146
Views
1
CrossRef citations to date
0
Altmetric
Review

A comprehensive update of the metabolic and toxicological considerations for immunosuppressive drugs used during pancreas transplantation

ORCID Icon, ORCID Icon, &
Pages 405-427 | Received 26 Mar 2023, Accepted 28 Jul 2023, Published online: 09 Aug 2023

References

  • Fridell JA, Niederhaus S, Curry M, et al. The survival advantage of pancreas after kidney transplant. Am J Transplant. 2019;19(3):823–830. doi: 10.1111/ajt.15106
  • Sollinger HW, Odorico JS, Becker YT, et al. One thousand simultaneous pancreas-kidney transplants at a single center with 22-year follow-up. Ann Surg. 2009;250(4):618–630. doi: 10.1097/SLA.0b013e3181b76d2b
  • Jenssen T, Hartmann A, Birkeland KI. Long-term diabetes complications after pancreas transplantation. Curr Opin Organ Transplant. 2017;22(4):382–388. doi: 10.1097/MOT.0000000000000436
  • Reine TM, Kolseth IB, Meen AJ, et al. Effects of restoring normoglycemia in type 1 diabetes on inflammatory profile and renal extracellular matrix structure after simultaneous pancreas and kidney transplantation. Diabet Res Clin Pract. 2015;107(1):46–53. doi: 10.1016/j.diabres.2014.10.006
  • Fioretto P, Steffes MW, Sutherland DE, et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339(2):69–75. doi: 10.1056/NEJM199807093390202
  • Kandaswamy R, Stock PG, Miller J, et al. OPTN/SRTR 2019 annual data report: pancreas. Am J Transplant. 2021;21 Suppl 2:138–207. doi: 10.1111/ajt.16496
  • Kandaswamy R, Stock PG, Miller J, et al. OPTN/SRTR 2020 annual data report: pancreas. Am J Transplant. 2022;22 Suppl 2:137–203. doi: 10.1111/ajt.16979
  • Anderson PT, Aquil S, McLean K, et al. First Canadian experience with donation after cardiac death simultaneous pancreas and kidney transplants. Can J Surg. 2017;60(5):323–328. doi: 10.1503/cjs.011315
  • Kandaswamy R, Skeans MA, Gustafson SK, et al. OPTN/SRTR 2013 annual data report: pancreas. Am J Transplant. 2015;15(Suppl 2):1–20. doi: 10.1111/ajt.13196
  • Finger EB, Radosevich DM, Dunn TB, et al. A composite risk model for predicting technical failure in pancreas transplantation. Am J Transplant. 2013;13(7):1840–1849. doi: 10.1111/ajt.12269
  • Siskind E, Maloney C, Jayaschandaran V, et al. Pancreatic retransplantation is associated with poor allograft survival: an update of the united network for organ sharing database. Pancreas. 2015;44(5):769–772. doi: 10.1097/MPA.0000000000000330
  • Perosa M, Sergi F, Noujaim H. Outcomes after pancreas retransplantation: is the juice worth the squeeze? Curr Opin Organ Transplant. 2018;23(4):461–466. doi: 10.1097/MOT.0000000000000554
  • Kopp W, van Meel, van MM H, et al. Center volume is associated with outcome after pancreas transplantation within the eurotransplant region. Transplantation. 2017;101(6):1247–1253. doi: 10.1097/TP.0000000000001308
  • Drachenberg CB, Torrealba JR, Nankivell BJ, et al. Guidelines for the diagnosis of antibody-mediated rejection in pancreas allografts—updated Banff grading schema. Am J Transplant. 2011;11(9):1792–1802. doi: 10.1111/j.1600-6143.2011.03670.x
  • Rangel EB. The metabolic and toxicological considerations for immunosuppressive drugs used during pancreas transplantation. Expert Opin Drug Metab Toxicol. 2012;8(12):1531–1548. doi: 10.1517/17425255.2012.724058
  • Cerise A, Shaker T, LeNguyen P, et al. Outcomes of primary simultaneous pancreas-kidney transplants by induction agent in the United States. Transplant Direct. 2022;8(12):e1412. doi: 10.1097/TXD.0000000000001412
  • Cantarovich D, Kervella D, Karam G, et al. Tacrolimus- versus sirolimus-based immunosuppression after simultaneous pancreas and kidney transplantation: 5-year results of a randomized trial. Am J Transplant. 2020;20(6):1679–1690. doi: 10.1111/ajt.15809
  • Stock PG, Mannon RB, Armstrong B, et al. Challenges of calcineurin inhibitor withdrawal following combined pancreas and kidney transplantation: results of a prospective, randomized clinical trial. Am J Transplant. 2020;20(6):1668–1678. doi: 10.1111/ajt.15817
  • Girman P, Lipar K, Kocik M, et al. Sirolimus vs mycophenolate mofetil (MMF) in primary combined pancreas and kidney transplantation. Results of a long-term prospective randomized study. Am J Transplant. 2020;20(3):779–787. doi: 10.1111/ajt.15622
  • Siskind EJ, Liu C, Collins DT, et al. Use of mammalian target of rapamycin inhibitors for pancreas transplant immunosuppression is associated with improved allograft survival and improved early patient survival. Pancreas. 2019;48(5):644–651. doi: 10.1097/MPA.0000000000001322
  • Bosmuller C, Messner F, Margreiter C, et al. Good results with individually adapted long-term immunosuppression following alemtuzumab versus ATG induction therapy in combined kidney-pancreas transplantation: a single-center report. Ann Transplant. 2019;24:52–56. doi: 10.12659/AOT.911712
  • Li J, Koch M, Kramer K, et al. Dual antibody induction and de novo use of everolimus enable low-dose tacrolimus with early corticosteroid withdrawal in simultaneous pancreas-kidney transplantation. Transpl Immunol. 2018;50:26–33. doi: 10.1016/j.trim.2018.06.001
  • Fridell JA, Mangus RS, Chen JM, et al. Steroid-free three-drug maintenance regimen for pancreas transplant alone: comparison of induction with rabbit antithymocyte globulin +/− rituximab. Am J Transplant. 2018;18(12):3000–3006. doi: 10.1111/ajt.14921
  • Bank JR, Heidt S, Moes DJ, et al. Alemtuzumab induction and delayed acute rejection in steroid-free simultaneous pancreas-kidney transplant recipients. Transplant Direct. 2017;3(1):e124. doi: 10.1097/TXD.0000000000000634
  • Fernandez-Burgos I, Montiel Casado MC, Perez-Daga JA, et al. Induction therapy in simultaneous pancreas-kidney transplantation: thymoglobulin versus basiliximab. Transplant Proc. 2015;47(1):120–122. doi: 10.1016/j.transproceed.2014.12.003
  • Stratta RJ, Rogers J, Orlando G, et al. Depleting antibody induction in simultaneous pancreas-kidney transplantation: a prospective single-center comparison of alemtuzumab versus rabbit anti-thymocyte globulin. Expert Opin Biol Ther. 2014;14(12):1723–1730. doi: 10.1517/14712598.2014.953049
  • Sageshima J, Ciancio G, Chen L, et al. Everolimus with low-dose tacrolimus in simultaneous pancreas and kidney transplantation. Clin Transplant. 2014;28(7):797–801. doi: 10.1111/ctr.12381
  • Zachariah M, Gregg A, Schold J, et al. Alemtuzumab induction in simultaneous pancreas and kidney transplantation. Clin Transplant. 2013;27:693–700. doi: 10.1111/ctr.12199
  • Ciancio G, Sageshima J, Chen L, et al. Advantage of rapamycin over mycophenolate mofetil when used with tacrolimus for simultaneous pancreas kidney transplants: randomized, single-center trial at 10 years. Am J Transplant. 2012;12(12):3363–3376. doi: 10.1111/j.1600-6143.2012.04235.x
  • Bosmuller C, Ollinger R, Sieb M, et al. Tacrolimus monotherapy following alemtuzumab induction in combined kidney-pancreas transplantation: results of a prospective randomized trial. Ann Transplant. 2012;17(4):45–51. doi: 10.12659/AOT.883693
  • Amorese G, Lombardo C, Tudisco A, et al. Induction and immunosuppressive management of pancreas transplant recipients. Curr Pharm Des. 2020;26(28):3425–3439. doi: 10.2174/1381612826666200430111620
  • Rangel EB. Tacrolimus in pancreas transplant: a focus on toxicity, diabetogenic effect and drug–drug interactions. Expert Opin Drug Metab Toxicol. 2014;10(11):1585–1605. doi: 10.1517/17425255.2014.964205
  • Fernandes-Silva G, Ivani de P M, EB R. mTOR inhibitors in pancreas transplant: adverse effects and drug-drug interactions. Expert Opin Drug Metab Toxicol. 2017;13:367–385.
  • de Lucena DD, Rangel ÉB, De Lucena EB. Glucocorticoids use in kidney transplant setting. Expert Opin Drug Metab Toxicol. 2018;14(10):1023–1041. doi: 10.1080/17425255.2018.1530214
  • Tedesco-Silva H, Pascual J, Viklicky O, et al. Safety of everolimus with reduced calcineurin inhibitor exposure in de novo kidney transplants: an analysis from the randomized TRANSFORM study. Transplantation. 2019;103(9):1953–1963. doi: 10.1097/TP.0000000000002626
  • Chakkera HA, Weil EJ, Pham PT, et al. Can new-onset diabetes after kidney transplant be prevented? Diabetes Care. 2013;36(5):1406–1412. doi: 10.2337/dc12-2067
  • Neidlinger N, Singh N, Klein C, et al. Incidence of and risk factors for posttransplant diabetes mellitus after pancreas transplantation. Am J Transplant. 2010;10(2):398–406. doi: 10.1111/j.1600-6143.2009.02935.x
  • Knight RJ, Islam AK, Pham C, et al. Weight gain after simultaneous kidney and pancreas transplantation. Transplantation. 2020;104(3):632–639. doi: 10.1097/TP.0000000000002862
  • de Lucena DD, de Sa JR, Medina-Pestana JO, et al. Modifiable variables are major risk factors for posttransplant diabetes mellitus in a time-dependent manner in kidney transplant: an observational cohort study. J Diabetes Res. 2020;2020:1938703. doi: 10.1155/2020/1938703
  • Porrini E, Delgado P, Alvarez A, et al. The combined effect of pre-transplant triglyceride levels and the type of calcineurin inhibitor in predicting the risk of new onset diabetes after renal transplantation. Nephrol Dial Transplant. 2008;23(4):1436–1441. doi: 10.1093/ndt/gfm762
  • Rodriguez-Rodriguez AE, Porrini E, Torres A. Beta-cell dysfunction induced by tacrolimus: a way to explain type 2 diabetes? Int J Mol Sci. 2021;22(19):10311. doi: 10.3390/ijms221910311
  • Barlow AD, Nicholson ML, Herbert TP. Evidence for rapamycin toxicity in pancreatic β-cells and a review of the underlying molecular mechanisms. Diabetes. 2013;62(8):2674–2682. doi: 10.2337/db13-0106
  • Lim SW, Jin L, Luo K, et al. Ginseng extract reduces tacrolimus-induced oxidative stress by modulating autophagy in pancreatic beta cells. Lab Invest. 2017;97(11):1271–1281. doi: 10.1038/labinvest.2017.75
  • Lombardi A, Trimarco B, Iaccarino G, et al. Impaired mitochondrial calcium uptake caused by tacrolimus underlies beta-cell failure. Cell Commun Signal. 2017;15(1):47. doi: 10.1186/s12964-017-0203-0
  • Namvaran F, Sharifi A, Namvaran MM, et al. The effect of tacrolimus on reactive oxygen species and total antioxidant status in pancreatic beta cell line. Exp Clin Transplant. 2015;13(6):510–515. doi: 10.6002/ect.2014.0028
  • Tong L, Li W, Zhang Y, et al. Tacrolimus inhibits insulin release and promotes apoptosis of Min6 cells through the inhibition of the PI3K/Akt/mTOR pathway. Mol Med Rep. 2021;24(3). doi: 10.3892/mmr.2021.12297
  • Jin J, Jin L, Luo K, et al. Effect of empagliflozin on tacrolimus-induced pancreas islet dysfunction and renal injury. Am J Transplant. 2017;17(10):2601–2616. doi: 10.1111/ajt.14316
  • Constantinescu AA, Abbas M, Kassem M, et al. Differential influence of tacrolimus and sirolimus on mitochondrial-dependent signaling for apoptosis in pancreatic cells. Mol Cell Biochem. 2016;418(1–2):91–102. doi: 10.1007/s11010-016-2736-8
  • Jin J, Lim SW, Jin L, et al. Effects of metformin on hyperglycemia in an experimental model of tacrolimus- and sirolimus-induced diabetic rats. Korean J Intern Med. 2017;32(2):314–322. doi: 10.3904/kjim.2015.394
  • Luo K, Yu JH, Quan Y, et al. Therapeutic potential of coenzyme Q(10) in mitochondrial dysfunction during tacrolimus-induced beta cell injury. Sci Rep. 2019;9(1):7995. doi: 10.1038/s41598-019-44475-x
  • Sun IO, Jin L, Jin J, et al. The effects of addition of coenzyme Q10 to metformin on sirolimus-induced diabetes mellitus. Korean J Intern Med. 2019;34(2):365–374. doi: 10.3904/kjim.2017.004
  • Tan S, Song L, Wang M, et al. ARF influences diabetes through promoting the proliferation and malignant development of β cells. Artif Cells Nanomed Biotechnol. 2018;46(sup3):S702–S706. doi: 10.1080/21691401.2018.1505750
  • Speckmann T, Sabatini PV, Nian C, et al. Npas4 transcription factor expression is regulated by calcium signaling pathways and prevents tacrolimus-induced cytotoxicity in pancreatic beta cells. J Biol Chem. 2016;291(6):2682–2695. doi: 10.1074/jbc.M115.704098
  • Trinanes J, ten Dijke, ten DP N, et al. Tacrolimus-induced BMP/SMAD signaling associates with metabolic stress–activated FOXO1 to trigger β-cell failure. Diabetes. 2020;69(2):193–204. doi: 10.2337/db19-0828
  • Ozbay LA, Smidt K, Mortensen DM, et al. Cyclosporin and tacrolimus impair insulin secretion and transcriptional regulation in INS-1E beta-cells. Br J Pharmacol. 2011;162(1):136–146. doi: 10.1111/j.1476-5381.2010.01018.x
  • Rodriguez-Rodriguez AE, Trinanes J, Velazquez-Garcia S, et al. The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. Am J Transplant. 2013;13(7):1665–1675. doi: 10.1111/ajt.12236
  • Rodriguez-Rodriguez AE, Trinanes J, Porrini E, et al. Glucose homeostasis changes and pancreatic β-cell proliferation after switching to cyclosporin in tacrolimus-induced diabetes mellitus. Nefrología (English Edition). 2015;35(3):264–272. doi: 10.1016/j.nefroe.2015.06.006
  • Trinanes J, Rodriguez-Rodriguez AE, Brito-Casillas Y, et al. Deciphering tacrolimus-induced toxicity in pancreatic β cells. Am J Transplant. 2017;17(11):2829–2840. doi: 10.1111/ajt.14323
  • Okamoto H, Hribal ML, Lin HV, et al. Role of the forkhead protein FoxO1 in cell compensation to insulin resistance. J Clin Invest. 2006;116(3):775–782. doi: 10.1172/JCI24967
  • Guo S, Dai C, Guo M, et al. Inactivation of specific β cell transcription factors in type 2 diabetes. J Clin Invest. 2013;123(8):3305–3316. doi: 10.1172/JCI65390
  • Li L, Zhao H, Chen B, et al. FXR activation alleviates tacrolimus-induced post-transplant diabetes mellitus by regulating renal gluconeogenesis and glucose uptake. J Transl Med. 2019;17(1):418. doi: 10.1186/s12967-019-02170-5
  • Nordheim E, Birkeland KI, Asberg A, et al. Preserved insulin secretion and kidney function in recipients with functional pancreas grafts 1 year after transplantation: a single-center prospective observational study. Eur J Endocrinol. 2018;179(4):251–259. doi: 10.1530/EJE-18-0360
  • Bleskestad KB, Nordheim E, Lindahl JP, et al. Insulin secretion and action after pancreas transplantation. A retrospective single-center study. Scand J Clin Lab Invest. 2021;81(5):365–370. doi: 10.1080/00365513.2021.1926535
  • Rangel EB, Melaragno CS, Neves MD, et al. Family history of diabetes as a new determinant of insulin sensitivity and secretion in patients who have undergone a simultaneous pancreas-kidney transplant. Exp Clin Transplant. 2010;8(1):29–37.
  • Ko Y, Shin S, Mun S, et al. Lack of improvement in insulin sensitivity after pancreas transplantation in recipients with a high level of calcineurin inhibitors. Pancreas. 2021;50(4):587–594. doi: 10.1097/MPA.0000000000001800
  • Andacoglu OM, Himmler A, Geng X, et al. Comparison of glycemic control after pancreas transplantation for Type 1 and Type 2 diabetic recipients at a high volume center. Clin Transplant. 2019;33(8):e13656. doi: 10.1111/ctr.13656
  • Teutonico A, Schena PF, Di PS. Glucose metabolism in renal transplant recipients: effect of calcineurin inhibitor withdrawal and conversion to sirolimus. J Am Soc Nephrol. 2005;16(10):3128–3135. doi: 10.1681/ASN.2005050487
  • Johnston O, Rose CL, Webster AC, et al. Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol. 2008;19(7):1411–1418. doi: 10.1681/ASN.2007111202
  • Handisurya A, Kerscher C, Tura A, et al. Conversion from tacrolimus to cyclosporine a improves glucose tolerance in HCV-positive renal transplant recipients. PLoS One. 2016;11(1):e0145319. doi: 10.1371/journal.pone.0145319
  • de Fijter JW, Holdaas H, Oyen O, et al. Early conversion from calcineurin inhibitor- to everolimus-based therapy following kidney transplantation: results of the randomized ELEVATE trial. Am J Transplant. 2017;17(7):1853–1867. doi: 10.1111/ajt.14186
  • Mark W, Hechenleitner P, Dietze O, et al. Duodenal histology for monitoring treatment of acute rejection in pancreaticoduodenal allografts in rats. Transplantation. 2002;73(2):198–203. doi: 10.1097/00007890-200201270-00008
  • Kramer BK, Albano L, Banas B, et al. Efficacy of prolonged- and immediate-release tacrolimus in kidney transplantation: a pooled analysis of two large, randomized, controlled trials. Transplant Proc. 2017;49(9):2040–2049. doi: 10.1016/j.transproceed.2017.07.011
  • Cattral M, Luke S, Knauer MJ, et al. Randomized open-label crossover assessment of Prograf vs Advagraf on immunosuppressant pharmacokinetics and pharmacodynamics in simultaneous pancreas-kidney patients. Clin Transplant. 2018;32(2):e13180. doi: 10.1111/ctr.13180
  • Falconer SJ, Jansen C, Oniscu GC. Conversion from twice-daily to once-daily tacrolimus in simultaneous pancreas-kidney transplant patients. Transplant Proc. 2014;46(5):1458–1462. doi: 10.1016/j.transproceed.2013.12.056
  • Uchida J, Kuwabara N, Machida Y, et al. Conversion of stable kidney transplant recipients from a twice-daily prograf to a once-daily tacrolimus formulation: a short-term study on its effects on glucose metabolism. Transplant Proc. 2012;44(1):128–133. doi: 10.1016/j.transproceed.2011.11.005
  • Torabi J, Konicki A, Rocca JP, et al. The use of LCP-Tacrolimus (Envarsus XR) in simultaneous pancreas and kidney (SPK) transplant recipients. Am J Surg. 2020;219(4):583–586. doi: 10.1016/j.amjsurg.2020.02.027
  • Kamar N, Cassuto E, Piotti G, et al. Pharmacokinetics of prolonged-release once-daily formulations of tacrolimus in de novo kidney transplant recipients: a randomized, parallel-group, open-label, multicenter study. Adv Ther. 2019;36(2):462–477. doi: 10.1007/s12325-018-0855-1
  • Ruangkanchanasetr P, Sanohdontree N, Supaporn T, et al. Beta cell function and insulin resistance after conversion from tacrolimus twice-daily to extended-release tacrolimus once-daily in stable renal transplant recipients. Ann Transplant. 2016;21:765–774. doi: 10.12659/AOT.900638
  • Zmijewska AA, Zmijewski JW, Becker Jr EJ, et al. Bioenergetic maladaptation and release of HMGB1 in calcineurin inhibitor-mediated nephrotoxicity. Am J Transplant. 2021;21(9):2964–2977. doi: 10.1111/ajt.16561
  • Lim SW, Shin YJ, Luo K, et al. Ginseng increases Klotho expression by FoxO3-mediated manganese superoxide dismutase in a mouse model of tacrolimus-induced renal injury. Aging. 2019;11(15):5548–5569. doi: 10.18632/aging.102137
  • Jin J, Jin L, Lim SW, et al. Klotho deficiency aggravates tacrolimus-induced renal injury via the phosphatidylinositol 3-Kinase-Akt-forkhead box Protein O pathway. Am J Nephrol. 2016;43(5):357–365. doi: 10.1159/000446447
  • Franco ML, Beyerstedt S, Rangel EB. Klotho and mesenchymal stem cells: a review on cell and gene therapy for chronic kidney disease and acute kidney disease. Pharmaceutics. 2021;14(1):11. doi: 10.3390/pharmaceutics14010011
  • Lim SW, Shin YJ, Luo K, et al. Effect of Klotho on autophagy clearance in tacrolimus-induced renal injury. Faseb J. 2019;33(2):2694–2706. doi: 10.1096/fj.201800751R
  • Cao R, Li Y, Hu X, et al. Glycyrrhizic acid improves tacrolimus-induced renal injury by regulating autophagy. Faseb J. 2023;37(2):e22749. doi: 10.1096/fj.202201409RR
  • Ding J, Jin J, Na LY, et al. Exogenous pancreatic kininogenase protects against tacrolimus-induced renal injury by inhibiting PI3K/AKT signaling: The role of bradykinin receptors. Int Immunopharmacol. 2022;105:108547. doi: 10.1016/j.intimp.2022.108547
  • Claus M, Herro R, Wolf D, et al. The TWEAK/Fn14 pathway is required for calcineurin inhibitor toxicity of the kidneys. Am J Transplant. 2018;18(7):1636–1645. doi: 10.1111/ajt.14632
  • Gonzalez-Guerrero C, Ocana-Salceda C, Berzal S, et al. Calcineurin inhibitors recruit protein kinases JAK2 and JNK, TLR signaling and the UPR to activate NF-κB-mediated inflammatory responses in kidney tubular cells. Toxicol Appl Pharmacol. 2013;272(3):825–841. doi: 10.1016/j.taap.2013.08.011
  • Deng S, Jin T, Zhang L, et al. Mechanism of tacrolimus-induced chronic renal fibrosis following transplantation is regulated by ox-LDL and its receptor, LOX-1. Mol Med Rep. 2016;14(5):4124–4134. doi: 10.3892/mmr.2016.5735
  • Yang XQ, Yu SY, Yu L, et al. Effects of tacrolimus on autophagy protein LC3 in puromycin-damaged mouse podocytes. J Int Med Res. 2020;48(12):300060520971422. doi: 10.1177/0300060520971422
  • Shen X, Jiang H, Ying M, et al. Calcineurin inhibitors cyclosporin a and tacrolimus protect against podocyte injury induced by puromycin aminonucleoside in rodent models. Sci Rep. 2016;6(1):32087. doi: 10.1038/srep32087
  • Zhang S, Wang H, Liu Y, et al. Tacrolimus ameliorates tubulointerstitial inflammation in diabetic nephropathy via inhibiting the NFATc1/TRPC6 pathway. J Cell Mol Med. 2020;24(17):9810–9824. doi: 10.1111/jcmm.15562
  • Shengyou Y, Li Y, Zhihong H, et al. Influence of tacrolimus on podocyte injury inducted by angiotensin II. J Renin Angiotensin Aldosterone Syst. 2015;16(2):260–266. doi: 10.1177/1470320314568520
  • Liao R, Liu Q, Zheng Z, et al. Tacrolimus protects podocytes from injury in lupus nephritis partly by stabilizing the cytoskeleton and inhibiting podocyte apoptosis. PLoS One. 2015;10(7):e0132724. doi: 10.1371/journal.pone.0132724
  • Wu J, Zheng C, Wang X, et al. MicroRNA-30 family members regulate calcium/calcineurin signaling in podocytes. J Clin Invest. 2015;125(11):4091–4106. doi: 10.1172/JCI81061
  • Gao Y, Yang H, Wang Y, et al. Evaluation of the inhibitory effect of tacrolimus combined with mycophenolate mofetil on mesangial cell proliferation based on the cell cycle. Int J Mol Med. 2020;46:1582–1592. doi: 10.3892/ijmm.2020.4696
  • Karolin A, Escher G, Rudloff S, et al. Nephrotoxicity of calcineurin inhibitors in kidney epithelial cells is independent of NFAT signaling. Front Pharmacol. 2021;12:789080. doi: 10.3389/fphar.2021.789080
  • Dao M, Lecru L, Vandermeersch S, et al. The cannabinoid receptor 1 is involved in renal fibrosis during chronic allograft dysfunction: proof of concept. J Cell Mol Med. 2019;23(11):7279–7288. doi: 10.1111/jcmm.14570
  • Lazelle RA, McCully BH, Terker AS, et al. Renal deletion of 12 kDa FK506-binding protein attenuates tacrolimus-induced hypertension. J Am Soc Nephrol. 2016;27(5):1456–1464. doi: 10.1681/ASN.2015040466
  • Wang X, Jiang S, Fei L, et al. Tacrolimus causes hypertension by increasing vascular contractility via RhoA (Ras Homolog Family Member A)/ROCK (Rho-Associated Protein Kinase) pathway in mice. Hypertension. 2022;79(10):2228–2238. doi: 10.1161/HYPERTENSIONAHA.122.19189
  • Prokai A, Csohany R, Sziksz E, et al. Calcineurin-inhibition results in upregulation of local renin and subsequent vascular endothelial growth factor production in renal collecting ducts. Transplantation. 2016;100(2):325–333. doi: 10.1097/TP.0000000000000961
  • Liu L, Guo J, Pang XL, et al. Exploration of the mechanism of NORAD activation of TGF-β1/Smad3 through miR-136-5p and promotion of tacrolimus-induced renal fibrosis. Ren Fail. 2023;45(1):2147083. doi: 10.1080/0886022X.2022.2147083
  • Vandenbussche C, Van der Hauwaert C, Dewaeles E, et al. Tacrolimus-induced nephrotoxicity in mice is associated with microRNA deregulation. Arch Toxicol. 2018;92(4):1539–1550. doi: 10.1007/s00204-018-2158-3
  • Lang Y, Zhao Y, Zheng C, et al. MiR-30 family prevents Upar-ITGB3 signaling activation through calcineurin-NFATC pathway to protect podocytes. Cell Death Dis. 2019;10(6):401. doi: 10.1038/s41419-019-1625-y
  • Kim JW, Nam SA, Seo E, et al. Human kidney organoids model the tacrolimus nephrotoxicity and elucidate the role of autophagy. Korean J Intern Med. 2021;36(6):1420–1436. doi: 10.3904/kjim.2020.323
  • Hoff U, Markmann D, Thurn-Valassina D, et al. The mTOR inhibitor Rapamycin protects from premature cellular senescence early after experimental kidney transplantation. PLoS One. 2022;17(4):e0266319. doi: 10.1371/journal.pone.0266319
  • Gui Z, Suo C, Tao J, et al. Everolimus alleviates renal allograft interstitial fibrosis by inhibiting epithelial-to-mesenchymal transition not only via inducing autophagy but also via stabilizing IkappaB-alpha. Front Immunol. 2021;12:753412. doi: 10.3389/fimmu.2021.753412
  • Kurdian M, Herrero-Fresneda I, Lloberas N, et al. Delayed mTOR inhibition with low dose of everolimus reduces TGFβ expression, attenuates proteinuria and renal damage in the renal mass reduction model. PLoS One. 2012;7(3):e32516. doi: 10.1371/journal.pone.0032516
  • Nakagawa S, Masuda S, Nishihara K. Inui K. mTOR inhibitor everolimus ameliorates progressive tubular dysfunction in chronic renal failure rats. Biochem Pharmacol. 2010;79(1):67–76. doi: 10.1016/j.bcp.2009.07.015
  • Shigematsu T, Tajima S, Fu R, et al. The mTOR inhibitor everolimus attenuates tacrolimus-induced renal interstitial fibrosis in rats. Life Sci. 2022;288:120150. doi: 10.1016/j.lfs.2021.120150
  • Piao SG, Bae SK, Lim SW, et al. Drug interaction between cyclosporine and mTOR inhibitors in experimental model of chronic cyclosporine nephrotoxicity and pancreatic islet dysfunction. Transplantation. 2012;93(4):383–389. doi: 10.1097/TP.0b013e3182421604
  • Hartleben B, Godel M, Meyer-Schwesinger C, et al. Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Invest. 2010;120(4):1084–1096. doi: 10.1172/JCI39492
  • Godel M, Hartleben B, Herbach N, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Invest. 2011;121(6):2197–2209. doi: 10.1172/JCI44774
  • Inoki K, Mori H, Wang J, et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J Clin Invest. 2011;121(6):2181–2196. doi: 10.1172/JCI44771
  • Canaud G, Bienaime F, Viau A, et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat Med. 2013;19(10):1288–1296. doi: 10.1038/nm.3313
  • Naik MG, Heller KM, Arns W, et al. Proteinuria and sirolimus after renal transplantation: a retrospective analysis from a large German multicenter database. Clin Transplant. 2014;28(1):67–79. doi: 10.1111/ctr.12280
  • Kuwahara S, Hosojima M, Kaneko R, et al. Megalin-mediated tubuloglomerular alterations in high-fat diet–induced kidney disease. J Am Soc Nephrol. 2016;27(7):1996–2008. doi: 10.1681/ASN.2015020190
  • Yamahara K, Kume S, Koya D, et al. Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J Am Soc Nephrol. 2013;24(11):1769–1781. doi: 10.1681/ASN.2012111080
  • Yamamoto T, Takabatake Y, Takahashi A, et al. High-fat diet–induced lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in the kidney. J Am Soc Nephrol. 2017;28(5):1534–1551. doi: 10.1681/ASN.2016070731
  • Nakamura J, Yamamoto T, Takabatake Y, et al. TFEB-mediated lysosomal exocytosis alleviates high-fat diet–induced lipotoxicity in the kidney. JCI Insight. 2023;8(4). doi: 10.1172/jci.insight.162498
  • Schelling JR. The contribution of lipotoxicity to diabetic kidney disease. Cells. 2022;11(20):3236. doi: 10.3390/cells11203236
  • Shin S, Jung CH, Choi JY, et al. Long-term effects of pancreas transplant alone on nephropathy in type 1 diabetic patients with optimal renal function. PLoS One. 2018;13(1):e0191421. doi: 10.1371/journal.pone.0191421
  • Qazi Y, Shaffer D, Kaplan B, et al. Efficacy and safety of everolimus plus low-dose tacrolimus versus mycophenolate mofetil plus standard-dose tacrolimus in de novo renal transplant recipients: 12-month data. Am J Transplant. 2017;17(5):1358–1369. doi: 10.1111/ajt.14090
  • Pascual J, Berger SP, Witzke O, et al. Everolimus with reduced calcineurin inhibitor exposure in renal transplantation. J Am Soc Nephrol. 2018;29(7):1979–1991. doi: 10.1681/ASN.2018010009
  • Berger SP, Sommerer C, Witzke O, et al. Two-year outcomes in de novo renal transplant recipients receiving everolimus-facilitated calcineurin inhibitor reduction regimen from the TRANSFORM study. Am J Transplant. 2019;19(11):3018–3034. doi: 10.1111/ajt.15480
  • Marcella-Neto R, de Sa JR, Melaragno CS, et al. Late conversion to sirolimus or everolimus after pancreas transplant. Transplant Proc. 2020;52(5):1376–1379. doi: 10.1016/j.transproceed.2020.02.028
  • Infante B, Bellanti F, Correale M, et al. mTOR inhibition improves mitochondria function/biogenesis and delays cardiovascular aging in kidney transplant recipients with chronic graft dysfunction. Aging. 2021;13(6):8026–8039. doi: 10.18632/aging.202863
  • Aziz F, Jorgenson MR, Parajuli S, et al. Polyomavirus and cytomegalovirus infections are risk factors for grafts loss in simultaneous pancreas and kidney transplant. Transpl Infect Dis. 2020;22(3):e13272. doi: 10.1111/tid.13272
  • Knight RJ, Graviss EA, Nguyen DT, et al. Conversion from tacrolimus-mycophenolate mofetil to tacrolimus-Mtor immunosuppression after kidney-pancreas transplantation reduces the incidence of both BK and CMV viremia. Clin Transplant. 2018;32(6):e13265. doi: 10.1111/ctr.13265
  • Shah AP, Chen JM, Fridell JA. Incidence and outcomes of cytomegalovirus in pancreas transplantation with steroid-free immunosuppression. Clin Transplant. 2015;29(12):1221–1229. doi: 10.1111/ctr.12655
  • Axelrod D, Leventhal JR, Gallon LG, et al. Reduction of CMV disease with steroid-free immunosuppresssion in simultaneous pancreas–kidney transplant recipients. Am J Transplant. 2005;5(6):1423–1429. doi: 10.1111/j.1600-6143.2005.00855.x
  • Kaminski H, Marseres G, Yared N, et al. mTOR inhibitors prevent CMV infection through the restoration of functional αβ and γδ T cells in kidney transplantation. J Am Soc Nephrol. 2022;33(1):121–137. doi: 10.1681/ASN.2020121753
  • Mujtaba M, Fridell J, Sharfuddin A, et al. BK virus nephropathy in simultaneous pancreas kidney transplant: a potentially preventable cause of kidney allograft loss. Clin Transplant. 2012;26(2):E87–E93. doi: 10.1111/j.1399-0012.2012.01599.x
  • Benavides CA, Pollard VB, Mauiyyedi S, et al. BK virus–associated nephropathy in sirolimus-treated renal transplant patients: incidence, course, and clinical outcomes. Transplantation. 2007;84(1):83–88. doi: 10.1097/01.tp.0000268524.27506.39
  • Elfadawy N, Flechner SM, Liu X, et al. CMV Viremia is associated with a decreased incidence of BKV reactivation after kidney and kidney-pancreas transplantation. Transplantation. 2013;96(12):1097–1103. doi: 10.1097/TP.0b013e3182a6890d
  • Elfadawy N, Flechner SM, Liu X, et al. The impact of surveillance and rapid reduction in immunosuppression to control BK virus-related graft injury in kidney transplantation. Transplant Int. 2013;26(8):822–832. doi: 10.1111/tri.12134
  • Mallat SG, Tanios BY, Itani HS, et al. CMV and BKPyV infections in renal transplant recipients receiving an mTOR inhibitor–based regimen versus a CNI-based regimen: a systematic review and meta-analysis of randomized, controlled trials. Clin J Am Soc Nephrol. 2017;12(8):1321–1336. doi: 10.2215/CJN.13221216
  • Cantarovich D, Giral-Classe M, Hourmant M, et al. Low incidence of kidney rejection after simultaneous kidney-pancreas transplantation after antithymocyte globulin induction and in the absence of corticosteroids: results of a prospective pilot study in 28 consecutive cases. Transplantation. 2000;69(7):1505–1508. doi: 10.1097/00007890-200004150-00051
  • Aoun M, Eschewege P, Hamoudi Y, et al. Very early steroid withdrawal in simultaneous pancreas-kidney transplants. Nephrol Dial Transplant. 2007;22(3):899–905. doi: 10.1093/ndt/gfl660
  • Fridell JA, Agarwal A, Powelson JA, et al. Steroid withdrawal for pancreas after kidney transplantation in recipients on maintenance prednisone immunosuppression. Transplantation. 2006;82(3):389–392. doi: 10.1097/01.tp.0000228904.01482.88
  • Vessal G, Wiland AM, Philosophe B, et al. Early steroid withdrawal in solitary pancreas transplantation results in equivalent graft and patient survival compared with maintenance steroid therapy. Clin Transplant. 2007;21(4):491–497. doi: 10.1111/j.1399-0012.2007.00675.x
  • Gallon LG, Winoto J, Chhabra D, et al. Long-term renal transplant function in recipient of simultaneous kidney and pancreas transplant maintained with two prednisone-free maintenance immunosuppressive combinations: tacrolimus/mycophenolate mofetil versus tacrolimus/sirolimus. Transplantation. 2007;83(10):1324–1329. doi: 10.1097/01.tp.0000264189.58324.91
  • Gruessner RW, Kandaswamy R, Humar A, et al. Calcineurin inhibitor- and steroid-free immunosuppression in pancreas-kidney and solitary pancreas transplantation. Transplantation. 2005;79(9):1184–1189. doi: 10.1097/01.TP.0000161221.17627.8A
  • Kaufman DB, Leventhal JR, Gallon LG, et al. Alemtuzumab induction and prednisone-free maintenance immunotherapy in simultaneous pancreas-kidney transplantation comparison with rabbit antithymocyte globulin induction – long-term results. Am J Transplant. 2006;6(2):331–339. doi: 10.1111/j.1600-6143.2005.01166.x
  • Muthusamy AS, Vaidya AC, Sinha S, et al. Alemtuzumab induction and steroid-free maintenance immunosuppression in pancreas transplantation. Am J Transplant. 2008;8(10):2126–2131. doi: 10.1111/j.1600-6143.2008.02373.x
  • Reddy KS, Devarapalli Y, Mazur M, et al. Alemtuzumab with rapid steroid taper in simultaneous kidney and pancreas transplantation: comparison to induction with antithymocyte globulin. Transplant Proc. 2010;42(6):2006–2008. doi: 10.1016/j.transproceed.2010.05.090
  • Uemura T, Ramprasad V, Matsushima K, et al. Single dose of alemtuzumab induction with steroid-free maintenance immunosuppression in pancreas transplantation. Transplantation. 2011;92(6):678–685. doi: 10.1097/TP.0b013e31822b58be
  • Rajab A, Pelletier RP, Ferguson RM, et al. Steroid-free maintenance immunosuppression with rapamune and low-dose neoral in pancreas transplant recipients. Transplantation. 2007;84(9):1131–1137. doi: 10.1097/01.tp.0000287117.98785.54
  • Tanchanco R, Krishnamurthi V, Winans C, et al. Beneficial outcomes of a steroid-free regimen with thymoglobulin induction in pancreas-kidney transplantation. Transplant Proc. 2008;40(5):1551–1554. doi: 10.1016/j.transproceed.2008.03.081
  • Cantarovich D, Karam G, Hourmant M, et al. Steroid avoidance versus steroid withdrawal after simultaneous pancreas-kidney transplantation. Am J Transplant. 2005;5(6):1332–1338. doi: 10.1111/j.1600-6143.2005.00816.x
  • Malheiro J, Martins L, Fonseca I, et al. Steroid withdrawal in simultaneous pancreas-kidney transplantation: a 7-year report. Transplant Proc. 2009;41(3):909–912. doi: 10.1016/j.transproceed.2009.03.036
  • Boggi U, Vistoli F, Andres A, et al. First world consensus conference on pancreas transplantation: part II - recommendations. Am J Transplant. 2021;21(Suppl 3):17–59.
  • Montero N, Webster AC, Royuela A, et al. Steroid avoidance or withdrawal for pancreas and pancreas with kidney transplant recipients. Cochrane Database Syst Rev. 2014;(9):CD007669. doi:10.1002/14651858.CD007669.pub2
  • Trapecar M, Wogram E, Svoboda D, et al. Human physiomimetic model integrating microphysiological systems of the gut, liver, and brain for studies of neurodegenerative diseases. Sci Adv. 2021;7(5). doi: 10.1126/sciadv.abd1707
  • Alshamsan A, Binkhathlan Z, Kalam MA, et al. Mitigation of tacrolimus-associated nephrotoxicity by PLGA nanoparticulate delivery following multiple dosing to mice while maintaining its immunosuppressive activity. Sci Rep. 2020;10(1):6675. doi: 10.1038/s41598-020-63767-1
  • Hanna J, Hossain GS, Kocerha J. The potential for microRNA therapeutics and clinical research. Front Genet. 2019;10:478. doi: 10.3389/fgene.2019.00478
  • Rossing P, Caramori ML, Chan JCN, et al. Executive summary of the KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease: an update based on rapidly emerging new evidence. Kidney Int. 2022;102(5):990–999. doi: 10.1016/j.kint.2022.06.013
  • de Boer IH, Khunti K, Sadusky T, et al. Diabetes management in chronic kidney disease: a consensus report by the American Diabetes Association (ADA) and Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2022;102(5):974–989. doi: 10.1016/j.kint.2022.08.012
  • Baigent C, Emberson J, Haynes R. Impact of diabetes on the effects of sodium glucose co-transporter-2 inhibitors on kidney outcomes: collaborative meta-analysis of large placebo-controlled trials. Lancet. 2022;400(10365):1788–1801. doi: 10.1016/S0140-6736(22)02074-8
  • Lim JH, Kwon S, Jeon Y, et al. The efficacy and safety of SGLT2 inhibitor in diabetic kidney transplant recipients. Transplantation. 2022;106(9):e404–e412. doi: 10.1097/TP.0000000000004228
  • Ujjawal A, Schreiber B, Verma A. Sodium-glucose cotransporter-2 inhibitors (Sglt2i) in kidney transplant recipients: what is the evidence? Ther Adv Endocrinol Metab. 2022;13:20420188221090001.
  • Boeder S, Edelman SV. Sodium-glucose co-transporter inhibitors as adjunctive treatment to insulin in type 1 diabetes: A review of randomized controlled trials. Diab Obes Metab. 2019;21 Suppl 2(S2):62–77. doi: 10.1111/dom.13749

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.