305
Views
3
CrossRef citations to date
0
Altmetric
Review

Current status and new developments in sphingosine-1-phosphate receptor antagonism: fingolimod and more

, & ORCID Icon
Pages 675-693 | Received 27 Mar 2022, Accepted 17 Oct 2022, Published online: 31 Oct 2022

References

  • Goverman J. Autoimmune T cell responses in the central nervous system. Nat Rev Immunol. 2009;9(6):393–407.
  • Mars LT, Saikali P, Liblau RS, et al. Contribution of CD8 T lymphocytes to the immuno-pathogenesis of multiple sclerosis and its animal models. Biochim Biophys Acta. 2011;1812:151–161.
  • Ziemssen T, Ziemssen F. The role of the humoral immune system in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Autoimmun Rev. 2005;4:460–467.
  • Ziemssen T, Derfuss T, de Stefano N, et al. Optimizing treatment success in multiple sclerosis. J Neurol. 2016;263:1053–1065.
  • Inojosa H, Proschmann U, Akgün K, et al. The need for a strategic therapeutic approach: multiple sclerosis in check. Ther Adv Chronic Dis. 2022;13:20406223211063032.
  • Ziemssen T, De Stefano N, Sormani MP, et al. Optimizing therapy early in multiple sclerosis: an evidence-based view. Mult Scler Relat Disord. 2015;4:460–469.
  • Brück W, Gold R, Lund BT, et al. Therapeutic decisions in multiple sclerosis: moving beyond efficacy. JAMA Neurol. 2013;70:1315–1324.
  • Chun J, Hartung HP. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin Neuropharmacol. 2010;33:91–101.
  • Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–415.
  • Kappos L, Radue EW, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387–401.
  • Comi G, O’Connor P, Montalban X, et al. Phase II study of oral fingolimod (FTY720) in multiple sclerosis: 3-year results. Mult Scler. 2010;16(2):197–207.
  • Giovannoni G, de Jong B, Derfuss T, et al. A pragmatic approach to dealing with fingolimod-related lymphopaenia in Europe. Mult Scler Relat Disord. 2015;4(1):83–84.
  • Rao TS, Lariosa-Willingham KD, Lin FF, et al. Pharmacological characterization of lysophospholipid receptor signal transduction pathways in rat cerebrocortical astrocytes. Brain Res. 2003;990(1–2):182–194.
  • Balatoni B, Storch MK, Swoboda EM, et al. FTY720 sustains and restores neuronal function in the DA rat model of MOG-induced experimental autoimmune encephalomyelitis. Brain Res Bull. 2007;74(5):307–316.
  • Miron VE, Jung CG, Kim HJ, et al. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol. 2008;63(1):61–71.
  • Thomas K, Sehr T, Proschmann U, et al. Fingolimod additionally acts as immunomodulator focused on the innate immune system beyond its prominent effects on lymphocyte recirculation. J Neuroinflammation. 2017;14(1):41.
  • Kovarik JM, Hartmann S, Bartlett M, et al. Oral-intravenous crossover study of fingolimod pharmacokinetics, lymphocyte responses and cardiac effects. Biopharm Drug Dispos. 2007;28(2):97–104.
  • Thomas K, Ziemssen T. Management of fingolimod in clinical practice. Clin Neurol Neurosurg. 2013;115:S60–64.
  • Ziemssen T, Kern R, Cornelissen C. The PANGAEA study design - a prospective, multicenter, non-interventional, long-term study on fingolimod for the treatment of multiple sclerosis in daily practice. BMC Neurol. 2015;15:93.
  • Roy R, Alotaibi AA, Freedman MS. Sphingosine 1-phosphate receptor modulators for multiple sclerosis. CNS Drugs. 2021;35:385–402.
  • Siponimod (Mayzent®) - summary of product characteristics. [Cited 31 January 2022]. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/209884s000lbl.pdf
  • Siponimod (Mayzent®) - summary of product characteristics. [Cited 31 January 2022]. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/mayzent
  • Ozanimod (Zeposia®) - summary of product characteristics. [Cited 31 January 2022]. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209899s000lbl.pdf
  • Ponesimod (Ponvory®) - summary of product characteristics. [Cited 31 January 2022]. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/213498s000lbl.pdf
  • Baumruker T, Billich A, Brinkmann V. FTY720, an immunomodulatory sphingolipid mimetic: translation of a novel mechanism into clinical benefit in multiple sclerosis. Expert Opin Investig Drugs. 2007;16:283–289.
  • Rivera J, Proia RL, Olivera A. The alliance of sphingosine-1-phosphate and its receptors in immunity. Nat Rev Immunol. 2008;8:753–763.
  • Mandala S, Hajdu R, Bergstrom J, et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science. 2002;296:346–349.
  • Matloubian M, Lo CG, Cinamon G, et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature. 2004;427:355–360.
  • Brinkmann V, Cyster JG, Hla T. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant. 2004;4:1019–1025.
  • Yopp AC, Ochando JC, Mao M, et al. Sphingosine 1-phosphate receptors regulate chemokine-driven transendothelial migration of lymph node but not splenic T cells. J Immunol. 2005;175:2913–2924.
  • Lo CG, Xu Y, Proia RL, et al. Cyclical modulation of sphingosine-1-phosphate receptor 1 surface expression during lymphocyte recirculation and relationship to lymphoid organ transit. J Exp Med. 2005;201:291–301.
  • Schwab SR, Cyster JG. Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol. 2007;8:1295–1301.
  • Sehr T, Akgün K, Proschmann U, et al. Early central vs. peripheral immunological and neurobiological effects of fingolimod-a longitudinal study. J Mol Med (Berl). 2019;97:1263–1271.
  • Schwab SR, Pereira JP, Matloubian M, et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science. 2005;309:1735–1739.
  • Pappu R, Schwab SR, Cornelissen I, et al. Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science. 2007;316:295–298.
  • Oo ML, Thangada S, Wu MT, et al. Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. J Biol Chem. 2007;282:9082–9089.
  • Mullershausen F, Zecri F, Cetin C, et al. Persistent signaling induced by FTY720-phosphate is mediated by internalized S1P1 receptors. Nat Chem Biol. 2009;5:428–434.
  • Brinkmann V, Davis MD, Heise CE, et al. The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem. 2002;277:21453–21457.
  • Comi G, Hartung HP, Bakshi R, et al. Benefit-risk profile of sphingosine-1-phosphate receptor modulators in relapsing and secondary progressive multiple sclerosis. Drugs. 2017;77:1755–1768.
  • Fischer S, Proschmann U, Akgün K, et al. Lymphocyte counts and multiple sclerosis therapeutics: between mechanisms of action and treatment-limiting side effects. Cells. 2021;10:3177.
  • Hjorth M, Dandu N, Mellergård J. Treatment effects of fingolimod in multiple sclerosis: selective changes in peripheral blood lymphocyte subsets. PLoS ONE. 2020;15:e0228380.
  • Dardalhon V, Korn T, Kuchroo VK, et al. Role of Th1 and Th17 cells in organ-specific autoimmunity. J Autoimmun. 2008;31:252–256.
  • Kimura K. Regulatory T cells in multiple sclerosis. Clin Exp Neuroimmunol. 2020;11:148–155.
  • Moser T, Akgün K, Proschmann U, et al. The role of TH17 cells in multiple sclerosis: therapeutic implications. Autoimmun Rev. 2020;19:102647.
  • Yu P, Gregg RK, Bell JJ, et al. Specific T regulatory cells display broad suppressive functions against experimental allergic encephalomyelitis upon activation with cognate antigen. J Immunol. 2005;174:6772–6780.
  • Stephens LA, Malpass KH, Anderton SM. Curing CNS autoimmune disease with myelin-reactive Foxp3+ Treg. Eur J Immunol. 2009;39:1108–1117.
  • McIntyre LL, Greilach SA, Othy S, et al. Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiol Dis. 2020;140:104868.
  • Dombrowski Y, O’Hagan T, Dittmer M, et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci. 2017;20:674–680.
  • Nofer JR, Bot M, Brodde M, et al. FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation. 2007;115:501–508.
  • Idzko M, Hammad H, van Nimwegen M, et al. Local application of FTY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest. 2006;116:2935–2944.
  • Dorsam G, Graeler MH, Seroogy C, et al. Transduction of multiple effects of sphingosine 1-phosphate (S1P) on T cell functions by the S1P1 G protein-coupled receptor. J Immunol. 2003;171:3500–3507.
  • Herr DR, Chun J. Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Curr Drug Targets. 2007;8:155–167.
  • Soliven B, Miron V, Chun J. The neurobiology of sphingosine 1-phosphate signaling and sphingosine 1-phosphate receptor modulators. Neurology. 2011;76:S9–14.
  • Kimura A, Ohmori T, Ohkawa R, et al. Essential roles of sphingosine 1-phosphate/S1P1 receptor axis in the migration of neural stem cells toward a site of spinal cord injury. Stem Cells. 2007;25:115–124.
  • Koyrakh L, Roman MI, Brinkmann V, et al. The heart rate decrease caused by acute FTY720 administration is mediated by the G protein-gated potassium channel I. Am J Transplant. 2005;5:529–536.
  • Alewijnse AE, Peters SL. Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur J Pharmacol. 2008;585:292–302.
  • Ohmori T, Yatomi Y, Osada M, et al. Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. Cardiovasc Res. 2003;58:170–177.
  • Bünemann M, Brandts B, Zu Heringdorf DM, et al. Activation of muscarinic K+ current in Guinea-pig atrial myocytes by sphingosine-1-phosphate. J Physiol. 1995;489:701–707.
  • Lee SW, Anderson A, Guzman PA, et al. Atrial GIRK channels mediate the effects of vagus nerve stimulation on heart rate dynamics and arrhythmogenesis. Front Physiol. 2018;9:943.
  • Posokhova E, Wydeven N, Allen KL, et al. RGS6/Gβ5 complex accelerates IKACh gating kinetics in atrial myocytes and modulates parasympathetic regulation of heart rate. Circ Res. 2010;107:1350–1354.
  • Liang B, Nissen JD, Laursen M, et al. G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization. Cardiovasc Res. 2014;101:175–184.
  • Van Koppen C, Zu Heringdorf M M, Laser KT, et al. Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. J Biol Chem. 1996;271:2082–2087.
  • Camm J, Hla T, Bakshi R, et al. Cardiac and vascular effects of fingolimod: mechanistic basis and clinical implications. Am Heart J. 2014;168:632–644.
  • Legangneux E, Gardin A, Johns D. Dose titration of BAF312 attenuates the initial heart rate reducing effect in healthy subjects. Br J Clin Pharmacol. 2013;75:831–841.
  • Thomas K, Schrotter H, Halank M, et al. Fingolimod in a patient with heart failure on the background of pulmonary arterial hypertension and coronary artery disease. BMC Neurol. 2014;14:126.
  • Cantalupo A, Gargiulo A, Dautaj E, et al. S1PR1 (Sphingosine-1-phosphate receptor 1) signaling regulates blood flow and pressure. Hypertension. 2017;70:426–434.
  • Di Lorenzo A, Lin MI, Murata T, et al. eNOS-derived nitric oxide regulates endothelial barrier function through VE-cadherin and Rho GTPases. J Cell Sci. 2013;126:5541–5552.
  • Cantalupo A, Zhang Y, Kothiya M, et al. Nogo-b regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure. Nat Med. 2015;21:1028–1037.
  • Cantalupo A, Di Lorenzo A. S1P signaling and de novo biosynthesis in blood pressure homeostasis. J Pharmacol Exp Ther. 2016;358:359–370.
  • Salomone S, Yoshimura S, Reuter U, et al. S1P3 receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. Eur J Pharmacol. 2003;469:125–134.
  • Coussin F, Scott RH, Wise A, et al. Comparison of sphingosine 1-phosphate-induced intracellular signaling pathways in vascular smooth muscles: differential role in vasoconstriction. Circ Res. 2002;91:151–157.
  • Calabresi PA, Radue EW, Goodin D, et al. Safety and efficacy of fingolimod in patients with relapsing-remitting multiple sclerosis (FREEDOMS II): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:545–556.
  • Khatri B, Barkhof F, Comi G, et al. Comparison of fingolimod with interferon beta-1a in relapsing-remitting multiple sclerosis: a randomised extension of the TRANSFORMS study. Lancet Neurol. 2011;10:520–529.
  • Cohen JA, Tenenbaum N, Bhatt A, et al. Extended treatment with fingolimod for relapsing multiple sclerosis: the 14-year LONGTERMS study results. Ther Adv Neurol Disord. 2019;12:1756286419878324.
  • Fernández O, Izquierdo G, Aguera E, et al. EARLIMS investigators. Comparison of first-line and second-line use of fingolimod in relapsing MS: the open-label EARLIMS study. Mult Scler J Exp Transl Clin. 2020;6:2055217320957358.
  • Vidal-Jordana A, Montalban X. Multiple sclerosis: epidemiologic, clinical, and therapeutic aspects. Neuroimaging Clin N Am. 2017;27:195–204.
  • Lublin F, Miller DH, Freedman MS, et al. INFORMS study investigators. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet. 2016;387:1075–1084.
  • Lee CW, Choi JW, Chun J. Neurological S1P signaling as an emerging mechanism of action of oral FTY720 (fingolimod) in multiple sclerosis. Arch Pharm Res. 2010;33:1567–1574.
  • Barry B, Erwin AA, Stevens J, et al. Fingolimod rebound: a review of the clinical experience and management considerations. Neurol Ther. 2019;8:241–250.
  • Kappos L, Cohen J, Collins W, et al. Fingolimod in relapsing multiple sclerosis: an integrated analysis of safety findings. Mult Scler Relat Disord. 2014;3:494–504.
  • M AA, S WJ, Kappos L, et al. Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. JAMA Neurol. 2015;72:31–39.
  • Winkelmann A, Loebermann M, Reisinger EC, et al. Fingolimod treatment for multiple sclerosis patients What do we do with varicella? Ann Neurol. 2011;70:673–674.
  • Matko S, Akgün K, Tonn T, et al. Antigen-shift in varicella-zoster virus-specific T-cell immunity over the course of Fingolimod-treatment in relapse-remitting multiple sclerosis patients. Mult Scler Relat Disord. 2020;38:101859.
  • Berger JR, Cree BA, Greenberg B, et al. Progressive multifocal leukoencephalopathy after fingolimod treatment. Neurology. 2018;90:e1815–e1821.
  • Ziemssen T, Lang M, Tackenberg B, et al. Long-term real-world evidence for sustained clinical benefits of fingolimod following switch from natalizumab. Mult Scler Relat Disord. 2019;39:101893.
  • Nakahara J, Tomaske L, Kume K, et al. Three cases of non-carryover fingolimod-PML: is the risk in Japan increased? Neurol Neuroimmunol Neuroinflamm. 2019;6:e559.
  • Fox R, Cree B, Greenberg B, et al. Update on the risk estimates of progressive multifocal leukoencephalopathy related to fingolimod. MS Virtual Conference 2020 (Washington DC), Abstract 1829. Available at: https://www.medcommshydhosting.com/MSKnowledgecenter/CPO/Fox%20RJ_ECTRIMS%202020_FC02.02.pdf
  • Achtnichts L, Obreja O, Conen A, et al. Cryptococcal meningoencephalitis in a patient with multiple sclerosis treated with fingolimod. JAMA Neurol. 2015;72:1203–1205.
  • Grebenciucova E, Reder AT, Bernard JT. Immunologic mechanisms of fingolimod and the role of immunosenescence in the risk of cryptococcal infection: a case report and review of literature. Mult Scler Relat Disord. 2016;9:158–162.
  • Seto H, Nishimura M, Minamiji K, et al. Disseminated cryptococcosis in a 63-year-old patient with multiple sclerosis treated with fingolimod. Intern Med. 2016;55:3383–3386.
  • Forrestel AK, Modi BG, Longworth S, et al. Primary cutaneous cryptococcus in a patient with multiple sclerosis treated with fingolimod. JAMA Neurol. 2016;73:355–356.
  • Ward MD, Jones DE, Goldman MD. Cryptococcal meningitis after fingolimod discontinuation in a patient with multiple sclerosis. Mult Scler Relat Disord. 2016;9:47–49.
  • Anene-Maidoh TI, Paschall RM, Scott Graham R. Refractory cryptococcal meningoencephalitis in a patient with multiple sclerosis treated with fingolimod: a case report. Interdiscip Neurosurg. 2018;12:8–9.
  • Pham C, Bennett I, Jithoo R. Cryptococcal meningitis causing obstructive hydrocephalus in a patient on fingolimod. BMJ Case Rep. 2017;2017 bcr-2017–220026.
  • Huang D. Disseminated cryptococcosis in a patient with multiple sclerosis treated with fingolimod. Neurology. 2015;85:1001–1003.
  • Samudralwar RD, Spec A, Cross AH. Case report: fingolimod and cryptococcosis: collision of immunomodulation with infectious disease. Int J MS Care. 2019;21:275–280.
  • Wienemann T, Müller AK, MacKenzie C, et al. Cryptococcal meningoencephalitis in an IgG2-deficient patient with multiple sclerosis on fingolimod therapy for more than five years - case report. BMC Neurol. 2020;20:158.
  • Del Poeta M, Ward BJ, Greenberg B, et al. Cryptococcal meningitis reported with fingolimod treatment: case series. Neurol Neuroimmunol Neuroinflamm. 2022;9(3):e1156.
  • Rotstein DL, Bharatha A, Selchen D. Severe aseptic temporal lobe encephalitis on fingolimod. Mult Scler Relat Disord. 2018;23:4–6.
  • Dahshan D, Dessie SA, Cuda J, et al. Primary cutaneous cryptococcosis in a patient on fingolimod: a case report. Cureus. 2021;13(7):e16444.
  • Ma SB, Griffin D, Boyd SC, et al. Cryptococcus neoformans var grubii meningoencephalitis in a patient on fingolimod for relapsing-remitting multiple sclerosis: case report and review of published cases. Mult Scler Relat Disord. 2020;39:101923.
  • Chong I, Wang KY, Lincoln CM. Cryptococcal meningitis in a multiple sclerosis patient treated with Fingolimod: a case report and review of imaging findings. Clin Imaging. 2019;54:53–56.
  • Zarbin MA, Jampol LM, Jager RD, et al. Ophthalmic evaluations in clinical studies of fingolimod (FTY720) in multiple sclerosis. Ophthalmology. 2013;120(7):1432–1439.
  • Stamatellos VP, Rigas A, Stamoula E, et al. S1P receptor modulators in multiple sclerosis: detecting a potential skin cancer safety signal. Mult Scler Relat Disord. 2022;59:103681.
  • Ayzenberg I, Hoepner R, Kleiter I. Fingolimod for multiple sclerosis and emerging indications: appropriate patient selection, safety precautions, and special considerations. Ther Clin Risk Manag. 2016;12:261–272.
  • Geissbühler Y, Vile J, Koren G, et al. Evaluation of pregnancy outcomes in patients with multiple sclerosis after fingolimod exposure. Ther Adv Neurol Disord. 2018;11:1756286418804760.
  • Fingolimod (Gilenya®) - summary of product characteristics. [Cited 31 January 2022]. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022527s008lbl.pdf
  • Espinosa PS, Berger JR. Delayed fingolimod-associated asystole. Mult Scler. 2011;17(11):1387–1389.
  • Faber H, Fischer HJ, Weber F. Prolonged and symptomatic bradycardia following a single dose of fingolimod. Mult Scler. 2013;19(1):126–128.
  • Lindsey JW, Haden-Pinneri K, Memon NB, et al. Sudden unexpected death on fingolimod. Mult Scler. 2012;18(10):1507–1508.
  • Li K, Konofalska U, Akgün K, et al. Modulation of cardiac autonomic function by fingolimod initiation and predictors for fingolimod induced bradycardia in patients with multiple sclerosis. Front Neurosci. 2017;11:540.
  • Limmroth V, Ziemssen T, Lang M, et al. Electrocardiographic assessments and cardiac events after fingolimod first dose – a comprehensive monitoring study. BMC Neurol. 2017;17(1):11.
  • Limmroth V, Ziemssen T, Kleiter I, et al. A comprehensive monitoring study on electrocardiographic assessments and cardiac events after fingolimod first dose-possible predictors of cardiac outcomes. Front Neurol. 2020;11:818.
  • Gold R, Comi G, Palace J, et al., Assessment of cardiac safety during fingolimod treatment initiation in a real-world relapsing multiple sclerosis population: a phase 3b, open-label study. J Neurol. 2014. 261(2): 267–276.
  • Ziemssen T, Lang M, Schmidt S, et al., PANGAEA study group. Long-term real-world effectiveness and safety of fingolimod over 5 years in Germany. J Neurol. 2022. 269(6): 3276–3285. .
  • Kappos L, Mehling M, Arroyo R, et al. Randomized trial of vaccination in fingolimod-treated patients with multiple sclerosis. Neurology. 2015;84(9):872–879.
  • Sormani MP, Inglese M, Schiavetti I, et al. Effect of SARS-CoV-2 mRNA vaccination in MS patients treated with disease modifying therapies. EBioMedicine. 2021;72:103581.
  • Capone F, Lucchini M, Ferraro E, et al. Immunogenicity and safety of mRNA COVID-19 vaccines in people with multiple sclerosis treated with different disease-modifying therapies. Neurotherapeutics. 2021;3:1–9.
  • Tay MZ, Poh CM, Renia L, et al. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–374.
  • Achtnichts L, Ovchinnikov A, Jakopp B, et al. SARS-CoV-2 mRNA vaccination in people with multiple sclerosis treated with fingolimod: protective humoral immune responses may develop after the preferred third shot. Vaccines (Basel). 2022;10(2):341.
  • Sekine T, Perez-Potti A, Rivera-Ballesteros O, et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell. 2020;183(1):158–168.e14.
  • Tortorella C, Aiello A, Gasperini C, et al. Humoral- and T-Cell-specific immune responses to sars-CoV-2 mRNA vaccination in patients with MS using different disease-modifying therapies. Neurology. 2022;98(5):e541–e554.
  • Krysko KM, Graves J, Rensel M, et al. US network of pediatric ms centers. use of newer disease-modifying therapies in pediatric multiple sclerosis in the US. Neurology. 2018;91(19):e1778–e1787.
  • Huppke P, Huppke B, Ellenberger D, et al. Therapy of highly active pediatric multiple sclerosis. Mult Scler. 2019;25(1):72–80.
  • Arnal-Garcia C, García-Montero MR, Málaga I, et al. Natalizumab use in pediatric patients with relapsing-remitting multiple sclerosis. Eur J Paediatr Neurol. 2013;17(1):50–54.
  • Kornek B, Aboul-Enein F, Rostasy K, et al. Natalizumab therapy for highly active pediatric multiple sclerosis. JAMA Neurol. 2013;70(4):469–475.
  • Ghezzi A, Moiola L, Pozzilli C, et al. Natalizumab in the pediatric MS population: results of the Italian registry. BMC Neurol. 2015;15(1):174.
  • Ghezzi A, Pozzilli C, Grimaldi LME, et al. Natalizumab in pediatric multiple sclerosis: results of a cohort of 55 cases. Mult Scler. 2013;19(8):1106–1112.
  • Alroughani R, Ahmed SF, Behbehani R, et al. The use of natalizumab in pediatric patients with active relapsing multiple sclerosis: a prospective study. Pediatr Neurol. 2017;70:56–60.
  • Fragoso YD, Alves-Leon SV, Barreira AA, et al. Fingolimod prescribed for the treatment of multiple sclerosis in patients younger than age 18 years. Pediatr Neurol. 2015;53(2):166–168.
  • Chitnis T, Arnold DL, Banwell B, et al.; PARADIGMS Study Group. Trial of fingolimod versus interferon beta-1a in pediatric multiple sclerosis. N Engl J Med. 2018;379(11):1017–1027.
  • Beres SJ, Graves J, Waubant E. Rituximab use in pediatric central demyelinating disease. Pediatr Neurol. 2014;51(1):114–118.
  • Salzer J, Lycke J, Wickström R, et al. Rituximab in paediatric onset multiple sclerosis: a case series. J Neurol. 2016;263(2):322–326.
  • Makhani N, Schreiner T. Oral dimethyl fumarate in children with multiple sclerosis: a dual-center study. Pediatr Neurol. 2016;57:101–104.
  • Gorman MP, Tillema JM, Ciliax AM, et al. Daclizumab use in patients with pediatric multiple sclerosis. Arch Neurol. 2012;69(1):78–81.
  • Fingolimod (Gilenya®) in pediatric MS. Available at: https://www.fda.gov/news-events/press-announcements/fda-expands-approval-gilenya-treat-multiple-sclerosis-pediatric-patients [Last accessed 30 June 2022].
  • Fingolimod (Gilenya®) in pediatric MS. Available at: https://www.ema.europa.eu/en/medicines/human/EPAR/gilenya [Last accessed 30 June 2022].
  • Miravalle A, Jensen R, Kinkel R. Immune reconstitution inflammatory syndrome in patients with multiple sclerosis following cessation of natalizumab therapy. Arch Neurol. 2011;68(2):186–191.
  • Beran RG, Hegazi Y, Schwartz RS, et al. Rebound exacerbation multiple sclerosis following cessation of oral treatment. Mult Scler Relat Disord. 2013;2(3):252–255.
  • Hatcher SE, Waubant E, Nourbakhsh B, et al. Rebound syndrome in patients with multiple sclerosis after cessation of fingolimod treatment. JAMA Neurol. 2016;73(7):790–794.
  • West TW, Cree BA. Natalizumab dosage suspension: are we helping or hurting? Ann Neurol. 2010;68(3):395–399.
  • Rispens T, Vennegoor A, Wolbink GJ, et al. Natalizumab remains detectable in patients with multiple sclerosis long after treatment is stopped. Mult Scler. 2012;18(6):899–901.
  • Giovannoni G, Hawkes C, Waubant E, et al. The ‘Field Hypothesis’: rebound activity after stopping disease-modifying therapies. Mult Scler Relat Disord. 2017;15:A1–2.
  • Berger B, Baumgartner A, Rauer S, et al. Severe disease reactivation in four patients with relapsing–remitting multiple sclerosis after fingolimod cessation. J Neuroimmunol. 2015;282:118–122.
  • Czlonkowska A, Smolinski L, Litwin T. Severe disease exacerbations in patients with multiple sclerosis after discontinuing fingolimod. Neurol Neurochir Pol. 2017;51(2):156–162.
  • Cavone L, Felici R, Lapucci A, et al. Dysregulation of sphingosine 1 phosphate receptor-1 (S1P1) signaling and regulatory lymphocyte-dependent immunosuppression in a model of post-fingolimod MS rebound. Brain Behav Immun. 2015;50:78–86.
  • Giordana M, Cavalla P, Uccelli A, et al. Overexpression of sphingosine-1-phosphate receptors on reactive astrocytes drives neuropathology of multiple sclerosis rebound after fingolimod discontinuation. Mult Scler J. 2018;24:1133–1137.
  • Vermersch P, Radue E-W, Putzki N, et al. A comparison of multiple sclerosis disease activity after discontinuation of fingolimod and placebo. Mult Scler J Exp Transl Clin. 2017;3:205521731773009.
  • Lapucci C, Baroncini D, Cellerino M, et al. Different MRI patterns in MS worsening after stopping fingolimod. Neurol Neuroimmunol Neuroinflamm. 2019;6(4):e566.
  • Uygunoglu U, Tutuncu M, Altintas A, et al. Factors predictive of severe multiple sclerosis disease reactivation after fingolimod cessation. Neurologist. 2018;23(1):12–16.
  • Frau J, Sormani M, Signori A, et al. Clinical activity after fingolimod cessation: disease reactivation or rebound? Eur J Neurol. 2018;25(10):1270–1275.
  • Yoshii F, Moriya Y, Ohnuki T, et al. Neurological safety of fingolimod: an updated review. Clin Exp Neuroimmunol. 2017;8(3):233–243.
  • Sanchez P, Meca-Lallana V, Vivancos J. Tumefactive multiple sclerosis lesions associated with fingolimod treatment: report of 5 cases. Mult Scler Relat Disord. 2018;25:95–98.
  • Schmidt S, Schulten T. Severe rebound after cessation of fingolimod treated with ocrelizumab with coincidental transient aggravation: report of two cases. Ther Adv Neurol Disord. 2019;12:1–6.
  • De Masi R, Accoto S, Orlando S, et al. Dramatic recovery of steroid-refractory relapsed multiple sclerosis following fingolimod discontinuation using selective immune adsorption. BMC Neurol. 2015;15(1):125.
  • Pardo G, Jones D. The sequence of disease-modifying therapies in relapsing multiple sclerosis: safety and immunologic considerations. J Neurol. 2017;264(12):2351–2374.
  • Langer-Gould AM. Pregnancy and family planning in multiple sclerosis. Continuum (Minneap Minn). 2019;25(3):773–792.
  • Piali L, Froidevaux S, Hess P, et al. The selective sphingosine 1-phosphate receptor 1 agonist ponesimod protects against lymphocyte-mediated tissue inflammation. J Pharmacol Exp Ther. 2011;337(2):547–556.
  • Gatfield J, Mueller Grandjean C, Sasse T, et al. Slow receptor dissociation kinetics differentiate macitentan from other endothelin receptor antagonists in pulmonary arterial smooth muscle cells. PloS One. 2012;7(10):e47662.
  • Brossard P, Derendorf H, Xu J, et al. Pharmacokinetics and pharmacodynamics of ponesimod, a selective S1P1 receptor modulator, in the first-in-human study. Br J Clin Pharmacol. 2013;76:888–896.
  • Brossard P, Scherz M, Halabi A, et al. Multiple-dose tolerability, pharmacokinetics, and pharmacodynamics of ponesimod, an S1P1 receptor modulator: favorable impact of dose up-titration. J Clin Pharmacol. 2014;54:179–188.
  • Reyes M, Hoch M, Brossard P, et al. Mass balance, pharmacokinetics and metabolism of the selective S1P1 receptor modulator ponesimod in humans. Xenobiotica. 2015;45:139–149.
  • Olsson T, Boster A, Fernández Ó, et al. Oral ponesimod in relapsing-remitting multiple sclerosis: a randomised phase II trial. J Neurol Neurosurg Psychiatry. 2014;85(11):1198–1208.
  • D’Ambrosio D, Freedman MS, Prinz J. Ponesimod, a selective S1P1 receptor modulator: a potential treatment for multiple sclerosis and other immune-mediated diseases. Ther Adv Chronic Dis. 2016;7(1):18–33.
  • Mori M, Kuwabara S. Are more sphingosine 1-phosphate receptor agonists a better therapeutic option against multiple sclerosis? J Neurol Neurosurg Psychiatry. 2014;85(11):1180.
  • Means CK, Brown JH. Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc Res. 2009;82(2):193–200.
  • Sanna MG, Liao J, Jo E, et al. Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J Biol Chem. 2004;279(14):13839–13848.
  • Rey M, Hess P, Clozel M, et al. Desensitization by progressive up-titration prevents first-dose effects on the heart: guinea pig study with ponesimod, a selective S1P1 receptor modulator. PloS One. 2013;8(9):e74285.
  • Scherz MW, Brossard P, D’Ambrosio D, et al. Three different up-titration regimens of ponesimod, an S1P1 receptor modulator, in healthy subjects. J Clin Pharmacol. 2015;55:688–697.
  • Kappos L, Fox RJ, Burcklen M, et al., Ponesimod compared with teriflunomide in patients with relapsing multiple sclerosis in the active-comparator phase 3 OPTIMUM study: a randomized clinical Trial. JAMA Neurol. 2021. 78(5): 558–567.
  • Wong J, Hertoghs N, Lemle A, et al. COVID-19 vaccine antibody response in RMS patients treated with ponesimod: results from the long-term extension study AC-058B202. Poster presented at The Consortium of Multiple Sclerosis Centers Annual Meeting June 2022, National Harbor, Maryland, US.
  • Selmaj K, Li DK, Hartung HP, et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): an adaptive, dose-ranging, randomised, phase 2 study. Lancet Neurol. 2013;12(8):756–767.
  • Kappos L, Li DKB, Stüve O, et al. Safety and efficacy of siponimod (BAF312) in patients with relapsing-remitting multiple sclerosis: dose-blinded, randomized extension of the phase 2 BOLD Study. JAMA Neurol. 2016;73(9):1089–1098.
  • Kappos L, Bar-Or A, Cree BAC, et al., Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018. 391(10127): 1263–1273.
  • Huth F, Gardin A, Umehara K, et al. Prediction of the impact of cytochrome P450 2C9 genotypes on the drug-drug interaction potential of siponimod with physiologically-based pharmacokinetic modeling: a comprehensive approach for drug label recommendations. Clin Pharmacol Ther. 2019;106(5):1113–1124.
  • Gergely P, Nuesslein-Hildesheim B, Guerini D, et al. The selective sphingosine 1-phosphate receptor modulator BAF312 redirects lymphocyte distribution and has species-specific effects on heart rate. Br J Pharmacol. 2012;167(5):1035–1047.
  • Fryer RM, Muthukumarana A, Harrison PC, et al. The clinically-tested S1P receptor agonists, FTY720 and BAF312, demonstrate subtype-specific bradycardia (S1P(1)) and hypertension (S1P(3)) in rat. PloS One. 2012;7(12):e52985.
  • Olberg HK, Eide GE, Cox RJ, et al. Antibody response to seasonal influenza vaccination in patients with multiple sclerosis receiving immunomodulatory therapy. Eur J Neurol. 2018;25(3):527–534.
  • Metze C, Winkelmann A, Loebermann M, et al. Immunogenicity and predictors of response to a single dose trivalent seasonal influenza vaccine in multiple sclerosis patients receiving disease-modifying therapies. CNS Neurosci Ther. 2019;25(2):245–254.
  • Woopen C, Schleußner K, Akgün K, et al. Approach to SARS-CoV-2 vaccination in patients with multiple sclerosis. Front Immunol. 2021;12:701752.
  • Krbot Skorić M, Rogić D, Lapić I, et al. Humoral immune response to COVID-19 vaccines in people with secondary progressive multiple sclerosis treated with siponimod. Mult Scler Relat Disord. 2022;57:103435.
  • Ziemssen T, Rauser B, Ettle B, et al. Assessing the immune response to SARS-CoV-2 mRNA vaccines in patients with secondary progressive multiple sclerosis treated with siponimod (AMA-VACC clinical trial). Poster P810 - ECTRIMS Congress - October 2021. Available at: https://www.medcommshydhosting.com/MSKnowledgecenter/ectrims/2021/posters/P810_ECTRIMS2021.pdf
  • Ozanimod (Zeposia®) – highlights of prescribing information. [Cited 31 January 2022]. Available at: https://packageinserts.bms.com/pi/pi_zeposia.pdf
  • Jaillard C, Harrison S, Stankoff B, et al. Edg8/S1P5: an oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci. 2005;25(6):1459–1469.
  • Scott FL, Clemons B, Brooks J, et al. Ozanimod (RPC1063) is a potent sphingosine-1-phosphate receptor-1 (S1P1) and receptor-5 (S1P5) agonist with autoimmune disease-modifying activity. Br J Pharmacol. 2016;173:1778–1792.
  • Rasche L, Paul F. Ozanimod for the treatment of relapsing remitting multiple sclerosis. Expert Opin Pharmacother. 2018;19(18):2073–2086.
  • Cohen JA, Arnold DL, Comi G, et al. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15:373–381.
  • Cohen JA, Comi G, Selmaj KW, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): a multicentre, randomised, 24-month, phase 3 trial. Lancet Neurol. 2019;18:1021–1033.
  • Comi G, Kappos L, Selmaj KW, et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): a multicentre, randomised, minimum 12-month, phase 3 trial. Lancet Neurol. 2019;18:1009–1020.
  • Kosmidou M, Katsanos AH, Katsanos KH, et al. Multiple sclerosis and inflammatory bowel diseases: a systematic review and meta-analysis. J Neurol. 2017;264:254–259.
  • Harada T, Wilbraham D, de La Borderie G, et al. Cardiac effects of amiselimod compared with fingolimod and placebo: results of a randomised, parallel-group, phase I study in healthy subjects. Br J Clin Pharmacol. 2017;83:1011–1027.
  • Sugahara K, Maeda Y, Shimano K, et al. Amiselimod, a novel sphingosine 1‐phosphate receptor‐1 modulator, has potent therapeutic efficacy for autoimmune diseases, with low bradycardia risk. Br J Pharmacol. 2017;174:15–27.
  • Kappos L, Arnold DL, Bar‐Or A, et al. Safety and efficacy of amiselimod in relapsing multiple sclerosis (MOMENTUM): a randomised, double‐blind, placebo‐controlled phase 2 trial. Lancet Neurol. 2016;15:1148–1159.
  • Sugahara K, Maeda Y, Shimano K, et al. MT-1303, a novel sphingosine 1-phosphate (S1P) receptor modulator, has less potential for bradycardia than fingolimod. Barcelona: ECTRIMS Congress; October 2015: 551
  • Kappos L, Arnold DL, Bar-Or A, et al. Two-year results from a phase 2 extension study of oral amiselimod in relapsing multiple sclerosis. Mult Scler. 2018;24:1605–1616.
  • Komiya T, Sato K, Shioya H, et al. Efficacy and immunomodulatory actions of ONO-4641, a novel selective agonist for sphingosine 1-phosphate receptors 1 and 5, in preclinical models of multiple sclerosis. Clin Exp Immunol. 2013;171:54–62.
  • Krosser S, Wolna P, Fischer TZ, et al. Effect of ceralifimod (ONO-4641) on lymphocytes and cardiac function: randomized, double-blind, placebo-controlled trial with an open-label fingolimod arm. J Clin Pharmacol. 2015;55:1051–1060.
  • Chaudhry BZ, Cohen JA, Conway DS. Sphingosine 1-phosphate receptor modulators for the treatment of multiple sclerosis. Neurotherapeutics. 2017;14:859–873.
  • Bar-Or A, Zipp F, Vollmer T, et al. Safety of ONO-4641 in patients with relapsing remitting multiple sclerosis: results from a six-month interim analysis of the DreaMS extension study. P997 ECTRIMS 2013; [Cited 3 March 2022]. Available at: https://onlinelibrary.ectrims-congress.eu/ectrims/2013/copenhagen/34477/doctor.amit.bar-or.safety.of.ono-4641.in.patients.with.relapsing.remitting.html
  • Chun J, Giovannoni G, Hunter SF. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: differential downstream receptor signalling and clinical profile effects. Drugs. 2021;81:207–231.
  • Kappos L, Antel J, Comi G, et al. Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med. 2006;355:1124.
  • Baldin E, Lugaresi A. Ponesimod for the treatment of relapsing multiple sclerosis. Expert Opin Pharmacother. 2020;21:1955–1964.
  • Samjoo IA, Worthington E, Haltner A, et al. Indirect comparisons of siponimod with fingolimod and ofatumumab in multiple sclerosis: assessing the feasibility of propensity score matching analyses. Curr Med Res Opin. 2021;37:1933–1944.
  • Merkel B, Butzkueven H, Traboulsee AL, et al. Timing of high-efficacy therapy in relapsing-remitting multiple sclerosis: a systematic review. Autoimmun Rev. 2017;16:658–665.
  • Fernandez O. Is there a change of paradigm towards more effective treatment early in the course of apparent high-risk MS? Mult Scler Relat Disord. 2017;17:75–83.
  • De Stefano N, Stromillo ML, Giorgio A, et al. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87:93–99.
  • Jeffery DR, Di Cantogno EV, Ritter S, et al. The relationship between the rate of brain volume loss during first 24 months and disability progression over 24 and 48 months in relapsing MS. J Neurol. 2016;263:299–305.
  • European Medicines Agency. Gilenya: EPAR product information. 2019. [Cited 24 June 2022]. www.ema.europa.eu/en/documents/product-information/gilenya-epar-product-information_en.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.