200
Views
2
CrossRef citations to date
0
Altmetric
Review

The impact of catha edulis (vahl) forssk. ex endl. (celestraceae) (khat) on pharmacokinetics of clinically used drugs

ORCID Icon &
Pages 1125-1138 | Received 17 Jun 2021, Accepted 18 Aug 2021, Published online: 30 Aug 2021

References

  • Nigg HN, Seigler D, editors. Phytochemical Resources for Medicine and Agriculture [Internet]. US:Springer; 1992. cited 2021 Jun 14]. Available from: https://www.springer.com/gp/book/9780306442452.
  • Gu C, Tembrock LR, Zheng S, et al. The complete chloroplast genome of catha edulis: a comparative analysis of genome features with related species. Int J Mol Sci. 2018;19(2):525.
  • World Health Organization. Thirty-fourth report/WHO Expert Committee on Drug Dependence: Geneva, 28-31 March 2006. Geneva: World Health Organization; 2006.
  • Griffiths P, Lopez D, Sedefov R, et al. Khat use and monitoring drug use in Europe: the current situation and issues for the future. J Ethnopharmacol. 2010;132(3):578–583.
  • Csete J European policy on khat: drug policy lessons not learned. Global Drug Policy Observatory. [Internet]. Global Drug Policy Observatory, 2014. [cited 2021 Apr 14]. Available from: https://www.swansea.ac.uk/media/European-Policy-on-khat–Drug-Policy-lessons-not-learned.pdf.
  • Abbott KL, Flannery PC, Gill KS, et al. Adverse pharmacokinetic interactions between illicit substances and clinical drugs. Drug Metab Rev. 2020;52(1):44–65.
  • At W, Cheme MC, Kibret KT, et al. Perceived psychological, economic, and social impact of khat chewing among adolescents and adults in Nekemte Town, East Welega Zone, West Ethiopia. BioMed Res Int. 2017;2017:1–9.
  • Getasetegn M. Chemical composition of catha edulis (khat): a review. Phytochem Rev. 2016;15(5):907–920.
  • Rizk M, Mobarak M, El-Shihi T, et al. Constituents of catha edulis (alkaloids, triterpenoids and related substances and saponins). Qatar Univ Sci J. 1989;9:55–64.
  • AL-Jalali A, Shaltout A. Natural radioactivity of catha edulis (khat) and tobacco plants collected from Yemen. Int J Innov. 2014;2:350–354.
  • Matloob MH. Determination of cadmium, lead, copper and zinc in Yemeni khat by anodic stripping voltammetry. East Mediterr Health J. 2003;9:28–36.
  • Atlabachew M, Chandravan BS, Redi M, et al. Profile of major, minor and toxic metals in soil and khat (catha edulis F.) cultivars in Ethiopia. Trends Appl Sci Res. 2011;6:640–655.
  • Wabe N, Mohammed M. What science says about khat (catha edulis F.)? overview of chemistry, toxicology and pharmacology. J Exp Integr Med. 2012;2: 29.
  • Tembrock LR, Broeckling CD, Heuberger AL, et al. Employing two-stage derivatization and GC-MS to assay for cathine and related stimulant alkaloids across the celastraceae: GC-MS assay for stimulant alkaloids across the celastraceae. Phytochem Anal. 2017;28:257–266.
  • Valente MJ, Guedes de Pinho P, de Lourdes Bastos M, et al. Khat and synthetic cathinones: a review. Arch Toxicol. 2014;88:15–45.
  • Baxter RL, Crombie L, Simmonds DJ, et al. Alkaloids of catha edulis(khat). Part 1. Isolation and characterization of eleven new alkaloids with sesquiterpene cores (cathedulins); identification of the quinone–methide root pigments. J Chem Soc Perkin Trans. 1979;1:2965–2971.
  • Crombie L. The cathedulin alkaloids. Bull Narc. 1980;32:37–50.
  • Kim T-S, White JD. The absolute configuration of edulinic acid, a constituent of the “Khat” alkaloid cathedulin K-19. Tetrahedron Lett. 1993;34(35):5535–5536.
  • Kubo I, Kim M, De Boer G, et al. Efficient isolation of insect growth inhibitory macrolide alkaloids using recycle high-performance gel permeation chromatography. J Chromatogr A. 1987;402:354–357.
  • Toennes SW, Harder S, Schramm M, et al. Pharmacokinetics of cathinone, cathine and norephedrine after the chewing of khat leaves: pharmacokinetics of khat alkaloids. Br J Clin Pharmacol. 2003;56(1): 125–130.
  • Toennes SW, Kauert GF. Excretion and detection of cathinone, cathine, and phenylpropanolamine in urine after khat chewing. Clin Chem. 2002;48:1715–1719.
  • Krizevski R, Dudai N, Bar E, et al. Developmental patterns of phenylpropylamino alkaloids accumulation in khat (catha edulis, F.). J Ethnopharmacol. 2007;114:432–438.
  • Bedada W, de Andrés F, Engidawork E, et al. The psychostimulant khat (catha edulis) inhibits CYP2D6 enzyme activity in humans. J Clin Psychopharmacol. 2015;35(6): 694–699.
  • Bedada W, de Andrés F, Engidawork E, et al. Effects of khat (catha edulis) use on catalytic activities of major drug-metabolizing cytochrome P450 enzymes and implication of pharmacogenetic variations. Sci Rep. 2018;8(1): 12726.
  • Engidawork E. Pharmacological and toxicological effects of catha edulis F. (khat): khat pharmacology and toxicology. Phytother Res. 2017;31:1019–1028.
  • Dhaifalah I, Šantavý J. Khat habit and its health effect: a natural amphetamine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2004;148:11–15.
  • Colzato LS, Sellaro R, Ruiz M, et al. Acute khat use reduces response conflict in habitual users. Front Hum Neurosci. 2013;7:285.
  • Pehek E, Schechter M, Yamamoto B, et al. Effects of cathinone and amphetamine on the neurochemistry of dopamine in vivo. Neuropharmacology. 1990;29(12):1171–1176.
  • Dawson BA, Black DB, Lavoie A, et al. Nuclear magnetic resonance identification of the phenylalkylamine alkaloids of khat using a chiral solvating agent. J Forensic Sci. 1994;39(4):13681J.
  • Kalix P. The releasing effect of the isomers of the alkaloid cathinone at central and peripheral catecholamine storage sites. Neuropharmacology. 1986;25(5):499–501.
  • Kalix P. Khat: a plant with amphetamine effects. J Subst Abuse Treat. 1988;5(3):163–169.
  • Feyissa AM, Kelly JP. A review of the neuropharmacological properties of khat. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(5):1147–1166.
  • Hoffman R, al’Absi M. Working memory and speed of information processing in chronic khat users: preliminary findings. Eur Addict Res. 2013;19:1–6.
  • Geresu B, Engidawork E. Catha edulis F. (khat) reverses haloperidol but not morphine induced motor deficits following acute and subacute administration in mice. Eth Pharm J. 2010;28:117–130.
  • Afify EA, Alkreathy HM, Ali AM, et al. Characterization of the antinociceptive mechanisms of khat extract (catha edulis) in mice. Front Neurol. 2017;8:69.
  • Geresu B, Onaivi E, Engidawork E, et al. Behavioral evidence for the interaction between cannabinoids and catha edulis F. (khat) in mice. Brain Res. 2016;1648:333–338.
  • Geresu B, Canseco-Alba A, Sanabria B, et al. Involvement of CB2 receptors in the neurobehavioral effects of catha edulis (vahl) endl. (khat) in mice. Molecules. 2019;24(17):3164.
  • Admassie E, Engidawork E. Subchronic administration of Catha edulis F. (khat) extract is marked by elevation of cardiac biomarkers and subendocardial necrosis besides blood pressure alteration in rats. J Ethnopharmacol. 2011;136(1):246–253.
  • Asrade S, Shibeshi W, Engidawork E, et al. Evaluation of the reversibility and possible mechanisms of antifertility of catha edulis F. (khat) extract following subacute administration in rodents. Afr J Phar Pharmacol. 2013;7:2693–2700.
  • Riyaz S. Khat (catha edulis) as a possible cause of autoimmune hepatitis. World J Hepatol. 2014;6(3):150.
  • Fujikura K, Ingelman-Sundberg M, Lauschke VM, et al. Genetic variation in the human cytochrome P450 supergene family. Pharmcogenet Genomics. 2015;25:584–594.
  • Fatunde OA, Brown S-A. The role of CYP450 drug metabolism in precision cardio-oncology. Int J Mol Sci. 2020;21(2):604.
  • Peñas-LLedó EM, LLerena A. CYP2D6 variation, behavior and psychopathology: implications for pharmacogenomics-guided clinical trials: CYP2D6 and personality. Br J Clin Pharmacol. 2014;77:673–683.
  • Masimirembwa CM, Gustafsson LL, Dahl M, et al. Lack of effect of chloroquine on the debrisoquine (CYP2D6) and S‐mephenytoin (CYP2C19) hydroxylation phenotypes. Br J Clin Pharmacol. 1996;41:344–346.
  • Gaedigk A, Sangkuhl K, Whirl-Carrillo M, et al. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19(1):69–76.
  • Aklillu E, Persson I, Bertilsson L, et al. Frequent distribution of ultrarapid metabolizers of debrisoquine in an Ethiopian population carrying duplicated and multi-duplicated functional CYP2D6 alleles. J Pharmacol Exp Ther. 1996;278:441–446.
  • McLellan RA, Oscarson M, Seidegard J, et al. Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics. 1997;7:187–191.
  • Qumsieh RY, Ali BR, Abdulrazzaq YM, et al. Identification of new alleles and the determination of alleles and genotypes frequencies at the CYP2D6 gene in Emiratis. PLoS One. 2011;6(12):e28943.
  • Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005;5(1):6–13.
  • Petrović J, Pešić V, Lauschke VM, et al. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet. 2020;28(1):88–94.
  • Aklillu E, Herrlin K, Gustafsson LL, et al. Evidence for environmental influence on CYP2D6-catalysed debrisoquine hydroxylation as demonstrated by phenotyping and genotyping of Ethiopians living in Ethiopia or in Sweden. Pharmacogenetics. 2002;12(5):375–383.
  • Van Booven D, Marsh S, McLeod H, et al. Cytochrome P450 2C9-CYP2C9. Pharmacogenet Genomics. 2010;20(4):277–281.
  • Daly A, Rettie A, Fowler D, et al. Pharmacogenomics of CYP2C9: functional and clinical considerations. J Pers Med. 2017;8(1):1.
  • Hatta FHM, Lundblad M, Ramsjo M, et al. Differences in CYP2C9 genotype and enzyme activity between Swedes and Koreans of relevance for personalized medicine: role of ethnicity, genotype, smoking, age, and sex. OMICS. 2015;19:346–353.
  • Ramsjö M, Aklillu E, Bohman L, et al. CYP2C19 activity comparison between Swedes and Koreans: effect of genotype, sex, oral contraceptive use, and smoking. Eur J Clin Pharmacol. 2010;66(9):871–877.
  • Persson I, Aklillu E, Rodrigues F, et al. S-mephenytoin hydroxylation phenotype and CYP2C19 genotype among Ethiopians. Pharmacogenetics. 1996;6(6):521–526.
  • Sim S, Risinger C, Dahl M, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006;79(1):103–113.
  • Niwa T, Emoto C, Murayama N, et al. Comparison of kinetic parameters for drug oxidation rates and substrate inhibition potential mediated by cytochrome P450 3A4 and 3A5. Curr Drug Metab. 2008;9:20–33.
  • Diczfalusy U, Miura J, Roh H-K, et al. 4β-Hydroxycholesterol is a new endogenous CYP3A marker: relationship to CYP3A5 genotype, quinine 3-hydroxylation and sex in Koreans, Swedes and Tanzanians. Pharmacogenet Genomics. 2008;18(3):201–208.
  • Gebeyehu E, Engidawork E, Bijnsdorp A, et al. Sex and CYP3A5 genotype influence total CYP3A activity: high CYP3A activity and a unique distribution of CYP3A5 variant alleles in Ethiopians. Pharmacogenomics J. 2011;11(2):130–137.
  • Thorn CF, Aklillu E, Klein TE, et al. PharmGKB summary: very important pharmacogene information for CYP1A2. Pharmacogenet Genomics. 2012;22(1):73–77.
  • Djordjevic N, Ghotbi R, Bertilsson L, et al. Induction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. Eur J Clin Pharmacol. 2008;64(4):381–385.
  • Ghotbi R, Christensen M, Roh H-K, et al. Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol. 2007;63(6):537–546.
  • Djordjevic N, Ghotbi R, Jankovic S, et al. Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2 −163C>A polymorphism. Eur J Clin Pharmacol. 2010;66(7):697–703.
  • Sakuyama K, Sasaki T, Ujiie S, et al. Functional characterization of 17 CYP2D6 allelic variants (CYP2D6.2, 10, 14A–B, 18, 27, 36, 39, 47–51, 53–55, and 57). Drug Metab Dispos. 2008;36(12):2460–2467.
  • Lim SYM, Binti Azidin AR, Ung YT, et al. Effect of 95% Ethanol khat extract and cathinone on in vitro human recombinant cytochrome P450 (CYP) 2C9, CYP2D6, and CYP3A4 activity. Eur J Drug Metab Pharmacokinet. 2019;44:423–431.
  • Sh K, Sharma A, Ti K, et al. Exploration of cytochrome P450 inhibition mediated drug-drug interaction potential of kratom alkaloids. Toxicol Lett. 2020;319:148–154.
  • Wang L, Hai Y, Huang N, et al. Human cytochrome P450 enzyme inhibition profile of three flavonoids isolated from psoralea corylifolia: in silico predictions and experimental validation. New J Chem. 2018;42:10922–10934.
  • Qu Q, Qu J, Han L, et al. Inhibitory effects phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in-vitro. Acta Pharmacol Sin. 2013;35:685–696.
  • Krajka-Kuzniak V, Duowska B. The effects of tannic acid on cytochrome P450 and phase II enzymes in mouse liver and kidney. Toxicol Lett. 2003;143(2):209–216.
  • Attef O. Effect of khat chewing on the bioavailability of ampicillin and amoxycillin. J Antimicrob Chemother. 1997;39(4):523–525.
  • Ghani YMA, Etman MA, Nada AH, et al. Effect of khat chewing on the absorption of orally administered amoxicillin. (1999). Acta Pharm (Croatia). 1999;49(1):43–50.
  • Abdulkarim K. Cephradine bioequivalence and its interaction with khat and food (al-sayadeyah) in Yemen. [Internet] [MSc.]. University of Khartoum, 2004. [cited 2021 Apr 30]. Available from: http://hdl.handle.net/123456789/8058.
  • Al-Mekhlafi AG. The effect of chewing khat on drug absorption: a case study of pharmacokinetic profiles of ciprofloxacin 500 mg tablets. Int J Pharm Pharm Res. 2020;18(4):415–428.
  • Farah FH, Attef OA, A-aa A, et al. The influence of khat on the in-vitro and in-vivo availability of Tetracycline-HCl. Res J Pharma Dosage Forms Tech. 2015;7:1.
  • Issa FH, Al-Habori M, Chance ML, et al. Effect of khat (catha edulis) use on the bioavailability, plasma levels and antimalarial activity of Chloroquine. Sultan Qaboos Univ Med J. 2016;16(2):e182–188.
  • Projean D, Baune B, Farinotti R, et al. In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation. Drug Metab Dispos. 2003;31:748–754.
  • Bennett JW, Pybus BS, Yadava A, et al. Primaquine failure and cytochrome P-450 2D6 in plasmodium vivax malaria. N Engl J Med. 2013;369(14):1381–1382.
  • Daher A, Aljayyoussi G, Pereira D, et al. Pharmacokinetics/pharmacodynamics of chloroquine and artemisinin-based combination therapy with primaquine. Malar J. 2019;18:325.
  • Alkadi HO, Al-Kamarany M, Al-Kadi H, et al. Khat–aspirin interaction. Yemen J Pharm Biol Sci. 2008;2:32–39.
  • Alhazmi HA, Kadi AA, Attwa MW, et al. Exploring the effect of khat (catha edulis) chewing on the pharmacokinetics of the antiplatelet drug clopidogrel in rats using the newly developed LC-MS/MS technique. Open Chem. 2020;18(1):681–690.
  • Bouman HJ, Schömig E, Van Werkum JW, et al. Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat Med. 2011;17(1):110–116.
  • Tselepis AD, Tsoumani ME, Kalantzi KI, et al. Influence of high-density lipoprotein and paraoxonase-1 on platelet reactivity in patients with acute coronary syndromes receiving clopidogrel therapy: PON-1 and platelet reactivity in ACS patients. J Thromb Haemost. 2011;9(12):2371–2378.
  • Bonello L, Camoin-Jau L, Armero S, et al. Tailored clopidogrel loading dose according to platelet reactivity monitoring to prevent acute and subacute stent thrombosis. Am J Cardiol. 2009;103(1):5–10.
  • Sibbing D, Koch W, Massberg S, et al. No association of paraoxonase-1 Q192R genotypes with platelet response to clopidogrel and risk of stent thrombosis after coronary stenting. Eur Heart J. 2011;32(13):1605–1613.
  • Brandt JT, Close SL, Iturria SJ, et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost. 2007;5(12):2429–2436.
  • Collet J-P, Hulot J-S, Anzaha G, et al. High doses of clopidogrel to overcome genetic resistance. JACC: Cardiovasc Interv. 2011;4:392–402.
  • Hulot J-S. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood. 2006;108(7):2244–2247.
  • Giusti B, Gori AM, Marcucci R, et al. Cytochrome P450 2C19 loss-of-function polymorphism, but not CYP3A4 IVS10+12G/A and P2Y12 T744C polymorphisms, is associated with response variability to dual antiplatelet treatment in high-risk vascular patients. Pharmacogenet Genomics. 2007;17(12):1057–1064.
  • Mega JL, Simon T, Collet J-P, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI: a meta-analysis. JAMA. 2010;304(16): 1821.
  • Hwang S-J, Jeong Y-H, Kim I-S, et al. The cytochrome 2C19*2 and *3 alleles attenuate response to clopidogrel similarly in East Asian patients undergoing elective percutaneous coronary intervention. Thromb Res. 2011;127(1):23–28.
  • Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med. 2009;360(4):363–375.
  • Sofi F, Giusti B, Marcucci R, et al. Cytochrome P450 2C19*2 polymorphism and cardiovascular recurrences in patients taking clopidogrel: a meta-analysis. Pharmacogenomics J. 2011;11(3):199–206.
  • Shuldiner AR. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302(8):849.
  • El Rouby N, Lima JJ, Johnson JA, et al. Proton pump inhibitors: from CYP2C19 pharmacogenetics to precision medicine. Expert Opin Drug Metab Toxicol. 2018;14(4):447–460.
  • Furuta T, Ohashi K, Kosuge K, et al. CYP2C19 genotype status and effect of omeprazole on intragastric pH in humans. Clin Pharmacol Ther. 1999;65(5):552–561.
  • Furuta T. Effect of high-dose lansoprazole on intragastic pH in subjects who are homozygous extensive metabolizers of cytochrome P4502C19. Clin Pharmacol Ther. 2001;70(5):484–492.
  • Gardiner SJ, Begg EJ. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol Rev. 2006;58:521–590.
  • Shirai N, Furuta T, Moriyama Y, et al. Effects of CYP2C19 genotypic differences in the metabolism of omeprazole and rabeprazole on intragastric pH: CYP2C19 genotype: omeperazole vs. rabeprazole. Aliment Pharmacol Ther. 2001;15(12):1929–1937.
  • Qiao H-L, Hu Y-R, Tian X, et al. Pharmacokinetics of three proton pump inhibitors in Chinese subjects in relation to the CYP2C19 genotype. Eur J Clin Pharmacol. 2006;62(2):107–112.
  • Lou H-Y, Chang -C-C, Sheu M-T, et al. Optimal dose regimens of esomeprazole for gastric acid suppression with minimal influence of the CYP2C19 polymorphism. Eur J Clin Pharmacol. 2009;65(1):55–64.
  • Albaser NA, Mohamad AWH, AL-Kamarany MA, et al. Khat-drug interactions: a systematic review. J Pharm Pharmacogn Res. 2021;9:333–343.
  • Erah P. The stability of amoxycillin, clarithromycin and metronidazole in gastric juice: relevance to the treatment of helicobacter pylori infection. J Antimicrob Chemother. 1997;39(1):5–12.
  • Elkady EF, Fouad MA, Alshoba N, et al. Validated LC–MS/MS method for the determination of some prescribed CNS drugs: application to an in vivo pharmacokinetic study of drug-herb metabolic interaction potential of khat. Microchem. 2020;158:105261.
  • Weli AM, El-Shaibany A. Interference of khat with treatment of paranoid schizophrenia. Int J Chem Pharm Sci. 2011;2:1–11.
  • Kotb El Sayed M, Amin H-K. Catha edulis chewing effects on treatment of paranoid schizophrenic patients. Neuropsychiatr Dis Treat. 2015;11:1067–1076.
  • Aniszewski T. Alkaloids - secrets of life: alkaloid chemistry, biological significance, applications and ecological role. 1st ed. Amsterdam, Boston: Elsevier; 2007.
  • Bamashmus M, Othrob NY, Mousa A, et al. Effect of khat (qat) consumption on pain during and after local anesthesia for patients undergoing cataract surgery. Med Sci Monit. 2010;16:SR29–33.
  • Bamgbade OA. The perioperative implications of khat use. Eur J Anesthesiol. 2008;25: 170–172.
  • Mion G. Chronic amphetamine users do not need more drugs during general anesthesia. Anesth Analg. 2017;124(6):2092–2093.
  • Kuypers DRJ, Claes K, Evenepoel P, et al. The rate of gastric emptying determines the timing but not the extent of oral tacrolimus absorption: simultaneous measurement of drug exposure and gastric emptying by carbon-14-octanoic acid breath test in stable renal allograft recipients. Drug Metab Dispos. 2004;32:1421–1425.
  • Bellībaş SE, Tuĝlular I, Kayali A, et al. The effect of delayed gastric emptying and absorption on pharmacokinetic parameters of lithium. Eur J Drug Metab Pharmacokinet. 1995;20(2):129–133.
  • Verbeurgt P, Mamiya T, Oesterheld J, et al. How common are drug and gene interactions? prevalence in a sample of 1143 patients with CYP2C9, CYP2C19 and CYP2D6 genotyping. Pharmacogenomics. 2014;15(5):655–665.
  • Kapelyukh Y, Wolf R CYP2D6 substrates and drug metabolism. In: Baumann P. (ed) CYP2D6: Genetics, Pharmacology and Clinical Relevance [Internet]. Unitec House, 2 Albert Place, London N3 1QB, UK: Future Medicine Ltd. 2014. [ cited 2021 Jun 14]. Available at: http://www.futuremedicine.com/doi/book/10.2217/9781780844626.
  • LLerena A, Naranjo MEG, Rodrigues-Soares F, et al. Interethnic variability of CYP2D6 alleles and of predicted and measured metabolic phenotypes across world populations. Expert Opin Drug Metab Toxicol. 2014;10:1569–1583.
  • Cheng J, Zhen Y, Miksys S, et al. Potential role of CYP2D6 in the central nervous system. Xenobiotica. 2013;43(11):973–984.
  • Haduch A, Bromek E, Sadakierska-Chudy A, et al. The catalytic competence of cytochrome P450 in the synthesis of serotonin from 5-methoxytryptamine in the brain: an in vitro study. Pharmacol Res. 2013;67(1):53–59.
  • Aklillu E, Kalow W, Endrenyi L, et al. CYP2D6 and DRD2 genes differentially impact pharmacodynamic sensitivity and time course of prolactin response to perphenazine. Pharmacogenet Genomics. 2007;17(11):989–993.
  • Yitna E, Mossie A, Yami A, et al. Effects of khat (catha edulis) on bronchial asthma. (2018). Open J Asthma. 2018;2(1):5–10.
  • Alshagga MA, Alshawsh MA, Seyedan A, et al. Khat (catha edulis) and obesity: a scoping review of animal and human studies. Ann Nutr Metab. 2016;69(3–4):200–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.