352
Views
2
CrossRef citations to date
0
Altmetric
Review

Current status and future outlooks on therapeutic drug monitoring of fluorouracil

ORCID Icon, , , & ORCID Icon
Pages 1407-1422 | Received 08 Sep 2021, Accepted 10 Jan 2022, Published online: 24 Jan 2022

References

  • Pfister DG, Spencer S, Adelstein D, et al. Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2020;18(7):873–898.
  • van Cutsem E, Cervantes A, Nordlinger B, et al. Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(Suppl 3):iii1–9.
  • Argilés G, Tabernero J, Labianca R, et al. Localised colon cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020;31(10):1291–1305.
  • Wilson PM, Danenberg PV, Johnston PG, et al. Standing the test of time: targeting thymidylate biosynthesis in cancer therapy. Nat Rev Clin Oncol. 2014;11(5):282–298.
  • Beumer JH, Chu E, Allegra C, et al., Therapeutic drug monitoring in oncology: international association of therapeutic drug monitoring and clinical toxicology recommendations for 5-fluorouracil therapy. Clin Pharmacol Ther. 2019;105(3):598–613.
  • Ciccolini J, Evrard A, Cuq P. Thymidine phosphorylase and fluoropyrimidines efficacy: a jekyl and hyde story. Curr Med Chem Anticancer Agents. 2004;4(2):71–81.
  • Du Bois D, Du Bois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17(6_2):863–871.
  • Beumer JH. Without therapeutic drug monitoring, there is no personalized cancer care. Clin Pharmacol Ther. 2013;93(3):228–230.
  • Beumer JH, Chu E, Salamone SJ. Body-surface area–based chemotherapy dosing: appropriate in the 21st century? J Clin Oncol. 2012;30(31):3896–3897.
  • Mathijssen RHJ, de Jong FA, Loos WJ, et al. Flat-fixed dosing versus body surface area based dosing of anticancer drugs in adults: does it make a difference? Oncologist. 2007;12(8):913–923.
  • Rybak MJ, Le J, Lodise TP, et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: a revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2020;77(11):835–864.
  • Hiemke C, Bergemann N, Clement HW, et al. Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry. 2018;51(1/2):9–62.
  • Brunet M, van Gelder T, Åsberg A, et al. Therapeutic drug monitoring of tacrolimus-personalized therapy: second consensus report. Ther Drug Monit. 2019;41(3):261–307.
  • Paci A, Veal G, Bardin C, et al. Review of therapeutic drug monitoring of anticancer drugs part 1–cytotoxics. Eur J Cancer. 2014;50(12):2010–2019.
  • Mueller-Schoell A, Groenland SL, Scherf-Clavel O, et al. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur J Clin Pharmacol. 2021;77(4):441–464.
  • Santini J, Milano G, Thyss A, et al. 5-FU therapeutic monitoring with dose adjustment leads to an improved therapeutic index in head and neck cancer. Br J Cancer. 1989;59(2):287–290.
  • Hashimoto Y, Yoshida Y, Yamada T, et al. Current status of therapeutic drug monitoring of 5-fluorouracil prodrugs. Anticancer Res. 2020;40(8):4655–4661.
  • Wishart DS, Knox C, Guo AC, et al. DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res. 2006;34(90001):D668–D672.
  • Gusella M, Toso S, Ferrazzi E, et al. Relationships between body composition parameters and fluorouracil pharmacokinetics. Br J Clin Pharmacol. 2002;54(2):131–139.
  • Miura K, Kinouchi M, Ishida K, et al. 5-fu metabolism in cancer and orally-administrable 5-fu drugs. Cancers (Basel). 2010;2(3):1717–1730.
  • Diasio RB, Beavers TL, Carpenter JT. Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracil-induced toxicity. J Clin Invest. 1988;81(1):47–51.
  • Morgan DJ, Bray KM. Lean body mass as a predictor of drug dosage. Implications for drug therapy. Clin Pharmacokinet. 1994;26(4):292–307.
  • Prado CMM, Maia YLM, Ormsbee M, et al. Assessment of nutritional status in cancer–the relationship between body composition and pharmacokinetics. Anticancer Agents Med Chem. 2013;13(8):1197–1203.
  • Williams GR, Deal AM, Shachar SS, et al. The impact of skeletal muscle on the pharmacokinetics and toxicity of 5-fluorouracil in colorectal cancer. Cancer Chemother Pharmacol. 2018;81(2):413–417.
  • Diasio RB, Harris BE. Clinical pharmacology of 5-fluorouracil. Clin Pharmacokinet. 1989;16(4):215–237.
  • Gamelin E, Boisdron-Celle M, Guérin-Meyer V, et al. Correlation between uracil and dihydrouracil plasma ratio, fluorouracil (5-FU) pharmacokinetic parameters, and tolerance in patients with advanced colorectal cancer: a potential interest for predicting 5-FU toxicity and determining optimal 5-FU dosage. J Clin Oncol. 1999;17(4):1105.
  • Terret C, Erdociain E, Guimbaud R, et al. Dose and time dependencies of 5-fluorouracil pharmacokinetics. Clin Pharmacol Ther. 2000;68(3):270–279.
  • Ibrahim T, Di Paolo A, Amatori F, et al. Time-dependent pharmacokinetics of 5-fluorouracil and association with treatment tolerability in the adjuvant setting of colorectal cancer. J Clin Pharmacol. 2012;52(3):361–369.
  • Saam J, Critchfield GC, Hamilton SA, et al. Body surface area–based dosing of 5-fluoruracil results in extensive interindividual variability in 5-fluorouracil exposure in colorectal cancer patients on FOLFOX regimens. Clin Colorectal Cancer. 2011;10(3):203–206.
  • Gamelin E, Boisdron-Celle M, Delva R, et al., Long-term weekly treatment of colorectal metastatic cancer with fluorouracil and leucovorin: results of a multicentric prospective trial of fluorouracil dosage optimization by pharmacokinetic monitoring in 152 patients. J Clin Oncol. 1998;16(4):1470–1478.
  • Arshad U, Ploylearmsaeng S-A, Karlsson MO, et al. Prediction of exposure-driven myelotoxicity of continuous infusion 5-fluorouracil by a semi-physiological pharmacokinetic-pharmacodynamic model in gastrointestinal cancer patients. Cancer Chemother Pharmacol. 2020;85(4):711–722.
  • Port RE, Daniel B, Ding RW, et al. Relative importance of dose, body surface area, sex, and age for 5-fluorouracil clearance. Oncology. 1991;48(4):277–281.
  • Grem JL, Yee LK, Venzon DJ, et al. Inter- and intraindividual variation in dihydropyrimidine dehydrogenase activity in peripheral blood mononuclear cells. Cancer Chemother Pharmacol. 1997;40(2):117–125.
  • Fleming RA, Milano G, Thyss A, et al. Correlation between dihydropyrimidine dehydrogenase activity in peripheral mononuclear cells and systemic clearance of fluorouracil in cancer patients. Cancer Res. 1992;52(10):2899–2902.
  • Bocci G, Danesi R, Di Paolo AD, et al. Comparative pharmacokinetic analysis of 5-fluorouracil and its major metabolite 5-fluoro-5,6-dihydrouracil after conventional and reduced test dose in cancer patients. Clin Cancer Res. 2000;6(8):3032–3037.
  • Codacci-Pisanelli G, Pinedo HM, Lankelma J, et al. Pharmacokinetics of bolus 5-fluorouracil: relationship between dose, plasma concentrations, area-under-the-curve and toxicity. J Chemother. 2005;17(3):315–320.
  • Casale F, Canaparo R, Serpe L, et al. Plasma concentrations of 5-fluorouracil and its metabolites in colon cancer patients. Pharmacol Res. 2004;50(2):173–179.
  • Goirand F, Lemaitre F, Launay M, et al. How can we best monitor 5-FU administration to maximize benefit to risk ratio? Expert Opin Drug Metab Toxicol. 2018;14(12):1303–1313.
  • van Groeningen CJ, Pinedo HM, Heddes J, et al. Pharmacokinetics of 5-fluorouracil assessed with a sensitive mass spectrometric method in patients on a dose escalation schedule. Cancer Res. 1988;48(23):6956–6961.
  • Maring JG, van Kuilenburg ABP, Haasjes J, et al. Reduced 5-FU clearance in a patient with low DPD activity due to heterozygosity for a mutant allele of the DPYD gene. Br J Cancer. 2002;86(7):1028–1033.
  • van Kuilenburg ABP, Häusler P, Schalhorn A, et al. Evaluation of 5-fluorouracil pharmacokinetics in cancer patients with a c.1905+1GA mutation in DPYD by means of a Bayesian limited sampling strategy. Clin Pharmacokinet. 2014;51:163–174.
  • de Gramont A, Figer A, Seymour M, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol. 2000;18(16):2938–2947.
  • Boisdron-Celle M, Craipeau C, Brienza S, et al. Influence of oxaliplatin on 5-fluorouracil plasma clearance and clinical consequences. Cancer Chemother Pharmacol. 2002;49(3):235–243.
  • Magné N, Pivot X, Etienne-Grimaldi MC, et al. Impact of platinum complexes on dihydropyrimidine dehydrogenase activity in 5-fluorouracil-treated patients. Ann Oncol. 2003;14(8):1329–1330.
  • Kaldate RR, Haregewoin A, Grier CE, et al., Modeling the 5-fluorouracil area under the curve versus dose relationship to develop a pharmacokinetic dosing algorithm for colorectal cancer patients receiving FOLFOX6. The Oncologist. 2012;17(3):296–302.
  • Fleming GF, Schumm P, Friberg G, et al. Circadian variation in plasma 5-fluorouracil concentrations during a 24 hour constant-rate infusion. BMC Cancer. 2015;15(1):69.
  • Jacobs BAW, Deenen MJ, Pluim D, et al. Pronounced between-subject and circadian variability in thymidylate synthase and dihydropyrimidine dehydrogenase enzyme activity in human volunteers. Br J Clin Pharmacol. 2016;82(3):706–716.
  • Kuwahara A, Yamamori M, Nishiguchi K, et al. Effect of dose-escalation of 5-fluorouracil on circadian variability of its pharmacokinetics in Japanese patients with Stage III/IVa esophageal squamous cell carcinoma. Int J Med Sci. 2010;7:48–54.
  • Bressolle F, Joulia JM, Pinguet F, et al. Circadian rhythm of 5-fluorouracil population pharmacokinetics in patients with metastatic colorectal cancer. Cancer Chemother Pharmacol. 1999;44(4):295–302.
  • Milano G, Chamorey A-L. Clinical pharmacokinetics of 5-fluorouracil with consideration of chronopharmacokinetics. Chronobiol Int. 2002;19(1):177–189.
  • Kuwahara A, Kobuchi S, Tamura T. Association between circadian and chemotherapeutic cycle effects on plasma concentration of 5-fluorouracil and the clinical outcome following definitive 5-fluorouracil/cisplatin-based chemoradiotherapy in patients with esophageal squamous cell carcinoma. Oncol Lett. 2019;17(1):668–675.
  • Mueller F, Büchel B, Köberle D, et al. Gender-specific elimination of continuous-infusional 5-fluorouracil in patients with gastrointestinal malignancies: results from a prospective population pharmacokinetic study. Cancer Chemother Pharmacol. 2013;71(2):361–370.
  • Milano G, Etienne MC, Cassuto-Viguier E, et al. Influence of sex and age on fluorouracil clearance. J Clin Oncol. 1992;10(7):1171–1175.
  • Climente‐Martí M, Merino‐Sanjuán M, Almenar‐Cubells D, et al. A Bayesian method for predicting 5-fluorouracil pharmacokinetic parameters following short-term infusion in patients with colorectal cancer. J Pharm Sci. 2003;92(6):1155–1165.
  • Saif MW, Choma A, Salamone SJ, et al. Pharmacokinetically guided dose adjustment of 5-fluorouracil: a rational approach to improving therapeutic outcomes. J Natl Cancer Inst. 2009;101(22):1543–1552.
  • Kline CLB, Schiccitano A, Zhu J, et al. Personalized dosing via pharmacokinetic monitoring of 5-fluorouracil might reduce toxicity in early- or late-stage colorectal cancer patients treated with infusional 5–fluorouracil-based chemotherapy regimens. Clin Colorectal Cancer. 2014;13(2):119–126.
  • Burtness B, Harrington KJ, Greil R, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394(10212):1915–1928.
  • Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–1127.
  • Yang Q, Bi Y, Li X, et al. A retrospective analysis of plasma concentration monitoring of fluorouracil in patients with advanced colorectal cancer. Eur J Hosp Pharm. 2020;27(e1):e36–e40.
  • Wilhelm M, Mueller L, Miller MC, et al. Prospective, multicenter study of 5-fluorouracil therapeutic drug monitoring in metastatic colorectal cancer treated in routine clinical practice. Clin Colorectal Cancer. 2016;15(4):381–388.
  • Denda T, Kanda M, Morita Y, et al. Pharmacokinetic dose adjustment of 5-FU in modified FOLFOX7 plus bevacizumab for metastatic colorectal cancer in Japanese patients: a-JUST phase II clinical trial. Cancer Chemother Pharmacol. 2016;78(6):1253–1261.
  • Patel JN, O’Neil BH, Deal AM, et al. A community-based multicenter trial of pharmacokinetically guided 5-fluorouracil dosing for personalized colorectal cancer therapy. The Oncologist. 2014;19(9):959–965.
  • Braiteh FS, Salamone SJ, Li Y, et al. Pharmacokinetic (PK)-guided optimization of 5-fluorouracil (5FU) exposure in colorectal cancer (CRC) patients: u.S.-based clinical practices experience. J Clin Oncol. 2014;32(15_suppl):3574.
  • Macaire P, Morawska K, Vincent J, et al. Therapeutic drug monitoring as a tool to optimize 5-FU–based chemotherapy in gastrointestinal cancer patients older than 75 years. Eur J Cancer. 2019;111:116–125.
  • Mindt S, Aida S, Merx K, et al. Therapeutic drug monitoring (TDM) of 5-fluorouracil (5-FU): new preanalytic aspects. Clin Chem Lab Med. 2019;57(7):1012–1016.
  • Barin-Le Guellec C, Lafay-Chebassier C, Ingrand I, et al. Toxicities associated with chemotherapy regimens containing a fluoropyrimidine: a real-life evaluation in France. Eur J Cancer. 2020;124:37–46.
  • Gamelin E, Delva R, Jacob J, et al., Individual fluorouracil dose adjustment based on pharmacokinetic follow-up compared with conventional dosage: results of a multicenter randomized trial of patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(13):2099–2105.
  • Lu Z, Zhang R, Diasio RB. Dihydropyrimidine dehydrogenase activity in human peripheral blood mononuclear cells and liver: population characteristics, newly identified deficient patients, and clinical implication in 5-fluorouracil chemotherapy. Cancer Res. 1993;53(22):5433–5438.
  • Etienne MC, Lagrange JL, Dassonville O, et al. Population study of dihydropyrimidine dehydrogenase in cancer patients. J Clin Oncol. 1994;12(11):2248–2253.
  • King DA, Diasio RB, Saif MW. Association of pharmacogenetics with adverse events of fluorouracil/capecitabine in patients with cancer. JCO Oncol Pract. 2021;17(7):453–454.
  • Ploylearmsaeng S-A, Fuhr U, Jetter A. How may anticancer chemotherapy with fluorouracil be individualised? Clin Pharmacokinet. 2006;45(6):567–592.
  • Lee JJ, Beumer JH, Chu E. Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother Pharmacol. 2016;78(3):447–464.
  • Meulendijks D, Henricks LM, Sonke GS, et al., Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16(16):1639–1650.
  • Hamzic S, Aebi S, Joerger M, et al. Fluoropyrimidine chemotherapy: recommendations for DPYD genotyping and therapeutic drug monitoring of the Swiss Group of Pharmacogenomics and Personalised Therapy. Swiss Med Wkly. 2020;150:w20375.
  • Etienne-Grimaldi M-C, Cozic N, Boyer J-C, et al. FUSAFE individual patient data meta-analysis (MA) to assess the performance of dihydropyrimidine dehydrogenase (DPD) gene polymorphisms for predicting grade 4-5 fluoropyrimidine (FP) toxicity. Ann Oncol. 2019;30:v214.
  • Bocci G, Barbara C, Vannozzi F, et al. A pharmacokinetic-based test to prevent severe 5-fluorouracil toxicity. Clin Pharmacol Ther. 2006;80(4):384–395.
  • Bocci G, Danesi R, Allegrini A, et al. Severe 5-fluorouracil toxicity associated with a marked alteration of pharmacokinetics of 5-fluorouracil and its catabolite 5-fluoro-5,6-dihydrouracil: a case report. Eur J Clin Pharmacol. 2002;58(9):593–595.
  • Hamzic S, Schärer D, Offer SM, et al. Haplotype structure defines effects of common DPYD variants c.85T > C (rs1801265) and c.496A > G (rs2297595) on dihydropyrimidine dehydrogenase activity: implication for 5-fluorouracil toxicity. Br J Clin Pharmacol. 2021;87(8):3234–3243.
  • Pallet N, Hamdane S, Garinet S, et al., A comprehensive population-based study comparing the phenotype and genotype in a pretherapeutic screen of dihydropyrimidine dehydrogenase deficiency. Br J Cancer. 2020;123(5):811–818.
  • Tron C, Lemaitre F, Boisteau E, et al. When helping the minority of patients may hurt the majority: the case for DPD phenotyping and 5-fluorouracil therapeutic drug monitoring. Dig Liver Dis. 2021;53(2):258–260.
  • European Medicines Agency. EMA recommendations on DPD testing prior to treatment with fluorouracil, capecitabine, tegafur and flucytosine [Internet]. July 7 2020 cited Sep 6 2021]; Available from: https://www.ema.europa.eu/en/documents/referral/fluorouracil-fluorouracil-related-substances-article-31-referral-ema-recommendations-dpd-testing_en.pdf.
  • Amstutz U, Henricks LM, Offer SM, et al. Clinical pharmacogenetics implementation consortium (CPIC) Guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin Pharmacol Ther. 2018;103(2):210–216.
  • Wörmann B, Bokemeyer C, Burmeister T, et al. Dihydropyrimidine dehydrogenase testing prior to treatment with 5-fluorouracil, capecitabine, and tegafur: a consensus paper. Oncol Res Treat. 2020;43(11):628–636.
  • Lunenburg CATC, van der Wouden CH, Nijenhuis M, et al. Dutch pharmacogenetics working group (DPWG) guideline for the gene–drug interaction of DPYD and fluoropyrimidines. Eur J Hum Genet. 2020;28(4):508–517.
  • Dolat M, Macaire P, Goirand F, et al. Association of 5-FU therapeutic drug monitoring to DPD phenotype assessment may reduce 5-FU under-exposure. Pharmaceuticals (Basel). 2020;13(11):416.
  • Meulendijks D, Henricks LM, Jacobs BAW, et al. Pretreatment serum uracil concentration as a predictor of severe and fatal fluoropyrimidine-associated toxicity. Br J Cancer. 2017;116(11):1415–1424.
  • Boisdron-Celle M, Remaud G, Traore S, et al. 5-Fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer Lett. 2007;249(2):271–282.
  • Burns KE, Chavani O, Jeong SH, et al. Comparison of a thymine challenge test and endogenous uracil-dihydrouracil levels for assessment of fluoropyrimidine toxicity risk. Cancer Chemother Pharmacol. 2021;87(5):711–716.
  • Loriot M-A, Ciccolini J, Thomas F, et al. [Dihydropyrimidine déhydrogenase (DPD) deficiency screening and securing of fluoropyrimidine-based chemotherapies: update and recommendations of the French GPCO-Unicancer and RNPGx networks]. Bulletin Du Cancer. 2018;105(4):397–407. French.
  • Ciccolini J, Mercier C, Evrard A, et al. A rapid and inexpensive method for anticipating severe toxicity to fluorouracil and fluorouracil-based chemotherapy. Ther Drug Monit. 2006;28(5):678–685.
  • Zhou ZW, Wang GQ, Wan DS, et al. The dihydrouracil/uracil ratios in plasma and toxicities of 5-fluorouracil-based adjuvant chemotherapy in colorectal cancer patients. Chemotherapy. 2007;53(2):127–131.
  • Sistonen J, Büchel B, Froehlich TK, et al. Predicting 5-fluorouracil toxicity: DPD genotype and 5,6-dihydrouracil:uracil ratio. Pharmacogenomics. 2014;15(13):1653–1666.
  • van Staveren MC, van Kuilenburg ABP, Guchelaar H-J, et al. Evaluation of an oral uracil loading test to identify DPD-deficient patients using a limited sampling strategy. Br J Clin Pharmacol. 2016;81(3):553–561.
  • Thomas F, Hennebelle I, Delmas C, et al. Genotyping of a family with a novel deleterious DPYD mutation supports the pretherapeutic screening of DPD deficiency with dihydrouracil/uracil ratio. Clin Pharmacol Ther. 2016;99(2):235–242.
  • Hodroj K, Barthelemy D, Lega J-C, et al. Issues and limitations of available biomarkers for fluoropyrimidine-based chemotherapy toxicity, a narrative review of the literature. ESMO Open. 2021;6(3):100125.
  • Duley JA, Ni M, Shannon C, et al. Towards a test to predict 5-fluorouracil toxicity: pharmacokinetic data for thymine and two sequential metabolites following oral thymine administration to healthy adult males. Eur J Pharm Sci. 2016;81:36–41.
  • Kosovec JE, Egorin MJ, Gjurich S, et al. Quantitation of 5-fluorouracil (5-FU) in human plasma by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom. 2008;22(2):224–230.
  • Breda M, Barattè S. A review of analytical methods for the determination of 5-fluorouracil in biological matrices. Anal Bioanal Chem. 2010;397(3):1191–1201.
  • Tafzi N, Woillard J-B, Fleytoux A, et al. Phenotyping of uracil and 5-fluorouracil metabolism using LC-MS/MS for prevention of toxicity and dose adjustment of fluoropyrimidines. Ther Drug Monit. 2020;42(4):540–547.
  • Chavani O, Jensen BP, Strother RM, et al. Development, validation and application of a novel liquid chromatography tandem mass spectrometry assay measuring uracil, 5,6-dihydrouracil, 5-fluorouracil, 5,6-dihydro-5-fluorouracil, α-fluoro-β-ureidopropionic acid and α-fluoro-β-alanine in human plasma. J Pharm Biomed Anal. 2017;142:125–135.
  • Schneider JJ, Galettis P, Martin JH. Overcoming barriers to implementing precision dosing with 5-fluorouracil and capecitabine. Br J Clin Pharmacol. 2021;87(2):317–325.
  • Di Paolo A, Danesi R, Ciofi L, et al. Improved analysis of 5-Fluorouracil and 5,6-dihydro-5-Fluorouracil by HPLC with diode array detection for determination of cellular dihydropyrimidine dehydrogenase activity and pharmacokinetic profiling. Ther Drug Monit. 2005;27(3):362–368.
  • Moloney M, Faulkner D, Link E, et al. Feasibility of 5-fluorouracil pharmacokinetic monitoring using the My-5FU PCM™ system in a quaternary oncology centre. Cancer Chemother Pharmacol. 2018;82(5):865–876.
  • Beumer JH, Boisdron-Celle M, Clarke W, et al. Multicenter evaluation of a novel nanoparticle immunoassay for 5-fluorouracil on the Olympus AU400 analyzer. Ther Drug Monit. 2009;31(6):688–694.
  • Kok MGM, Fillet M. Volumetric absorptive microsampling: current advances and applications. J Pharm Biomed Anal. 2018;147:288–296.
  • Radovanovic M, Ackland S, Norris R, et al. Microsampling as an alternative collection method to venous blood to quantify capecitabine and its metabolites by LC-MS/MS. Asia Pacific J Clin Oncol. 2018;14:16–17.
  • Salman D, Biliune J, Kayyali R, et al. Evaluation of the performance of elastomeric pumps in practice: are we under-delivering on chemotherapy treatments? Curr Med Res Opin. 2017;33(12):2153–2159.
  • Quebbeman EJ, Ausman RK, Hamid AAR, et al. Drug concentration errors related to sampling from silastic catheters. J Clin Oncol. 1984;2(6):712.
  • Fety R, Rolland F, Barberi-Heyob M, et al. Clinical impact of pharmacokinetically-guided dose adaptation of 5-fluorouracil: results from a multicentric randomized trial in patients with locally advanced head and neck carcinomas. Clin Cancer Res. 1998;4(9):2039–2045.
  • Vinks AA, Punt NC, Menke F, et al. Electronic health record-embedded decision support platform for morphine precision dosing in neonates. Clin Pharmacol Ther. 2020;107(1):186–194.
  • Roggeveen LF, Guo T, Driessen RH, et al. Right dose, right now: development of autokinetics for real time model informed precision antibiotic dosing decision support at the bedside of critically ill patients. Front Pharmacol. 2020;11:646.
  • Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol. 2012;1(9):e6.
  • Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013;2(4):e38.
  • Upton RN, Mould DR. Basic concepts in population modeling, simulation, and model-based drug development: part 3-introduction to pharmacodynamic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2014;3(1):e88.
  • Bauer RJ. NONMEM tutorial part i: description of commands and options, with simple examples of population analysis. CPT Pharmacometrics Syst Pharmacol. 2019;8(8):525–537.
  • Kluwe F, Michelet R, Mueller‐Schoell A, et al. Perspectives on model-informed precision dosing in the digital health era: challenges, opportunities, and recommendations. Clin Pharmacol Ther. 2021;109(1):29–36.
  • Etienne M-C, Chatelut E, Pivot X, et al. Co-variables influencing 5-fluorouracil clearance during continuous venous infusion. A NONMEM analysis. Eur J Cancer. 1998;34(1):92–97.
  • Woloch C, Di Paolo A, Marouani H, et al. Population pharmacokinetic analysis of 5-FU and 5-FDHU in colorectal cancer patients: search for biomarkers associated with gastro-intestinal toxicity. Curr Top Med Chem. 2012;12(15):1713–1719.
  • van Kuilenburg AB, van Lenthe H, Tromp A, et al. Pitfalls in the diagnosis of patients with a partial dihydropyrimidine dehydrogenase deficiency. Clin Chem. 2000;46(1):9–17.
  • Martens FK, Huntjens DW, Rigter T, et al. DPD testing before treatment with fluoropyrimidines in the Amsterdam UMCs: an evaluation of current pharmacogenetic practice. Front Pharmacol. 2019;10:1609.
  • Wicha SG, Kees MG, Solms A, et al. TDMx: a novel web-based open-access support tool for optimising antimicrobial dosing regimens in clinical routine. Int J Antimicrob Agents. 2015;45(4):442–444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.