216
Views
1
CrossRef citations to date
0
Altmetric
Review

Treatment optimization of maintenance immunosuppressive agents in pediatric renal transplant recipients

, , , , , , , , & ORCID Icon show all
Pages 747-765 | Received 09 Nov 2020, Accepted 11 Jun 2021, Published online: 29 Jun 2021

References

  • Scientific Registry of Transplant Recipients. Annual data report (2003-2015) [cited 2020 Mar 3]. Available from: https://srtr.transplant.hrsa.gov/archives.aspx
  • Hart A, Smith JM, Skeans MA, et al. OPTN/SRTR 2015 Annual data report: kidney. Am J Transplant. 2017 Jan;17(Suppl 1):21–116.
  • North American Pediatric Renal Trials and Collaborative Studies. Annual Transplant Report: North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). 2014 [cited Jun 2020]. Available from: https://web.emmes.com/study/ped/annlrept/annlrept.html
  • Bezinover D, Saner F. Organ transplantation in the modern era. BMC Anesthesiol. 2019 Mar 4;19(1):32.
  • US Food and Drug Administration. Drug Databases 2020 [2020 Mar 5]. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/
  • Wiseman AC. Induction therapy in renal transplantation: why? What agent? What dose? We may never know. Clin J Am Soc Nephrol. 2015 Jun 5;10(6):923–925.
  • Hellemans R, Bosmans JL, Abramowicz D. Induction therapy for kidney transplant recipients: do we still need Anti-IL2 receptor monoclonal antibodies? Am J Transplant. 2017 Jan;17(1):22–27.
  • Hart A, Lentine KL, Smith JM, et al. OPTN/SRTR 2019 Annual data report: kidney. Am J Transplant. 2021 Feb;21(Suppl 2):21–137.
  • Shemshadi M, Hoseini R, Zareh R, et al. Use of Basiliximab with the standard immunosuppressive protocol in pediatric renal transplantation: a double-blind randomized clinical trial. Int J Organ Transplant Med. 2020;11(1):8–14.
  • Pape L. State-of-the-art immunosuppression protocols for pediatric renal transplant recipients. Pediatr Nephrol. 2019 Feb;34(2):187–194.
  • Josephson MA. Monitoring and managing graft health in the kidney transplant recipient. Clin J Am Soc Nephrol. 2011 Jul;6(7):1774–1780.
  • Oates A, Ahuja S, Lee MM, et al. Pediatric renal transplant biopsy with ultrasound guidance: the ‘core’ essentials. Pediatr Radiol. 2017 Nov;47(12):1572–1579.
  • Bunchman TE, Fryd DS, Sibley RK, et al. Manifestations of renal allograft rejection in small children receiving adult kidneys. Pediatr Nephrol. 1990 May;4(3):255–258.
  • Mitsnefes MM. Cardiovascular complications of pediatric chronic kidney disease. Pediatr Nephrol. 2008 Jan;23(1):27–39.
  • Lo A. Immunosuppression and metabolic syndrome in renal transplant recipients. Metab Syndr Relat Disord. 2004;2(4):263–273.
  • Wilson AC, Greenbaum LA, Barletta GM, et al. High prevalence of the metabolic syndrome and associated left ventricular hypertrophy in pediatric renal transplant recipients. Pediatr Transplant. 2010 Feb;14(1):52–60.
  • Grundy SM, Brewer HB Jr., Cleeman JI, et al. Definition of metabolic syndrome: report of the national heart, lung, and blood Institute/American heart association conference on scientific issues related to definition. Circulation. 2004 Jan 27;109(3):433–438.
  • Shapiro R, Nalesnik M, McCauley J, et al. Posttransplant lymphoproliferative disorders in adult and pediatric renal transplant patients receiving tacrolimus-based immunosuppression. Transplantation. 1999 Dec 27;68(12):1851–1854.
  • Hyun H, Park E, Cho M, et al. Post-Transplant lymphoproliferative diseases in pediatric kidney allograft recipients with Epstein-Barr virus viremia. J Korean Med Sci. 2019 Aug 5;34(30):e203.
  • Kotton CN, Kumar D, Caliendo AM, et al. Updated international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation. 2013 Aug 27;96(4):333–360.
  • Kranz B, Vester U, Wingen AM, et al. Acute rejection episodes in pediatric renal transplant recipients with cytomegalovirus infection. Pediatr Transplant. 2008 Jun;12(4):474–478.
  • Kotton CN, Kumar D, Caliendo AM, et al. The third international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation. 2018 Jun;102(6):900–931.
  • Smith JM, Dharnidharka VR. Viral surveillance and subclinical viral infection in pediatric kidney transplantation. Pediatr Nephrol. 2015 May;30(5):741–748.
  • Malluche HH, Monier-Faugere MC, Herberth J. Bone disease after renal transplantation. Nat Rev Nephrol. 2010 Jan;6(1):32–40.
  • Bacchetta J, Ranchin B, Demede D, et al. The consequences of pediatric renal transplantation on bone metabolism and growth. Curr Opin Organ Transplant. 2013 Oct;18(5):555–562.
  • Ghanem ME, Emam ME, Albaghdady LA, et al. Effect of childhood kidney transplantation on puberty. Fertil Steril. 2010 Nov;94(6):2248–2252.
  • Ingelfinger JR, Grupe WE, Harmon WE, et al. Growth acceleration following renal-transplantation in children less than 7 Years of age. Pediatrics. 1981;68(2):255–259.
  • Grushkin CM, Fine RN. Growth in children following renal transplantation. Am J Dis Child. 1973 Apr;125(4):514–516.
  • Harambat J, Cochat P. Growth after renal transplantation. Pediatr Nephrol. 2009 Jul;24(7):1297–1306.
  • Allen DB. Growth suppression by glucocorticoid therapy. Endocrinol Metab Clin North Am. 1996 Sep;25(3):699–717.
  • Peterson RE, Perens GS, Alejos JC, et al. Growth and weight gain of prepubertal children after cardiac transplantation. Pediatr Transplant. 2008 Jun;12(4):436–441.
  • Lopez-Espinosa JA, Yeste-Fernandez D, Iglesias-Berengue J, et al. Factors affecting catch-up growth after liver transplantation. J Pediatr Endocrinol Metab. 2004 Aug;17(8):1097–1103.
  • Sarwal MM, Vidhun JR, Alexander SR, et al. Continued superior outcomes with modification and lengthened follow-up of a steroid-avoidance pilot with extended daclizumab induction in pediatric renal transplantation. Transplantation. 2003 Nov 15;76(9):1331–1339.
  • Silverstein DM, Aviles DH, LeBlanc PM, et al. Results of one-year follow-up of steroid-free immunosuppression in pediatric renal transplant patients. Pediatr Transplant. 2005 Oct;9(5):589–597.
  • Oberholzer J, John E, Lumpaopong A, et al. Early discontinuation of steroids is safe and effective in pediatric kidney transplant recipients. Pediatr Transplant. 2005 Aug;9(4):456–463.
  • Bhakta N, Marik J, Malekzadeh M, et al. Can pediatric steroid-free renal transplantation improve growth and metabolic complications? Pediatr Transplant. 2008 Dec;12(8):854–861.
  • Hocker B, John U, Plank C, et al. Successful withdrawal of steroids in pediatric renal transplant recipients receiving cyclosporine A and mycophenolate mofetil treatment: results after four years. Transplantation. 2004 Jul 27;78(2):228–234.
  • Delucchi A, Valenzuela M, Ferrario M, et al. Early steroid withdrawal in pediatric renal transplant on newer immunosuppressive drugs [Controlled Clinical Trial]. Pediatr Transplant. 2007 Nov;11(7):743–748.
  • Hamiwka LA, Burns A, Bell L. Prednisone withdrawal in pediatric kidney transplant recipients on tacrolimus-based immunosuppression: four-year data. Pediatr Transplant. 2006 May;10(3):337–344.
  • Motoyama O, Hasegawa A, Ohara T, et al. A prospective trial of steroid withdrawal after renal transplantation treated with cyclosporine and mizoribine in children: results obtained between 1990 and 2003 [Multicenter Study]. Pediatr Transplant. 2005 Apr;9(2):232–238.
  • Hocker B, Weber LT, Feneberg R, et al. Prospective, randomized trial on late steroid withdrawal in pediatric renal transplant recipients under cyclosporine microemulsion and mycophenolate mofetil. Transplantation. 2009 Mar 27;87(6):934–941.
  • Grenda R, Watson A, Trompeter R, et al. A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant. 2010 Apr;10(4):828–836.
  • Leeaphorn N, Garg N, Khankin EV, et al. Recurrence of IgA nephropathy after kidney transplantation in steroid continuation versus early steroid-withdrawal regimens: a retrospective analysis of the UNOS/OPTN database. Transpl Int. 2018 Feb;31(2):175–186.
  • De Wildt SN, Kearns GL, Leeder JS, et al. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet. 1999 Dec;37(6):485–505.
  • Ferraresso M, Turolo S, Belingheri M, et al. Relationship between mRNA expression levels of CYP3A4, CYP3A5 and SXR in peripheral mononuclear blood cells and aging in young kidney transplant recipients under tacrolimus treatment. Pharmacogenomics. 2015;16(5):483–491.
  • Dobbels F, Ruppar T, De Geest S, et al. Adherence to the immunosuppressive regimen in pediatric kidney transplant recipients: a systematic review. Pediatr Transplant. 2010 Aug;14(5):603–613.
  • Tran JQ, Othman AA, Mikulskis A, et al. Pharmacokinetics of daclizumab high-yield process with repeated administration of the clinical subcutaneous regimen in patients with relapsing-remitting multiple sclerosis. Clin Pharmacol. 2016;8:9–13.
  • Diao L, Hang Y, Othman AA, et al. Population pharmacokinetics of daclizumab high-yield process in healthy volunteers and subjects with multiple sclerosis: analysis of Phase I-III clinical trials. Clin Pharmacokinet. 2016 Aug;55(8):943–955.
  • Othman AA, Tran JQ, Tang MT, et al. Population pharmacokinetics of daclizumab high-yield process in healthy volunteers: integrated analysis of intravenous and subcutaneous, single- and multiple-dose administration. Clin Pharmacokinet. 2014 Oct;53(10):907–918.
  • Nagai T, Gotoh Y, Watarai Y, et al. Pharmacokinetics and pharmacodynamics of basiliximab in Japanese pediatric renal transplant patients. Int J Clin Pharmacol Ther. 2010 Mar;48(3):214–223.
  • Hocker B, Kovarik JM, Daniel V, et al. Pharmacokinetics and immunodynamics of basiliximab in pediatric renal transplant recipients on mycophenolate mofetil comedication. Transplantation. 2008 Nov 15;86(9):1234–1240.
  • Deierhoi MH, Haug M 3rd. Review of select transplant subpopulations at high risk of failure from standard immunosuppressive therapy. Clin Transplant. 2000 Oct;14(5):439–448.
  • Ptachcinski RJ, Venkataramanan R, Burckart GJ. Clinical pharmacokinetics of cyclosporin. Clin Pharmacokinet. 1986 Mar-Apr;11(2):107–132.
  • US Food and Drug Administration. Drugs@FDA: FDA Approved Drug Products: U.S. department of health and human services; [Jun 2020]. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/
  • Mahalati K, Kahan BD. Clinical pharmacokinetics of sirolimus. Clin Pharmacokinet. 2001;40(8):573–585.
  • Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43(10):623–653.
  • Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58.
  • Miura M, Satoh S, Inoue K, et al. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007 Dec;63(12):1161–1169.
  • Sherwin CM, Fukuda T, Brunner HI, et al. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease. Clin Pharmacokinet. 2011 Jan;50(1):1–24.
  • Nowak I, Shaw LM. Mycophenolic acid binding to human serum albumin: characterization and relation to pharmacodynamics. Clin Chem. 1995 Jul;41(7):1011–1017.
  • Yatscoff R, LeGatt D, Keenan R, et al. Blood distribution of rapamycin. Transplantation. 1993 Nov;56(5):1202–1206.
  • Piekoszewski W, Jusko WJ. Plasma protein binding of tacrolimus in humans. J Pharm Sci. 1993 Mar;82(3):340–341.
  • Lemaire M, Tillement JP. Role of lipoproteins and erythrocytes in the in vitro binding and distribution of cyclosporin A in the blood. J Pharm Pharmacol. 1982 Nov;34(11):715–718.
  • Hoogeveen RC, Ballantyne CM, Pownall HJ, et al. Effect of sirolimus on the metabolism of apoB100- containing lipoproteins in renal transplant patients. Transplantation. 2001 Oct 15;72(7):1244–1250.
  • Ferron GM, Mishina EV, Zimmerman JJ, et al. Population pharmacokinetics of sirolimus in kidney transplant patients. Clin Pharmacol Ther. 1997 Apr;61(4):416–428.
  • Jusko WJ, Piekoszewski W, Klintmalm GB, et al. Pharmacokinetics of tacrolimus in liver transplant patients. Clin Pharmacol Ther. 1995 Mar;57(3):281–290.
  • Langman LJ, LeGatt DF, Yatscoff RW. Blood distribution of mycophenolic acid. Ther Drug Monit. 1994 Dec;16(6):602–607.
  • Picard N, Rouguieg-Malki K, Kamar N, et al. CYP3A5 genotype does not influence everolimus in vitro metabolism and clinical pharmacokinetics in renal transplant recipients. Transplantation. 2011 Mar 27;91(6):652–656.
  • Picard N, Ratanasavanh D, Premaud A, et al. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005 Jan;33(1):139–146.
  • Naesens M, Salvatierra O, Li L, et al. Maturation of dose-corrected tacrolimus predose trough levels in pediatric kidney allograft recipients. Transplantation. 2008 Apr 27;85(8):1139–1145.
  • Schachter AD, Meyers KE, Spaneas LD, et al. Short sirolimus half-life in pediatric renal transplant recipients on a calcineurin inhibitor-free protocol. Pediatr Transplant. 2004 Apr;8(2):171–177.
  • Filler G, Foster J, Berard R, et al. Age-dependency of mycophenolate mofetil dosing in combination with tacrolimus after pediatric renal transplantation. Transplant Proc. 2004 Jun;36(5):1327–1331.
  • Fanta S, Jonsson S, Backman JT, et al. Developmental pharmacokinetics of ciclosporin--a population pharmacokinetic study in paediatric renal transplant candidates. Br J Clin Pharmacol. 2007 Dec;64(6):772–784.
  • Job KM, Gamalo M, Ward RM. Pediatric age groups and approach to studies. Ther Innov Regul Sci. 2019 Sep;53(5):584–589.
  • Hines RN. Developmental expression of drug metabolizing enzymes: impact on disposition in neonates and young children. Int J Pharm. 2013 Aug 16;452(1–2):3–7.
  • Lacroix D, Sonnier M, Moncion A, et al. Expression of CYP3A in the human liver--evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997 Jul 15;247(2):625–634.
  • Liu H, Xu Q, Huang W, et al. CYP3A5 and CYP3A7 genetic polymorphisms affect tacrolimus concentration in pediatric patients with nephrotic range proteinuria. Eur J Clin Pharmacol. 2019 Nov;75(11):1533–1540.
  • De Wildt SN, van Schaik RH, Soldin OP, et al. The interactions of age, genetics, and disease severity on tacrolimus dosing requirements after pediatric kidney and liver transplantation. Eur J Clin Pharmacol. 2011 Dec;67(12):1231–1241.
  • Zhao W, Fakhoury M, Jacqz-Aigrain E. Developmental pharmacogenetics of immunosuppressants in pediatric organ transplantation. Ther Drug Monit. 2010 Dec;32(6):688–699.
  • Irtan S, Saint-Marcoux F, Rousseau A, et al. Population pharmacokinetics and bayesian estimator of cyclosporine in pediatric renal transplant patients. Ther Drug Monit. 2007 Feb;29(1):96–102.
  • Andrews LM, Hesselink DA, van Gelder T, et al. A population pharmacokinetic model to predict the individual starting dose of tacrolimus following pediatric renal transplantation. Clin Pharmacokinet. 2018 Apr;57(4):475–489.
  • Le Guellec C, Bourgoin H, Buchler M, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in stable renal transplant patients. Clin Pharmacokinet. 2004;43(4):253–266.
  • Zhao W, Fakhoury M, Deschenes G, et al. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol. 2010 Nov;50(11):1280–1291.
  • Payen S, Zhang D, Maisin A, et al. Population pharmacokinetics of mycophenolic acid in kidney transplant pediatric and adolescent patients. Ther Drug Monit. 2005 Jun;27(3):378–388.
  • Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology. 2000 May;47(2–3):119–125.
  • Ho S, Clipstone N, Timmermann L, et al. The mechanism of action of cyclosporin A and FK506. Clin Immunol Immunopathol. 1996 Sep;80(3 Pt 2):S40–5.
  • Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998 Jun;34(6):429–455.
  • Sehgal SN. Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc. 2003 May;35(3Suppl):7S–14S.
  • Kahan BD, Gibbons S, Tejpal N, et al. Synergistic interactions of cyclosporine and rapamycin to inhibit immune performances of normal human peripheral blood lymphocytes in vitro. Transplantation. 1991 Jan;51(1):232–239.
  • McAlister VC, Gao Z, Peltekian K, et al. Sirolimus-tacrolimus combination immunosuppression. Lancet. 2000 Jan 29;355(9201):376–377.
  • Gauthier P, Helderman JH. Cyclosporine avoidance. J Am Soc Nephrol. 2000 Oct;11(10):1933–1936.
  • Lorber MI, Van Buren CT, Flechner SM, et al. Hepatobiliary and pancreatic complications of cyclosporine therapy in 466 renal transplant recipients. Transplantation. 1987 Jan;43(1):35–40.
  • Jacobson PA, Schladt D, Israni A, et al. Genetic and clinical determinants of early, acute calcineurin inhibitor-related nephrotoxicity: results from a kidney transplant consortium. Transplantation. 2012 Mar 27;93(6):624–631.
  • Lancia P, Adam De Beaumais T, Elie V, et al. Pharmacogenetics of post-transplant diabetes mellitus in children with renal transplantation treated with tacrolimus. Pediatr Nephrol. 2018 Jun;33(6):1045–1055.
  • Shivaswamy V, Boerner B, Larsen J. Post-Transplant diabetes mellitus: causes, treatment, and impact on outcomes. Endocr Rev. 2016 Feb;37(1):37–61.
  • Allison AC, Eugui EM. Mycophenolate mofetil and its mechanisms of action. Immunopharmacology. 2000 May;47(2–3):85–118.
  • Behrend M. Adverse gastrointestinal effects of mycophenolate mofetil: aetiology, incidence and management. Drug Saf. 2001;24(9):645–663.
  • Downing HJ, Pirmohamed M, Beresford MW, et al. Paediatric use of mycophenolate mofetil. Br J Clin Pharmacol. 2013 Jan;75(1):45–59.
  • Wyeth Pharmaceuticals Inc. Drug label: highlighs of prescribing information: rapamune (Sirolimus) oral solution and tablets: US FDA; 2010 [ updated 09/2010; cited Jun 2020]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021110s058lbl.pdf
  • Merkel S, Mogilevskaja N, Mengel M, et al. Side effects of sirolimus. Transplant Proc. 2006 Apr;38(3):714–715.
  • Habbig S, Volland R, Krupka K, et al. Dyslipidemia after pediatric renal transplantation-The impact of immunosuppressive regimens. Pediatr Transplant. 2017 May;21(3):3.
  • Bock ME, Wall L, Dobrec C, et al. Management of dyslipidemia in pediatric renal transplant recipients. Pediatr Nephrol. 2021 Jan;36(1):51–63.
  • Seeman T. Immunosuppressive management of pediatric kidney transplant recipients. Curr Pharm Des. 2020;26(28):3451–3459.
  • Hricik DE, Augustine J, Nickerson P, et al. Interferon gamma ELISPOT testing as a Risk-Stratifying biomarker for kidney transplant injury: results from the CTOT-01 multicenter study. Am J Transplant. 2015 Dec;15(12):3166–3173.
  • Billing H, Giese T, Sommerer C, et al. Pharmacodynamic monitoring of cyclosporine A by NFAT-regulated gene expression and the relationship with infectious complications in pediatric renal transplant recipients. Pediatr Transplant. 2010 Nov;14(7):844–851.
  • Lipshultz SE, Chandar JJ, Rusconi PG, et al. Issues in solid-organ transplantation in children: translational research from bench to bedside. Clinics (Sao Paulo). 2014;69(Suppl1):55–72.
  • Hooper E, Hawkins DM, Kowalski RJ, et al. Establishing pediatric immune response zones using the Cylex ImmuKnow assay. Clin Transplant. 2005 Dec;19(6):834–839.
  • Vyas S, Roberti I. Lymphocyte ATP immune cell function assay in pediatric renal transplants: is it useful? Transplant Proc. 2011 Dec;43(10):3675–3678.
  • Fukuda T, Goebel J, Thogersen H, et al. Inosine monophosphate dehydrogenase (IMPDH) activity as a pharmacodynamic biomarker of mycophenolic acid effects in pediatric kidney transplant recipients. J Clin Pharmacol. 2011 Mar;51(3):309–320.
  • Shaw LM, Korecka M, Venkataramanan R, et al. Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant. 2003 May;3(5):534–542.
  • Yu M, Liu M, Zhang W, et al. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation. Curr Drug Metab. 2018;19(6):513–522.
  • Hesselink DA, Bouamar R, Elens L, et al. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2014 Feb;53(2):123–139.
  • Woillard J-B, Saint-Marcoux F, Monchaud C, et al. Mycophenolic mofetil optimized pharmacokinetic modelling, and exposure-effect associations in adult heart transplant recipients. Pharmacol Res. 2015 Sep;99:308–315.
  • Thervet E. [Recents advances in the pharmacology of immunosuppressive drugs used in organ transplantation]. Med Sci (Paris). 2008 Nov;24(11):961–966.
  • Ferraresso M, Belingheri M, Turolo S, et al. Long-term effects of ABCB1 and SXR SNPs on the systemic exposure to cyclosporine in pediatric kidney transplant patients. Pharmacogenomics. 2013 Oct;14(13):1605–1613.
  • Fanta S, Niemi M, Jonsson S, et al. Pharmacogenetics of cyclosporine in children suggests an age-dependent influence of ABCB1 polymorphisms. Pharmacogenet Genomics. 2008 Feb;18(2):77–90.
  • Ferraresso M, Turolo S, Belinghieri M, et al. The potential of steroids and xenobiotic receptor polymorphisms in forecasting cyclosporine pharmacokinetic variability in young kidney transplant recipients. Pediatr Transplant. 2012 Sep;16(6):658–663.
  • Pascussi JM, Drocourt L, Fabre JM, et al. Dexamethasone induces pregnane X receptor and retinoid X receptor-alpha expression in human hepatocytes: synergistic increase of CYP3A4 induction by pregnane X receptor activators. Mol Pharmacol. 2000 Aug;58(2):361–372.
  • Roy JN, Barama A, Poirier C, et al. Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet Genomics. 2006 Sep;16(9):659–665.
  • Mourad M, Wallemacq P, De Meyer M, et al. The influence of genetic polymorphisms of cytochrome P450 3A5 and ABCB1 on starting dose- and weight-standardized tacrolimus trough concentrations after kidney transplantation in relation to renal function. Clin Chem Lab Med. 2006;44(10):1192–1198.
  • Tang JT, Andrews LM, van Gelder T, et al. Pharmacogenetic aspects of the use of tacrolimus in renal transplantation: recent developments and ethnic considerations. Expert Opin Drug Metab Toxicol. 2016 May;12(5):555–565.
  • Almeida-Paulo GN, Dapia Garcia I, Lubomirov R, et al. Weight of ABCB1 and POR genes on oral tacrolimus exposure in CYP3A5 nonexpressor pediatric patients with stable kidney transplant. Pharmacogenomics J. 2018 Jan;18(1):180–186.
  • Zhao W, Elie V, Roussey G, et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009 Dec;86(6):609–618.
  • Shilbayeh S. The impact of genetic polymorphisms on time required to attain the target tacrolimus levels and subsequent pharmacodynamic outcomes in pediatric kidney transplant patients. Saudi J Kidney Dis Transpl. 2014 Mar;25(2):266–277.
  • Prausa SE, Fukuda T, Maseck D, et al. UGT genotype may contribute to adverse events following medication with mycophenolate mofetil in pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009 May;85(5):495–500.
  • Fukuda T, Goebel J, Cox S, et al. UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit. 2012 Dec;34(6):671–679.
  • Woillard JB, Picard N, Thierry A, et al. Associations between polymorphisms in target, metabolism, or transport proteins of mycophenolate sodium and therapeutic or adverse effects in kidney transplant patients. Pharmacogenet Genomics. 2014 May;24(5):256–262.
  • Jacobson PA, Schladt D, Oetting WS, et al. Genetic determinants of mycophenolate-related anemia and leukopenia after transplantation. Transplantation. 2011 Feb 15;91(3):309–316.
  • Anglicheau D, Le Corre D, Lechaton S, et al. Consequences of genetic polymorphisms for sirolimus requirements after renal transplant in patients on primary sirolimus therapy. Am J Transplant. 2005 Mar;5(3):595–603.
  • Le Meur Y, Djebli N, Szelag JC, et al. CYP3A5*3 influences sirolimus oral clearance in de novo and stable renal transplant recipients. Clin Pharmacol Ther. 2006 Jul;80(1):51–60.
  • Emoto C, Fukuda T, Venkatasubramanian R, et al. The impact of CYP3A5*3 polymorphism on sirolimus pharmacokinetics: insights from predictions with a physiologically-based pharmacokinetic model. Br J Clin Pharmacol. 2015 Dec;80(6):1438–1446.
  • Dirks NL, Huth B, Yates CR, et al. Pharmacokinetics of immunosuppressants: a perspective on ethnic differences. Int J Clin Pharmacol Ther. 2004 Dec;42(12):701–718.
  • Taber DJ, Su Z, Fleming JN, et al. Tacrolimus trough concentration variability and disparities in african american kidney transplantation. Transplantation. 2017 Dec;101(12):2931–2938.
  • Xie HG, Wood AJ, Kim RB, et al. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics. 2004 Apr;5(3):243–272.
  • Thervet E, Anglicheau D, Legendre C, et al. Role of pharmacogenetics of immunosuppressive drugs in organ transplantation. Ther Drug Monit. 2008 Apr;30(2):143–150.
  • Pallet N, Thervet E, Alberti C, et al. Kidney transplant in black recipients: are African Europeans different from African Americans? Am J Transplant. 2005 Nov;5(11):2682–2687.
  • Thervet E, Anglicheau D, King B, et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation. 2003 Oct 27;76(8):1233–1235.
  • Li CJ, Li L. Tacrolimus in preventing transplant rejection in Chinese patients--optimizing use. Drug Des Devel Ther. 2015;9:473–485.
  • Li P, Shuker N, Hesselink DA, et al. Do Asian renal transplant patients need another mycophenolate mofetil dose compared with Caucasian or African American patients? Transpl Int. 2014 Oct;27(10):994–1004.
  • Friedman AL, Geoghegan SR, Sowers NM, et al. Medication errors in the outpatient setting: classification and root cause analysis. Arch Surg. 2007 Mar;142(3):278–283. discussion 284.
  • Katz DT, Torres NS, Chatani B, et al. Care of pediatric solid organ transplant recipients: an overview for primary care providers. Pediatrics. 2020 Dec;146(6):6.
  • Weber LT. Therapeutic drug monitoring in pediatric renal transplantation. Pediatr Nephrol. 2015 Feb;30(2):253–265.
  • Jaklic A, Collins CJ, Mrhar A, et al. High prevalence of potential drug interactions affecting mycophenolic acid pharmacokinetics in nonmyeloablative hematopoietic stem cell transplant recipients. Int J Clin Pharmacol Ther. 2013 Sep;51(9):711–717.
  • Shaw LM, Figurski M, Milone MC, et al. Therapeutic drug monitoring of mycophenolic acid. Clin J Am Soc Nephrol. 2007 Sep;2(5):1062–1072.
  • Foy M, Sperati CJ, Lucas GM, et al. Drug interactions and antiretroviral drug monitoring. Curr HIV/AIDS Rep. 2014 Sep;11(3):212–222.
  • Filler G. Value of therapeutic drug monitoring of MMF therapy in pediatric transplantation. Pediatr Transplant. 2006 Sep;10(6):707–711.
  • Kuypers DR, Ekberg H, Grinyo J, et al. Mycophenolic acid exposure after administration of mycophenolate mofetil in the presence and absence of cyclosporin in renal transplant recipients. Clin Pharmacokinet. 2009;48(5):329–341.
  • Hocker B, van Gelder T, Martin-Govantes J, et al. Comparison of MMF efficacy and safety in paediatric vs. adult renal transplantation: subgroup analysis of the randomised, multicentre FDCC trial. Nephrol Dial Transplant. 2011 Mar;26(3):1073–1079.
  • Weber LT, Hoecker B, Armstrong VW, et al. Long-term pharmacokinetics of mycophenolic acid in pediatric renal transplant recipients over 3 years posttransplant. Ther Drug Monit. 2008 Oct;30(5):570–575.
  • Schachter AD, Benfield MR, Wyatt RJ, et al. Sirolimus pharmacokinetics in pediatric renal transplant recipients receiving calcineurin inhibitor co-therapy. Pediatr Transplant. 2006 Dec;10(8):914–919.
  • Kahan BD, Podbielski J, Napoli KL, et al. Immunosuppressive effects and safety of a sirolimus/cyclosporine combination regimen for renal transplantation. Transplantation. 1998 Oct 27;66(8):1040–1046.
  • Zimmerman JJ, Harper D, Getsy J, et al. Pharmacokinetic interactions between sirolimus and microemulsion cyclosporine when orally administered jointly and 4 hours apart in healthy volunteers. J Clin Pharmacol. 2003 Oct;43(10):1168–1176.
  • Schubert M, Venkataramanan R, Holt DW, et al. Pharmacokinetics of sirolimus and tacrolimus in pediatric transplant patients. Am J Transplant. 2004 May;4(5):767–773.
  • Filler G, Womiloju T, Feber J, et al. Adding sirolimus to tacrolimus-based immunosuppression in pediatric renal transplant recipients reduces tacrolimus exposure. Am J Transplant. 2005 Aug;5(8):2005–2010.
  • Trofe-Clark J, Lemonovich TL, Practice A. Interactions between anti-infective agents and immunosuppressants in solid organ transplantation. Am J Transplant. 2013 Mar;13(Suppl 4):318–326.
  • Page RL 2nd, Mueller SW, Levi ME, et al. Pharmacokinetic drug-drug interactions between calcineurin inhibitors and proliferation signal inhibitors with anti-microbial agents: implications for therapeutic drug monitoring. J Heart Lung Transplant. 2011 Feb;30(2):124–135.
  • Urbanowicz T, Straburzynska-Migaj E, Casadei V, et al. Different routes of proton pumps inhibitors co-administration have significant impact on Mycophenolate Acid (MPA) serum levels in heart transplant recipients. Ann Transplant. 2020 Jan;24(25):e920225.
  • Sunderland A, Russ G, Sallustio B, et al. Effect of the proton-pump Inhibitor pantoprazole on MycoPhenolic ACid exposure in kidney and liver transplant recipienTs (IMPACT study): a randomized trial. Nephrol Dial Transplant. 2020 Jun 1;35(6):1060–1070.
  • Cattaneo D, Perico N, Gaspari F, et al. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int. 2002 Sep;62(3):1060–1067.
  • De Lucena DD, Rangel EB. Glucocorticoids use in kidney transplant setting. Expert Opin Drug Metab Toxicol. 2018 Oct;14(10):1023–1041.
  • Hooper DK, Fukuda T, Gardiner R, et al. Risk of tacrolimus toxicity in CYP3A5 nonexpressors treated with intravenous nicardipine after kidney transplantation. Transplantation. 2012 Apr 27;93(8):806–812.
  • Chow FS, Jusko WJ. Immunosuppressive interactions among calcium channel antagonists and selected corticosteroids and macrolides using human whole blood lymphocytes. Drug Metab Pharmacokinet. 2004 Dec;19(6):413–421.
  • Uber PA, Ross HJ, Zuckermann AO, et al. Generic drug immunosuppression in thoracic transplantation: an ISHLT educational advisory. J Heart Lung Transplant. 2009 Jul;28(7):655–660.
  • Davit BM, Nwakama PE, Buehler GJ, et al. Comparing generic and innovator drugs: a review of 12 years of bioequivalence data from the United States Food and Drug Administration. Ann Pharmacother. 2009 Oct;43(10):1583–1597.
  • Qazi YA, Forrest A, Tornatore K, et al. The clinical impact of 1:1 conversion from Neoral to a generic cyclosporine (Gengraf) in renal transplant recipients with stable graft function. Clin Transplant. 2006 May-Jun;20(3):313–317.
  • Abboudi H, Macphee IA. Individualized immunosuppression in transplant patients: potential role of pharmacogenetics. Pharmgenomics Pers Med. 2012;5:63–72.
  • Anglicheau D, Flamant M, Schlageter MH, et al. Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant. 2003 Nov;18(11):2409–2414.
  • Chen PD, Tsai MK, Lee CY, et al. Gender differences in renal transplant graft survival. J Formos Med Assoc. 2013 Dec;112(12):783–788.
  • Filler G, Zimmering M, Mai I. Pharmacokinetics of mycophenolate mofetil are influenced by concomitant immunosuppression. Pediatr Nephrol. 2000 Feb;14(2):100–104.
  • Krenzien F, ElKhal A, Quante M, et al. A rationale for age-adapted immunosuppression in organ transplantation. Transplantation. 2015 Nov;99(11):2258–2268.
  • Mignat C. Clinically significant drug interactions with new immunosuppressive agents. Drug Saf. 1997 Apr;16(4):267–278.
  • Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med. 2003 Sep 18;349(12):1157–1167.
  • Kuypers DR, Le Meur Y, Cantarovich M, et al. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol. 2010 Feb;5(2):341–358.
  • Weber LT, Shipkova M, Lamersdorf T, et al. Pharmacokinetics of mycophenolic acid (MPA) and determinants of MPA free fraction in pediatric and adult renal transplant recipients. German study group on mycophenolate mofetil therapy in pediatric renal transplant recipients. J Am Soc Nephrol. 1998 Aug;9(8):1511–1520.
  • Shipkova M, Armstrong VW, Oellerich M, et al. Mycophenolate mofetil in organ transplantation: focus on metabolism, safety and tolerability. Expert Opin Drug Metab Toxicol. 2005 Oct;1(3):505–526.
  • Weber LT, Armstrong VW, Shipkova M, et al. Cyclosporin A absorption profiles in pediatric renal transplant recipients predict the risk of acute rejection. Ther Drug Monit. 2004 Aug;26(4):415–424.
  • Lee MN, Butani L. Improved pharmacokinetic monitoring of tacrolimus exposure after pediatric renal transplantation. Pediatr Transplant. 2007 Jun;11(4):388–393.
  • Zhao W, Maisin A, Baudouin V, et al. Limited sampling strategy using Bayesian estimation for estimating individual exposure of the once-daily prolonged-release formulation of tacrolimus in kidney transplant children. Eur J Clin Pharmacol. 2013 May;69(5):1181–1185.
  • Filler G, Feber J, Lepage N, et al. Universal approach to pharmacokinetic monitoring of immunosuppressive agents in children. Pediatr Transplant. 2002 Oct;6(5):411–418.
  • Ettenger RB, Grimm EM. Safety and efficacy of TOR inhibitors in pediatric renal transplant recipients. Am J Kidney Dis. 2001 Oct;38(4 Suppl 2):S22–8.
  • Filler G. Optimization of immunosuppressive drug monitoring in children. Transplant Proc. 2007 May;39(4):1241–1243.
  • Kirchner GI, Meier-Wiedenbach I, Manns MP. Clinical pharmacokinetics of everolimus. Clin Pharmacokinet. 2004;43(2):83–95.
  • Oellerich M, Armstrong VW, Streit F, et al. Immunosuppressive drug monitoring of sirolimus and cyclosporine in pediatric patients. Clin Biochem. 2004 Jun;37(6):424–428.
  • Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004 Dec 23;351(26):2715–2729.
  • Dipiro J, Talbert R, GC Y, et al. Pharmacotherapy: a pathophysiologic approach. 7 ed. New York, NYMcGraw-Hill Companies; 2008.
  • United States Department of Health and Human Services. Transplants by donor type 2013 [cited Jun 2020]. Available from: http://optn.transplant.hrsa.gov/latestData/rptData.asp
  • National Kidney Foundation. Organ donation and transplantation statistics 2016 [cited Jun 2020]. Available from: https://www.kidney.org/news/newsroom/factsheets/Organ-Donation-and-Transplantation-Stats
  • Kahan BD, Keown P, Levy GA, et al. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther. 2002 Mar;24(3):330–350. discussion 329.
  • Buchler M, Johnston A. Seeking optimal prescription of cyclosporine ME. Ther Drug Monit. 2005 Feb;27(1):3–6.
  • Jorga A, Holt DW, Johnston A. Therapeutic drug monitoring of cyclosporine. Transplant Proc. 2004 Mar;36(2 Suppl):396S–403S.
  • Christians U, Strom T, Zhang YL, et al. Active drug transport of immunosuppressants: new insights for pharmacokinetics and pharmacodynamics. Ther Drug Monit. 2006 Feb;28(1):39–44.
  • Sabatini S, Ferguson RM, Helderman JH, et al. Drug substitution in transplantation: a national kidney foundation white paper. Am J Kidney Dis. 1999 Feb;33(2):389–397.
  • Alloway RR, Isaacs R, Lake K, et al. Report of the American society of transplantation conference on immunosuppressive drugs and the use of generic immunosuppressants. Am J Transplant. 2003 Oct;3(10):1211–1215.
  • Tsipotis E, Gupta NR, Raman G, et al. Bioavailability, efficacy and safety of generic immunosuppressive drugs for kidney transplantation: a systematic review and meta-analysis. Am J Nephrol. 2016;44(3):206–218.
  • El-tahtawy AA, Jackson AJ, Ludden TM. Comparison of single and multiple dose pharmacokinetics using clinical bioequivalence data and Monte Carlo simulations. Pharm Res. 1994 Sep;11(9):1330–1336.
  • US Food and Drug Administration. Guidance for industry: bioavailability and bioequivalence studies for orally administered drug products-general considerations 2003 [cited Jun 2020]. Available from: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070124.pdf
  • Phillips K, Reddy P, Gabardi S. Is there evidence to support brand to generic interchange of the mycophenolic acid products? J Pharm Pract. 2017 Feb;30(1):9–16.
  • US Food and Drug Administration. Advisory committee for pharmaceutical science and clinical pharmacology 2010 [cited Jun 2020]. Available from: http://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/Drugs/AdvisoryCommitteeforPharmaceuticalScienceandClinicalPharmacology/UCM212591.pdf
  • Alloway RR, Vinks AA, Fukuda T, et al. Bioequivalence between innovator and generic tacrolimus in liver and kidney transplant recipients: a randomized, crossover clinical trial. PLoS Med. 2017 Nov;14(11):e1002428.
  • Illamola SM, Birnbaum AK, Sherwin CM. Generic drug products in paediatrics: where are the data? Br J Clin Pharmacol. 2019 Sep;85(9):1871–1873.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.