos. 2000;28(11):1317–1320.
  • Leblond FA, Petrucci M, Dube P, et al. Downregulation of intestinal cytochrome p450 in chronic renal failure. J Am Soc Nephrol. 2002;13(6):1579–1585.
  • Naud J, Harding J, Lamarche C, et al. Effects of chronic renal failure on brain cytochrome P450 in Rats. Drug Metab Dispos. 2016;44(8):1174–1179.
  • Simard E, Naud J, Michaud J, et al. Downregulation of hepatic acetylation of drugs in chronic renal failure. J Am Soc Nephrol. 2008;19(7):1352–1359.
  • Banoglu E, King RS. Sulfation of indoxyl by human and rat aryl (phenol) sulfotransferases to form indoxyl sulfate. Eur J Drug Metab Pharmacokine. 2002;27(2):135–140.
  • Saito H, Yoshimura M, Saigo C, et al. Hepatic sulfotransferase as a nephropreventing target by suppression of the uremic toxin indoxyl sulfate accumulation in ischemic acute kidney injury. Toxicol Sci. 2014;141:206–217.
  • Hoglund PJ, Nordstrom KJV, Schioth HB, et al. The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of bilaterian species. Mol Biol Evol. 2011;28:1531–1541.
  • Eraly SA, Monte JC, Nigam SK. Novel slc22 transporter homologs in fly, worm, and human clarify the phylogeny of organic anion and cation transporters. Physiol Genomics. 2004;18(1):12–24.
  • Jansen J, Jansen K, Neven E, et al. Remote sensing and signaling in kidney proximal tubules stimulates gut microbiome-derived organic anion secretion. Proc Natl Acad Sci U S A. 2019;116:16105–16110.
  • Lekawanvijit S, Krum H. Cardiorenal syndrome: role of protein-bound uremic toxins. J Ren Nutr. 2015;25(2):149–154.
  • Barreto FC, Barreto DV, Liabeuf S, et al. Serum Indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin J Am Soc Nephro. 2009;4(10):1551–1558.
  • Lin CJ, Liu HL, Pan CF, et al. Indoxyl sulfate predicts cardiovascular disease and renal function deterioration in advanced chronic kidney disease. Arch Med Res. 2012;43(6):451–456.
  • Underwood CF, Hildreth CM, Wyse BF, et al. Uraemia: an unrecognized driver of central neurohumoral dysfunction in chronic kidney disease? Acta Physiol (Oxf). 2017;219(1):305–323.
  • Shimizu H, Hirose Y, Goto S, et al. Indoxyl sulfate enhances angiotensin II signaling through upregulation of epidermal growth factor receptor expression in vascular smooth muscle cells. Life Sci. 2012;91(5–6):172–177.
  • Sun CY, Chang SC, Wu MS. Uremic Toxins Induce Kidney Fibrosis by Activating Intrarenal Renin-Angiotensin-Aldosterone System Associated Epithelial-to-Mesenchymal Transition. In: Plos One. 20127(3).
  • Ng HY, Yisireyili M, Saito S, et al. Indoxyl Sulfate Downregulates Expression of Mas Receptor via OAT3/AhR/Stat3 Pathway in Proximal Tubular Cells. In: Plos One. 2014;9(3).
  • Sirijariyawat K, Ontawong A, Palee S, et al. Impaired renal organic anion transport 1 (SLC22A6) and its regulation following acute myocardial infarction and reperfusion injury in rats. Biochim Biophys Acta Mol Basis Dis. 2019;1865(9):2342–2355.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.