202
Views
1
CrossRef citations to date
0
Altmetric
Review

Ceftazidime dosing in obese patients: is it time for more?

, , , , & ORCID Icon
Pages 277-284 | Received 12 Oct 2021, Accepted 17 May 2022, Published online: 30 May 2022

References

  • WHO. Obesity and overweight [Internet]. 2021 [cited 2021 Oct 2]. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.
  • Blundell JE, Dulloo AG, Salvador J, et al. Beyond BMI–phenotyping the obesities. Obes Facts. 2014;7(5):322–328.
  • Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–643.
  • De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013;2013:291546.
  • Pestine E, Stokes A, Trinquart L. Representation of obese participants in obesity-related cancer randomized trials. Ann Oncol. 2018;29(7):1582–1587.
  • Choi S-H, Koh Y. Ceftazidime for respiratory infections. Expert Opin Pharmacother. 2012;13(14):2097–2109.
  • Yost RL, Ramphal R, McLeod DC. Ceftazidime review. Drug Intell Clin Pharm. 1985;19(7–8):509–513.
  • Richards DM, Brogden RNC. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1985;29(2):105–161.
  • Barry AL, Brown SD, Novick WJ. In vitro activities of cefotaxime, ceftriaxone, ceftazidime, cefpirome, and penicillin against streptococcus pneumoniae isolates. Antimicrob Agents Chemother. 1995;39(10):2193–2196.
  • Rains CP, Bryson HM, Peters DHC. An update of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy. Drugs. 1995;49(4):577–617.
  • Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–976.
  • Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev. 2009;22(4):582–610.
  • Shirley M. Ceftazidime-Avibactam: a review in the treatment of serious gram-negative bacterial infections. Drugs. 2018;78(6):675–692.
  • Rondanelli R, Dionigi RV, Regazzi MB, et al. Ceftazidime in the treatment of Pseudomonas infections in intensive-care patients. Int J Clin Pharmacol Ther Toxicol. 1986;24(9):457–459.
  • Das S, Li J, Riccobene T, et al. Dose selection and validation for ceftazidime-avibactam in adults with complicated intra-abdominal infections, complicated urinary tract infections, and nosocomial pneumonia. Antimicrob Agents Chemother. 2019;63(4):e02187–18.
  • Georges B, Conil J-M, Seguin T, et al. Population pharmacokinetics of ceftazidime in intensive care unit patients: influence of glomerular filtration rate, mechanical ventilation, and reason for admission. Antimicrob Agents Chemother. 2009;53(10):4483–4489.
  • Young RJ, Lipman J, Gin T, et al. Intermittent bolus dosing of ceftazidime in critically ill patients. J Antimicrob Chemother. 1997;40(2):269–273.
  • Gómez CM, Cordingly JJ, Palazzo MG. Altered pharmacokinetics of ceftazidime in critically ill patients. Antimicrob Agents Chemother. 1999;43(7):1798–1802.
  • Conil JM, Georges B, Lavit M, et al. Pharmacokinetics of ceftazidime and cefepime in burn patients: the importance of age and creatinine clearance. Int J Clin Pharmacol Ther. 2007;45(10):529–538.
  • Lam YW, Duroux MH, Gambertoglio JG, et al. Effect of protein binding on serum bactericidal activities of ceftazidime and cefoperazone in healthy volunteers. Antimicrob Agents Chemother. 1988;32(3):298–302.
  • Tawara S, Matsumoto S, Kamimura T, et al. Effect of protein binding in serum on therapeutic efficacy of cephem antibiotics. Antimicrob Agents Chemother. 1992;36(1):17–24.
  • Scaglione F, Demartini G, Arcidiacono MM, et al. Influence of protein binding on the pharmacodynamics of ceftazidime or ceftriaxone against gram-positive and gram-negative bacteria in an in vitro infection model. J Chemother. 1998;10(1):29–34.
  • Lutsar I, Friedland IR. Pharmacokinetics and pharmacodynamics of cephalosporins in cerebrospinal fluid. Clin Pharmacokinet. 2000;39(5):335–343.
  • Yeh -H-H, Yang Y-H, Chou Y-W, et al. Determination of ceftazidime in plasma and cerebrospinal fluid by micellar electrokinetic chromatography with direct sample injection. Electrophoresis. 2005;26(4–5):927–934.
  • Yasmin M, Hanrahan J, Marshall S, et al. Using therapeutic drug monitoring to treat kpc-producing Klebsiella pneumoniae central nervous system infection with ceftazidime/avibactam. Open Forum Infect Dis. 2020;7(9):ofaa349.
  • Moriarty TF, McElnay JC, Elborn JS, et al. Sputum antibiotic concentrations: implications for treatment of cystic fibrosis lung infection. Pediatr Pulmonol. 2007;42(11):1008–1017.
  • Boselli E, Breilh D, Rimmelé T, et al. Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med. 2004;30(5):989–991.
  • Cousson J, Floch T, Guillard T, et al. Lung concentrations of ceftazidime administered by continuous versus intermittent infusion in patients with ventilator-associated pneumonia. Antimicrob Agents Chemother. 2015;59(4):1905–1909.
  • Frame BC, Facca BF, Nicolau DP, et al. Population pharmacokinetics of continuous infusion ceftazidime. Clin Pharmacokinet. 1999;37(4):343–350.
  • Cojutti PG, Maximova N, Schillani G, et al. Population pharmacokinetics of continuous-infusion ceftazidime in febrile neutropenic children undergoing HSCT: implications for target attainment for empirical treatment against Pseudomonas aeruginosa. J Antimicrob Chemother. 2019;74(6):1648–1655.
  • Bui S, Facchin A, Ha P, et al. Population pharmacokinetics of ceftazidime in critically ill children: impact of cystic fibrosis. J Antimicrob Chemother. 2020;75(8):2232–2239.
  • Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation-SFAR). Crit Care. 2019;23(1):104.
  • Matusik E, Lemtiri J, Wabont G, et al. Beta-lactam dosing during continuous renal replacement therapy: a survey of practices in French intensive care units. BMC Nephrol. 2022;23(1):48.
  • Abdul-Aziz MH, Alffenaar J-WC, Bassetti M, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive Care Med. 2020;46(6):1127–1153.
  • Muller AE, Punt N, Mouton JW. Optimal exposures of ceftazidime predict the probability of microbiological and clinical outcome in the treatment of nosocomial pneumonia. J Antimicrob Chemother. 2013;68(4):900–906.
  • Moriyama B, Henning SA, Childs R, et al. High-dose continuous infusion β-lactam antibiotics for the treatment of resistant Pseudomonas Aeruginosa infections in immunocompromised patients. Ann Pharmacother. 2010;44(5):929–935.
  • Al-Sadawi M, Rodriguez Ortega R, Sun N, et al. Jerky movement with ceftazidime: a case of ceftazidime-induced neurotoxicity with a review of the literature. Case Rep Med. 2019;2019:8936478.
  • Amirouche L, Cerulli-Kanellopoulos A, Landry S, et al. Ceftazidime-induced neurotoxicity in an 80-year-old female with renal dysfunction: a case report. J Pharm Pract 2021 897190021989931 doi:https://doi.org/10.1177/0897190021989931
  • Chow KM, Szeto CC, Hui AC-F, et al. Retrospective review of neurotoxicity induced by cefepime and ceftazidime. Pharmacotherapy. 2003;23(3):369–373.
  • Slaker RA, Danielson B. Neurotoxicity associated with ceftazidime therapy in geriatric patients with renal dysfunction. Pharmacotherapy. 1991;11(4):351–352.
  • Collins RD, Tverdek FP, Bruno JJ, et al. Probable nonconvulsive status epilepticus with the use of high-dose continuous infusion ceftazidime. J Pharm Pract. 2016;29(6):564–568.
  • Lacroix C, Kheloufi F, Montastruc F, et al. Serious central nervous system side effects of cephalosporins: a national analysis of serious reports registered in the French Pharmacovigilance Database. J Neurol Sci. 2019;398:196–201.
  • Gatti M, Raschi E, De Ponti F. Serious adverse events with novel beta-lactam/beta-lactamase inhibitor combinations: a large-scale pharmacovigilance analysis. Eur J Clin Microbiol Infect Dis. 2021;40(6):1169–1176.
  • Beumier M, Casu GS, Hites M, et al. Elevated β-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiol. 2015;81(5):497–506.
  • Taccone FS, Hites M, Beumier M, et al. Appropriate antibiotic dosage levels in the treatment of severe sepsis and septic shock. Curr Infect Dis Rep. 2011;13(5):406–415.
  • Bellouard R, Deslandes G, Morival C, et al. Simultaneous determination of eight β-lactam antibiotics in human plasma and cerebrospinal fluid by liquid chromatography coupled to tandem mass spectrometry. J Pharm Biomed Anal. 2020;178:112904.
  • Van Vooren S, Verstraete AG. A sensitive and high-throughput quantitative liquid chromatography high-resolution mass spectrometry method for therapeutic drug monitoring of 10 β-lactam antibiotics, linezolid and two β-lactamase inhibitors in human plasma. Biomed Chromatogr. 2021;35(7):e5092.
  • Barco S, Mesini A, Barbagallo L, et al. A liquid chromatography-tandem mass spectrometry platform for the routine therapeutic drug monitoring of 14 antibiotics: application to critically ill pediatric patients. J Pharm Biomed Anal. 2020;186:113273.
  • El-Najjar N, Hösl J, Holzmann T, et al. UPLC-MS/MS method for therapeutic drug monitoring of 10 antibiotics used in intensive care units. Drug Test Anal. 2018;10(3):584–591.
  • Mortensen JS, Jensen BP, Zhang M, et al. Preanalytical stability of piperacillin, tazobactam, meropenem, and ceftazidime in plasma and whole blood using liquid chromatography-tandem mass spectrometry. Ther Drug Monit. 2019;41(4):538–543.
  • Roberts JA, Abdul-Aziz MH, Lipman J, et al. Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14(6):498–509.
  • Abdulla A, Ewoldt TMJ, Hunfeld NGM, et al. The effect of therapeutic drug monitoring of beta-lactam and fluoroquinolones on clinical outcome in critically ill patients: the DOLPHIN trial protocol of a multi-centre randomised controlled trial. BMC Infect Dis. 2020;20(1):57.
  • Cheymol G. Effects of obesity on pharmacokinetics implications for drug therapy. Clin Pharmacokinet. 2000;39(3):215–231.
  • Morrish GA, Pai MP, Green B. The effects of obesity on drug pharmacokinetics in humans. Expert Opin Drug Metab Toxicol. 2011;7(6):697–706.
  • Knibbe CAJ, Brill MJE, van Rongen A, et al. Drug disposition in obesity: toward evidence-based dosing. Annu Rev Pharmacol Toxicol. 2015;55(1):149–167.
  • European Medicine Agency. Reflection paper on investigation of pharmacokinetics and pharmacodynamics in the obese population [Internet]. [cited 2021 Oct 2]. Available from: https://www.ema.europa.eu/en/reflection-paper-investigation-pharmacokinetics-pharmacodynamics-obese-population.
  • Jain R, Chung SM, Jain L, et al. Implications of obesity for drug therapy: limitations and challenges. Clin Pharmacol Ther. 2011;90(1):77–89.
  • Hanley MJ, Abernethy DR, Greenblatt DJ. Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet. 2010;49(2):71–87.
  • Cheymol G. Drug pharmacokinetics in the obese. Fundam Clin Pharmacol. 1988;2(3):239–256.
  • Natale S, Bradley J, Nguyen WH, et al. Pediatric obesity: pharmacokinetic alterations and effects on antimicrobial dosing. Pharmacotherapy. 2017;37(3):361–378.
  • Alobaid AS, Hites M, Lipman J, et al. Effect of obesity on the pharmacokinetics of antimicrobials in critically ill patients: a structured review. Int J Antimicrob Agents. 2016;47:259–268.
  • Medyńska A, Chrzanowska J, Kościelska-Kasprzak K, et al. Alpha-1 acid glycoprotein and podocin mRNA as novel biomarkers for early glomerular injury in obese children. J Clin Med. 2021;10(18):4129.
  • Fernandes R, Beserra BTS, Cunha RSG, et al. Relationship between acute phase proteins and serum fatty acid composition in morbidly obese patients. Dis Markers. 2013;35:105–112.
  • Schweiger C, Weiss R, Berry E, et al. Nutritional deficiencies in bariatric surgery candidates. Obes Surg. 2010;20(2):193–197.
  • Kopple JD, Feroze U. The effect of obesity on chronic kidney disease. J Ren Nutr. 2011;21(1):66–71.
  • Kovesdy CP, Furth SL, Zoccali C, et al. Obesity and kidney disease: hidden consequences of the epidemic. Intern Med J. 2017;47(2):134–143.
  • Sikorska D, Grzymislawska M, Roszak M, et al. Simple obesity and renal function. J Physiol Pharmacol. 2017;68(2):175–180.
  • D’Agati VD, Chagnac A, de Vries APJ, et al. Obesity-related glomerulopathy: clinical and pathologic characteristics and pathogenesis. Nat Rev Nephrol. 2016;12(8):453–471.
  • Naumnik B, Myśliwiec M. Renal consequences of obesity. Med Sci Monit. 2010;16(8):RA163–RA170.
  • Lu SC, Akanji AOL. Obesity, and hypertension: a review of pathogenetic mechanisms. Metab Syndr Relat Disord. 2020;18(9):399–405.
  • Lakkis JI, Weir MR. Obesity and kidney disease. Prog Cardiovasc Dis. 2018;61(2):157–167.
  • Du N, Peng H, Chao X, et al. Interaction of obesity and central obesity on elevated urinary albumin-to-creatinine ratio. PLoS One. 2014;9(6):e98926.
  • Qin S, Wang A, Gu S, et al. Association between obesity and urinary albumin-creatinine ratio in the middle-aged and elderly population of Southern and Northern China: a cross-sectional study. BMJ Open. 2021;11(1):e040214.
  • Webster AC, Nagler EV, Morton RL, et al. Chronic kidney disease. Lancet. 2017;389(10075):1238–1252.
  • Vallianou NG, Mitesh S, Gkogkou A, et al. Chronic kidney disease and cardiovascular disease: is there any relationship?. Curr Cardiol Rev. 2019;15(1):55–63.
  • Bosma RJ, Krikken JA, Homan van der Heide JJ, et al. Obesity and renal hemodynamics. Contrib Nephrol. 2006;151:184–202.
  • Demirovic JA, Pai AB, Pai MP. Estimation of creatinine clearance in morbidly obese patients. Am J Health Syst Pharm. 2009;66(7):642–648.
  • Brill MJE, Diepstraten J, van Rongen A, et al. Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet. 2012;51(5):277–304.
  • Smit C, De Hoogd S, Brüggemann RJM, et al. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters. Expert Opin Drug Metab Toxicol. 2018;14(3):275–285.
  • Pinner NA, Tapley NG, Barber KE, et al. Effect of obesity on clinical failure of patients treated with β-lactams. Open Forum Infect Dis. 2021;8(8):ofab212.
  • Hites M, Taccone FS, Wolff F, et al. Broad-spectrum β-lactams in obese non-critically ill patients. Nutr Diabetes. 2014;4(6):e119.
  • Maharaj AR, Wu H, Zimmerman KO, et al. Pharmacokinetics of ceftazidime in children and adolescents with obesity. Paediatr Drugs. 2021;23(5):499–513.
  • Hites M, Taccone FS, Wolff F, et al. Case-control study of drug monitoring of β-lactams in obese critically ill patients. Antimicrob Agents Chemother. 2013;57(2):708–715.
  • Welage LS, Schultz RW, Schentag JJ. Pharmacokinetics of ceftazidime in patients with renal insufficiency. Antimicrob Agents Chemother. 1984;25(2):201–204.
  • Mariat C, Venet C, Jehl F, et al. Continuous infusion of ceftazidime in critically ill patients undergoing continuous venovenous haemodiafiltration: pharmacokinetic evaluation and dose recommendation. Crit Care. 2006;10(1):R26.
  • Veillette JJ, Truong J, Forland SC. Pharmacokinetics of ceftazidime-avibactam in two patients with kpc-producing Klebsiella pneumoniae bacteremia and renal impairment. Pharmacotherapy. 2016;36(11):e172–e177.
  • Soukup P, Faust AC, Edpuganti V, et al. Steady-state ceftazidime-avibactam serum concentrations and dosing recommendations in a critically ill patient being treated for Pseudomonas aeruginosa pneumonia and undergoing continuous venovenous hemodiafiltration. Pharmacotherapy. 2019;39(12):1216–1222.
  • Kühn D, Metz C, Seiler F, et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study. Crit Care. 2020;24(1):664.
  • Falcone M, Menichetti F, Cattaneo D, et al. Pragmatic options for dose optimization of ceftazidime/avibactam with aztreonam in complex patients. J Antimicrob Chemother. 2021;76(4):1025–1031.
  • Ribera A, Soldevila L, Rigo-Bonnin R, et al. Beta-lactams in continuous infusion for gram-negative bacilli osteoarticular infections: an easy method for clinical use. Infection. 2018;46(2):239–244.
  • Werumeus Buning A, Hodiamont CJ, Lechner NM, et al. Population pharmacokinetics and probability of target attainment of different dosing regimens of ceftazidime in critically Ill patients with a proven or suspected Pseudomonas aeruginosa infection. Antibiotics (Basel). 2021;10(6):612.
  • Taccone FS, Laterre P-F, Dugernier T, et al. Insufficient β-lactam concentrations in the early phase of severe sepsis and septic shock. Crit Care. 2010;14(4):R126.
  • Traunmüller F, Schenk P, Mittermeyer C, et al. Clearance of ceftazidime during continuous venovenous haemofiltration in critically ill patients. J Antimicrob Chemother. 2002;49(1):129–134.
  • Stein GE, Smith CL, Scharmen A, et al. Pharmacokinetic and pharmacodynamic analysis of ceftazidime/avibactam in critically Ill patients. Surg Infect. 2019;20(1):55–61.
  • Veiga RP, Paiva J-A. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Crit Care. 2018;22(1):233.
  • Huttner A, Harbarth S, Hope WW, et al. Therapeutic drug monitoring of the β-lactam antibiotics: what is the evidence and which patients should we be using it for? J Antimicrob Chemother. 2015;70(12):3178–3183.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.