265
Views
0
CrossRef citations to date
0
Altmetric
Review

Metabolic and toxicological considerations regarding CGRP mAbs and CGRP antagonists to treat migraine in COVID-19 patients: a narrative review

ORCID Icon, , ORCID Icon, , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 951-967 | Received 13 May 2023, Accepted 02 Nov 2023, Published online: 15 Nov 2023

References

  • Stovner LJ, Hagen K, Linde M, et al. The global prevalence of headache: an update, with analysis of the influences of methodological factors on prevalence estimates. J Headache Pain. 2022 Apr 12;23(1):34. doi: 10.1186/s10194-022-01402-2
  • Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019 May;18(5):459–480. doi: 10.1016/S1474-4422(18)30499-X.
  • Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders, 3rd edition. Cephalalgia. 2018 Jan;38(1):1–211. doi: 10.1177/0333102417738202
  • Robbins MS. Diagnosis and management of headache: a review. JAMA. 2021 May 11;325(18):1874–1885. doi: 10.1001/jama.2021.1640
  • Wang Z, Yang X, Zhao B, et al. Primary headache disorders: from pathophysiology to neurostimulation therapies. Heliyon. 2023 Apr;9(4):e14786. doi: 10.1016/j.heliyon.2023.e14786
  • Steel SJ, Robertson CE, Whealy MA. Current understanding of the pathophysiology and approach to tension-type headache. Curr Neurol Neurosci Rep. 2021 Oct 2;21(10):56. doi: 10.1007/s11910-021-01138-7
  • Loder E. Triptan therapy in migraine. N Engl J Med. 2010 Jul 1;363(1):63–70. doi: 10.1056/NEJMct0910887
  • Cameron C, Kelly S, Hsieh SC, et al. Triptans in the acute treatment of migraine: a systematic review and network meta-analysis. Headache. 2015 Jul;55(4):221–235. doi: 10.1111/head.12601
  • Ferrari MD, Goadsby PJ, Burstein R, et al. Migraine. Nat Rev Dis Primers. 2022 Jan 13;8(1):2. doi: 10.1038/s41572-021-00328-4
  • Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol. 1990;28(2):183–187. doi: 10.1002/ana.410280213
  • Hansen JM, Hauge AW, Olesen J, et al. Calcitonin gene-related peptide triggers migraine-like attacks in patients with migraine with aura. Cephalalgia. 2010;30(10):1179–1186.
  • Olesen J, Diener HC, Husstedt IW, et al. Calcitonin gene–related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004 Mar 11;350(11):1104–1110. doi: 10.1056/NEJMoa030505
  • Edvinsson L, Haanes KA, Warfvinge K, et al. CGRP as the target of new migraine therapies — successful translation from bench to clinic. Nat Rev Neurol. 2018;14(6):338–350. doi: 10.1038/s41582-018-0003-1
  • Gostin LO, Gronvall GK. The origins of COVID-19 — why it matters (and why it doesn’t). N Engl J Med. 2023 Jun 22;388(25):2305–2308. doi: 10.1056/NEJMp2305081
  • World Health Organization. WHO coronavirus (COVID-19) dashboard. Available from: https://covid19.who.int/
  • Bok K, Sitar S, Graham BS, et al. Accelerated COVID-19 vaccine development: milestones, lessons, and prospects. Immunity. 2021 Aug 10;54(8):1636–1651. doi: 10.1016/j.immuni.2021.07.017
  • Zhao J, Zhao S, Ou J, et al. COVID-19: Coronavirus Vaccine Development Updates. Front Immunol. 2020;11:602256. doi: 10.3389/fimmu.2020.602256
  • Castaldo M, Waliszewska-Prosół M, Koutsokera M, et al. Headache onset after vaccination against SARS-CoV-2: a systematic literature review and meta-analysis. J Headache Pain. 2022 Mar 31;23(1):41. doi: 10.1186/s10194-022-01400-4
  • Frontera JA, Tamborska AA, Doheim MF, et al. Neurological events reported after COVID-19 vaccines: an analysis of VAERS. Ann Neurol. 2022 Mar 2;91(6):756–771. doi: 10.1002/ana.26339
  • Garcia-Azorin D, Baykan B, Beghi E, et al. Timing of headache after COVID-19 vaccines and its association with cerebrovascular events: an analysis of 41,700 VAERS reports. Cephalalgia. 2022 Oct;42(11–12):1207–1217. doi: 10.1177/03331024221099231
  • García-Azorín D, Do TP, Gantenbein AR, et al. Delayed headache after COVID-19 vaccination: a red flag for vaccine induced cerebral venous thrombosis. J Headache Pain. 2021 Sep 17;22(1):108. doi: 10.1186/s10194-021-01324-5
  • Caronna E, Pozo-Rosich P. Headache as a symptom of COVID-19: narrative review of 1-year research. Curr Pain Headache Rep. 2021 Nov 11;25(11):73. doi: 10.1007/s11916-021-00987-8
  • Porta-Etessam J, Matías-Guiu JA, González-García N, et al. Spectrum of headaches associated with SARS-CoV-2 infection: study of healthcare professionals. Headache. 2020 Sep;60(8):1697–1704. doi: 10.1111/head.13902
  • WHO. Director-general’s opening remarks at the media briefing. 2023 May 5. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing—5-may-2023
  • Fernández-de-Las-Peñas C, Navarro-Santana M, Gómez-Mayordomo V, et al. Headache as an acute and post-COVID-19 symptom in COVID-19 survivors: a meta-analysis of the current literature. Eur J Neurol. 2021 Nov;28(11):3820–3825. doi: 10.1111/ene.15040
  • SampaioRocha-Filho PA. Headache associated with COVID-19: epidemiology, characteristics, pathophysiology, and management. Headache. 2022 Jun;62(6):650–656. doi: 10.1111/head.14319
  • Bigal ME, Walter S, Rapoport AM. Calcitonin gene-related peptide (CGRP) and migraine current understanding and state of development. Headache. 2013 Sep;53(8):1230–1244. doi: 10.1111/head.12179
  • Deen M, Correnti E, Kamm K, et al. Blocking CGRP in migraine patients – a review of pros and cons. J Headache Pain. 2017 Sep 25;18(1):96. doi: 10.1186/s10194-017-0807-1
  • Russo AF. Calcitonin Gene-Related Peptide (CGRP): a new target for migraine. Annual review of pharmacology and toxicology. Annu Rev Pharmacol Toxicol. 2015 Jan 6;55(1):533–552. doi: 10.1146/annurev-pharmtox-010814-124701
  • Tso AR, Goadsby PJ. Anti-CGRP monoclonal antibodies: the next era of migraine prevention? Curr Treat Options Neurol. 2017 Aug;19(8):27. doi: 10.1007/s11940-017-0463-4
  • Russell FA, King R, Smillie SJ, et al. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014 Oct;94(4):1099–1142. doi: 10.1152/physrev.00034.2013
  • Rissardo JP, Caprara ALF. Gepants for acute and preventive migraine treatment: a narrative review. Brain Sci. 2022 Nov 24;12(12):1612. doi: 10.3390/brainsci12121612
  • Cohen F, Yuan H, Silberstein SD. Calcitonin Gene-Related Peptide (CGRP)-targeted monoclonal antibodies and antagonists in migraine: Current evidence and rationale. BioDrugs. 2022 May;36(3):341–358. doi: 10.1007/s40259-022-00530-0
  • Chiang CC, Schwedt TJ. Calcitonin Gene-Related Peptide (CGRP)-targeted therapies as preventive and acute treatments for migraine-the monoclonal antibodies and gepants. Prog Brain Res. 2020;255:143–170.
  • Pellesi L, Al-Karagholi MA, De Icco R, et al. Effect of vasoactive intestinal polypeptide on development of migraine headaches: a randomized clinical trial. JAMA Netw Open. 2021 Aug 2;4(8):e2118543. doi: 10.1001/jamanetworkopen.2021.18543
  • Lipton RB, Croop R, Stock EG, et al. Rimegepant, an oral Calcitonin gene–related peptide receptor antagonist, for migraine. N Engl J Med. 2019 Jul 11;381(2):142–149. doi: 10.1056/NEJMoa1811090
  • Goadsby PJ, Reuter U, Hallström Y, et al. A controlled trial of erenumab for episodic migraine. N Engl J Med. 2017 Nov 30;377(22):2123–2132. doi: 10.1056/NEJMoa1705848
  • Dodick DW, Ashina M, Brandes JL, et al. ARISE: a phase 3 randomized trial of erenumab for episodic migraine. Cephalalgia. 2018 May;38(6):1026–1037. doi: 10.1177/0333102418759786
  • Dodick DW, Silberstein SD, Bigal ME, et al. Effect of Fremanezumab compared with placebo for prevention of episodic migraine: a randomized clinical trial. JAMA. 2018 May 15;319(19):1999–2008. doi: 10.1001/jama.2018.4853
  • Stauffer VL, Dodick DW, Zhang Q, et al. Evaluation of galcanezumab for the prevention of episodic migraine: the EVOLVE-1 randomized clinical trial. JAMA Neurol. 2018 Sep 1;75(9):1080–1088. doi: 10.1001/jamaneurol.2018.1212
  • Skljarevski V, Matharu M, Millen BA, et al. Efficacy and safety of galcanezumab for the prevention of episodic migraine: results of the EVOLVE-2 phase 3 randomized controlled clinical trial. Cephalalgia. 2018 Jul;38(8):1442–1454. doi: 10.1177/0333102418779543
  • Ashina M, Saper J, Cady R, et al. Eptinezumab in episodic migraine: A randomized, double-blind, placebo-controlled study (PROMISE-1). Cephalalgia. 2020 Mar;40(3):241–254. doi: 10.1177/0333102420905132
  • Dodick DW, Lipton RB, Ailani J, et al. Ubrogepant for the treatment of migraine. N Engl J Med. 2019 Dec 5;381(23):2230–2241. doi: 10.1056/NEJMoa1813049
  • Lipton RB, Croop R, Stock DA, et al. Safety, tolerability, and efficacy of zavegepant 10 mg nasal spray for the acute treatment of migraine in the USA: a phase 3, double-blind, randomised, placebo-controlled multicentre trial. Lancet Neurol. 2023 Mar;22(3):209–217. doi: 10.1016/S1474-4422(22)00517-8
  • Ailani J, Lipton RB, Goadsby PJ, et al. Atogepant for the preventive treatment of migraine. N Engl J Med. 2021 Aug 19;385(8):695–706. doi: 10.1056/NEJMoa2035908
  • Croop R, Lipton RB, Kudrow D, et al. Oral rimegepant for preventive treatment of migraine: a phase 2/3, randomised, double-blind, placebo-controlled trial. Lancet. 2021 Jan 2;397(10268):51–60. doi: 10.1016/S0140-6736(20)32544-7
  • Tepper S, Ashina M, Reuter U, et al. Safety and efficacy of erenumab for preventive treatment of chronic migraine: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017 Jun;16(6):425–434. doi: 10.1016/S1474-4422(17)30083-2
  • Silberstein SD, Dodick DW, Bigal ME, et al. Fremanezumab for the preventive treatment of chronic migraine. N Engl J Med. 2017 Nov 30;377(22):2113–2122. doi: 10.1056/NEJMoa1709038
  • Detke HC, Goadsby PJ, Wang S, et al. Galcanezumab in chronic migraine: the randomized, double-blind, placebo-controlled REGAIN study. Neurology. 2018 Dec 11;91(24):e2211–e2221. doi: 10.1212/WNL.0000000000006640
  • Lipton RB, Goadsby PJ, Smith J, et al. Efficacy and safety of eptinezumab in patients with chronic migraine: PROMISE-2. Neurology. 1377 2020 Mar 31;94(13):e1365–e. doi: 10.1212/WNL.0000000000009169
  • U.S. FDA the patient information for atogepant. cited 2023 4. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/215206s004lbl.pdf
  • Tassorelli C, Diener HC, Dodick DW, et al. Guidelines of the international headache Society for controlled trials of preventive treatment of chronic migraine in adults. Cephalalgia. 2018 Apr;38(5):815–832. doi: 10.1177/0333102418758283
  • Croop R, Ivans A, Anderson MS, et al. A phase 1 randomized study of hemodynamic effects and pharmacokinetic interactions during concomitant use of rimegepant and sumatriptan in healthy adults. Cephalalgia Reports. 2021 Jan 01;4:25158163211007922.
  • U.S. FDA the patient information for rimegepant. cited 2022 4. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/212728s009lbl.pdf
  • Scott LJ. Ubrogepant: First Approval. Drugs. 2020 Feb;80(3):323–328. doi: 10.1007/s40265-020-01264-5
  • U.S. FDA the patient information for ubrogepant cited 2023 2. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/211765s007lbl.pdf
  • Croop R, Madonia J, Stock DA, et al. Zavegepant nasal spray for the acute treatment of migraine: A Phase 2/3 double-blind, randomized, placebo-controlled, dose-ranging trial. Headache. 2022 Oct;62(9):1153–1163. doi: 10.1111/head.14389
  • Bhardwaj R, Malatesta JA, Stringfellow J, et al. Effects of the strong CYP3A4 and P-glycoprotein inhibitor itraconazole on the Pharmacokinetics of oral and intranasal zavegepant (P9-12.011). Tuesday. 2023 Apr 25.
  • Holzer P, Holzer-Petsche U. Constipation caused by anti-calcitonin gene-related peptide migraine therapeutics explained by antagonism of Calcitonin gene-related peptide’s motor-stimulating and prosecretory function in the intestine. Front Physiol. 2021;12:820006. doi: 10.3389/fphys.2021.820006
  • Messina R, Huessler EM, Puledda F, et al. Safety and tolerability of monoclonal antibodies targeting the CGRP pathway and gepants in migraine prevention: a systematic review and network meta-analysis. Cephalalgia. 2023 Mar;43(3):3331024231152169. doi: 10.1177/03331024231152169
  • Barbanti P, Aurilia C, Egeo G, et al. Erenumab in the prevention of high-frequency episodic and chronic migraine: erenumab in real life in Italy (EARLY), the first Italian multicenter, prospective real-life study. Headache. 2021 Feb;61(2):363–372. doi: 10.1111/head.14032
  • Nowaczewska M, Straburzyński M, Waliszewska-Prosół M, et al. Cerebral blood flow and other predictors of responsiveness to erenumab and fremanezumab in migraine—a real-life study. Front Neurol. 2022;13:895476. doi: 10.3389/fneur.2022.895476
  • Frattale I, Caponnetto V, Casalena A, et al. Association between response to triptans and response to erenumab: real-life data. J Headache Pain. 2021 Jan 6;22(1):1. doi: 10.1186/s10194-020-01213-3
  • Barbanti P, Egeo G, Aurilia C, et al. Fremanezumab in the prevention of high-frequency episodic and chronic migraine: a 12-week, multicenter, real-life, cohort study (the FRIEND study). J Headache Pain. 2022 Apr 9;23(1):46. doi: 10.1186/s10194-022-01396-x
  • Iannone LF, Fattori D, Benemei S, et al. Long-term effectiveness of three anti-CGRP monoclonal antibodies in resistant chronic migraine patients based on the MIDAS score. CNS Drugs. 2022 Feb;36(2):191–202. doi: 10.1007/s40263-021-00893-y
  • Silvestro M, Tessitore A, Scotto di Clemente F, et al. Refractory migraine profile in CGRP-monoclonal antibodies scenario. Acta Neurol Scand. 2021 Sep;144(3):325–333. doi: 10.1111/ane.13472
  • Barbanti P, Egeo G, Aurilia C, et al. Predictors of response to anti-CGRP monoclonal antibodies: a 24-week, multicenter, prospective study on 864 migraine patients. J Headache Pain. 2022 Nov 1;23(1):138. doi: 10.1186/s10194-022-01498-6
  • Ihara K, Ohtani S, Watanabe N, et al. Predicting response to CGRP-monoclonal antibodies in patients with migraine in Japan: a single-centre retrospective observational study. J Headache Pain. 2023 Mar 9;24(1):23. doi: 10.1186/s10194-023-01556-7
  • Zecca C, Cargnin S, Schankin C, et al. Clinic and genetic predictors in response to erenumab. Eur J Neurol. 2022 Apr;29(4):1209–1217. doi: 10.1111/ene.15236
  • Baraldi C, Castro FL, Cainazzo MM, et al. Predictors of response to erenumab after 12 months of treatment. Brain Behav. 2021 Aug;11(8):e2260. doi: 10.1002/brb3.2260
  • Pensato U, Baraldi C, Favoni V, et al. Real-life assessment of erenumab in refractory chronic migraine with medication overuse headache. Neurol Sci. 2022 Feb;43(2):1273–1280. doi: 10.1007/s10072-021-05426-5
  • Bottiroli S, De Icco R, Vaghi G, et al. Psychological predictors of negative treatment outcome with Erenumab in chronic migraine: data from an open label long-term prospective study. J Headache Pain. 2021 Oct 2;22(1):114. doi: 10.1186/s10194-021-01333-4
  • Vernieri F, Altamura C, Brunelli N, et al. Rapid response to galcanezumab and predictive factors in chronic migraine patients: a 3-month observational, longitudinal, cohort, multicenter, Italian real-life study. Eur J Neurol. 2022 Apr;29(4):1198–1208. doi: 10.1111/ene.15197
  • Lee HC, Cho S, Kim BK. Predictors of response to galcanezumab in patients with chronic migraine: a real-world prospective observational study. Neurol Sci. 2023 Feb 24;44(7):2455–2463. doi: 10.1007/s10072-023-06683-2
  • Raffaelli B, Fitzek M, Overeem LH, et al. Clinical evaluation of super-responders vs. non-responders to CGRP(-receptor) monoclonal antibodies: a real-world experience. J Headache Pain. 2023 Feb 27;24(1):16. doi: 10.1186/s10194-023-01552-x
  • Nowaczewska M, Straburzyński M, Meder G, et al. Changes in cerebral blood flow after erenumab treatment in good and non-responders—a pilot study of migraine patients. J Clin Med. 2021 Jun 7;10(11):2523. doi: 10.3390/jcm10112523
  • Alpuente A, Gallardo VJ, Asskour L, et al. Salivary CGRP and erenumab treatment response: towards precision medicine in migraine. Ann Neurol. 2022 Nov;92(5):846–859. doi: 10.1002/ana.26472
  • Kim YH, Lee JW, Kim Y, et al. Bidirectional association between migraine and rheumatoid arthritis: two longitudinal follow-up studies with a national sample cohort. BMJ Open. 2021 Jun 8;11(6):e046283. doi: 10.1136/bmjopen-2020-046283
  • Wang YC, Huang YP, Wang MT, et al. Increased risk of rheumatoid arthritis in patients with migraine: a population-based, propensity score-matched cohort study. Rheumatol Int. 2017 Feb;37(2):273–279. doi: 10.1007/s00296-016-3604-2
  • Salahi M, Parsa S, Nourmohammadi D, et al. Immunologic aspects of migraine: a review of literature. Front Neurol. 2022;13:944791. doi: 10.3389/fneur.2022.944791
  • Ashina S, Melo-Carrillo A, Toluwanimi A, et al. Galcanezumab effects on incidence of headache after occurrence of triggers, premonitory symptoms, and aura in responders, non-responders, super-responders, and super non-responders. J Headache Pain. 2023 Mar 16;24(1):26. doi: 10.1186/s10194-023-01560-x
  • Haghdoost F, Puledda F, Garcia-Azorin D, et al. Evaluating the efficacy of CGRP mAbs and gepants for the preventive treatment of migraine: a systematic review and network meta-analysis of phase 3 randomised controlled trials. Cephalalgia. 2023 Apr;43(4):3331024231159366. doi: 10.1177/03331024231159366
  • Murray AM, Stern JI, Robertson CE, et al. Real-world patient experience of CGRP-Targeting therapy for migraine: a narrative review. Curr Pain Headache Rep. 2022 Oct;26(10):783–794. doi: 10.1007/s11916-022-01077-z
  • Fernandes Q, Inchakalody VP, Merhi M, et al. Emerging COVID-19 variants and their impact on SARS-CoV-2 diagnosis, therapeutics and vaccines. Ann Med. 2022 Dec;54(1):524–540. doi: 10.1080/07853890.2022.2031274
  • National Center for Immunization and Respiratory Diseases (U.S.). Division of viral diseases. Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). Available from: https://stacks.cdc.gov/view/cdc/89980
  • Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020 Apr 7;323(13):1239–1242. doi: 10.1001/jama.2020.2648
  • Link-Gelles R, Levy ME, Natarajan K, et al. Estimation of COVID-19 mRNA vaccine effectiveness and COVID-19 illness and severity by vaccination status during Omicron BA.4 and BA.5 sublineage periods. JAMA Network Open. 2023 Mar 1;6(3):e232598. doi: 10.1001/jamanetworkopen.2023.2598
  • Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med. 2020 Dec 31;383(27):2603–2615. doi: 10.1056/NEJMoa2034577
  • Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med. 2021 Feb 4;384(5):403–416. doi: 10.1056/NEJMoa2035389
  • Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021 Jan 09;397(10269):99–111. doi: 10.1016/S0140-6736(20)32661-1
  • Sadoff J, Gray G, Vandebosch A, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med. 2021 Jun 10;384(23):2187–2201. doi: 10.1056/NEJMoa2101544
  • Willett BJ, Grove J, MacLean OA, et al. SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol. 2022 Aug;7(8):1161–1179. doi: 10.1038/s41564-022-01143-7
  • Qu P, Faraone J, Evans JP, et al. Neutralization of the SARS-CoV-2 Omicron BA.4/5 and BA.2.12.1 subvariants. N Engl J Med. 2022 Jun 30;386(26):2526–2528. doi: 10.1056/NEJMc2206725
  • Pérez-Alós L, Armenteros JJA, Madsen JR, et al. Modeling of waning immunity after SARS-CoV-2 vaccination and influencing factors. Nat Commun. 2022 Mar 28;13(1):1614. doi: 10.1038/s41467-022-29225-4
  • Evans JP, Zeng C, Carlin C, et al. Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Sci Transl Med. 2022 Mar 23;14(637):eabn8057. doi: 10.1126/scitranslmed.abn8057
  • Hanson KE, Goddard K, Lewis N, et al. Incidence of Guillain-Barré syndrome after COVID-19 vaccination in the vaccine safety datalink. JAMA Netw Open. 2022 Apr 1;5(4):e228879. doi: 10.1001/jamanetworkopen.2022.8879
  • Woo EJ, Gee J, Marquez P, et al. Post-authorization safety surveillance of Ad.26.COV2.S vaccine: reports to the vaccine adverse event reporting system and v-safe, February 2021–February 2022. Vaccine. 2023 Jul 5;41(30):4422–4430. doi: 10.1016/j.vaccine.2023.06.023
  • Rzymski P. Guillain-Barré syndrome and COVID-19 vaccines: focus on adenoviral vectors. Front Immunol. 2023;14:1183258. doi: 10.3389/fimmu.2023.1183258
  • Heath PT, Galiza EP, Baxter DN, et al. Safety and efficacy of NVX-CoV2373 COVID-19 vaccine. N Engl J Med. 2021 Sep 23;385(13):1172–1183. doi: 10.1056/NEJMoa2107659
  • Dunkle LM, Kotloff KL, Gay CL, et al. Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico. N Engl J Med. 2022 Feb 10;386(6):531–543. doi: 10.1056/NEJMoa2116185
  • World Health Organization. Living guidance for clinical management of COVID-19 LIVING GUIDANCE 23 NOVEMBER 2021. Available from: https://apps.who.int/iris/bitstream/handle/10665/349321/WHO-2019-nCoV-clinical-2021.2-eng.pdf
  • National Institutes of Health. NIH COVID-19 Treatment guidelines. Ritonavir-Boosted Nirmatrelvir (Paxlovid). Available from: https://www.covid19treatmentguidelines.nih.gov/therapies/antivirals-including-antibody-products/ritonavir-boosted-nirmatrelvir–paxlovid-/
  • Hammond J, Leister-Tebbe H, Gardner A, et al. Oral nirmatrelvir for high-risk, nonhospitalized adults with Covid-19. N Engl J Med. 2022 Apr 14;386(15):1397–1408. doi: 10.1056/NEJMoa2118542
  • Wong CKH, ICH A, Lau KTK, et al. Real-world effectiveness of molnupiravir and nirmatrelvir plus ritonavir against mortality, hospitalisation, and in-hospital outcomes among community-dwelling, ambulatory patients with confirmed SARS-CoV-2 infection during the omicron wave in Hong Kong: an observational study. Lancet. 2022 Oct 8;400(10359):1213–1222. doi: 10.1016/S0140-6736(22)01586-0
  • Arbel R, Wolff Sagy Y, Hoshen M, et al. Nirmatrelvir use and severe COVID-19 outcomes during the Omicron surge. N Engl J Med. 2022 Sep 1;387(9):790–798. doi: 10.1056/NEJMoa2204919
  • Najjar-Debbiny R, Gronich N, Weber G, et al. Effectiveness of Paxlovid in reducing severe coronavirus disease 2019 and mortality in high-risk patients. Clin Infect Dis. 2023 Feb 8;76(3):e342–e349. doi: 10.1093/cid/ciac443
  • Ganatra S, Dani SS, Ahmad J, et al. Oral nirmatrelvir and ritonavir in nonhospitalized vaccinated patients with coronavirus disease 2019. Clin Infect Dis. 2023 Feb 18;76(4):563–572. doi: 10.1093/cid/ciac673
  • Stader F, Khoo S, Stoeckle M, et al. Stopping lopinavir/ritonavir in COVID-19 patients: duration of the drug interacting effect. J Antimicrob Chemother. 2020 Oct 1;75(10):3084–3086. doi: 10.1093/jac/dkaa253
  • Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of COVID-19 — final report. N Engl J Med. 2020 Nov 5;383(19):1813–1826. doi: 10.1056/NEJMoa2007764
  • Ali K, Azher T, Baqi M, et al. Remdesivir for the treatment of patients in hospital with COVID-19 in Canada: a randomized controlled trial. CMAJ: Can Med Assoc J = Journal de l’Association Medicale Canadienne. 2022 Feb 22;194(7):E242–e251. doi: 10.1503/cmaj.211698
  • Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses. Lancet. 2022 May 21;399(10339):1941–1953. doi: 10.1016/S0140-6736(22)00519-0
  • Ader F, Bouscambert-Duchamp M, Hites M, et al. Remdesivir plus standard of care versus standard of care alone for the treatment of patients admitted to hospital with COVID-19 (DisCovery): a phase 3, randomised, controlled, open-label trial. Lancet Infect Dis. 2022 Feb;22(2):209–221. doi: 10.1016/S1473-3099(21)00485-0
  • Gottlieb RL, Vaca CE, Paredes R, et al. Early Remdesivir to prevent progression to severe COVID-19 in outpatients. N Engl J Med. 2022 Jan 27;386(4):305–315. doi: 10.1056/NEJMoa2116846
  • Najjar-Debbiny R, Gronich N, Weber G, et al. Effectiveness of Molnupiravir in high-risk patients: a propensity score matched analysis. Clin Infect Dis. 2023 Feb 8;76(3):453–460. doi: 10.1093/cid/ciac781
  • Butler CC, Hobbs FDR, Gbinigie OA, et al. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial. Lancet. 2023 Jan 28;401(10373):281–293. doi: 10.1016/S0140-6736(22)02597-1
  • Lamontagne F, Agarwal A, Rochwerg B, et al. A living WHO guideline on drugs for covid-19. BMJ. 2020 Sep 4;370:m3379.
  • National Institutes of Health. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available from: https://files.covid19treatmentguidelines.nih.gov/guidelines/covid19treatmentguidelines.pdf
  • Ferri N, Bellosta S, Baldessin L, et al. Pharmacokinetics interactions of monoclonal antibodies. Pharmacol Res. 2016 Sep;111:592–599.
  • Szkutnik-Fiedler D. Pharmacokinetics, pharmacodynamics and drug–drug interactions of new anti-migraine drugs—Lasmiditan, gepants, and Calcitonin-gene-related peptide (CGRP) receptor monoclonal antibodies. Pharmaceutics. 2020 Dec 3;12(12):1180. doi: 10.3390/pharmaceutics12121180
  • Loos NHC, Beijnen JH, Schinkel AH. The mechanism-based inactivation of CYP3A4 by Ritonavir: what mechanism? Int J Mol Sci. 2022 Aug 30;23(17):9866. doi: 10.3390/ijms23179866
  • Kageyama M, Namiki H, Fukushima H, et al. Effect of chronic administration of ritonavir on function of cytochrome P450 3A and P-glycoprotein in rats. Biol Pharm Bull. 2005 Jan;28(1):130–137. doi: 10.1248/bpb.28.130
  • U.S. FDA the patient information for zavegepant (Revised 3/2023). Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/216386s000lbl.pdf
  • Tepper SJ. Safety and rational use of the triptans. Med Clin North Am. 2001 Jul;85(4):959–970. doi: 10.1016/S0025-7125(05)70353-9
  • Nhean S, Varela ME, Nguyen YN, et al. COVID-19: A Review of Potential Treatments (Corticosteroids, Remdesivir, Tocilizumab, Bamlanivimab/Etesevimab, and Casirivimab/Imdevimab) and Pharmacological Considerations. J Pharm Pract. 2023 Apr;36(2):407–417. doi: 10.1177/08971900211048139
  • Caronna E, José Gallardo V, Alpuente A, et al. Safety of anti-CGRP monoclonal antibodies in patients with migraine during the COVID-19 pandemic: present and future implications. Neurología. 2021 Oct;36(8):611–617. doi: 10.1016/j.nrl.2021.03.003
  • Schiano di Cola F, Caratozzolo S, Liberini P, et al. CGRP-monoclonal antibodies and SARS-CoV-2 vaccination. J Neurol. 2022 Jun;269(6):2848–2849. doi: 10.1007/s00415-021-10946-3
  • Gelfand AA, Poland G. Migraine treatment and COVID-19 vaccines: no cause for concern. Headache. 2021 Mar;61(3):409–411. doi: 10.1111/head.14086
  • García-Azorín D, Sierra Á, Trigo J, et al. Frequency and phenotype of headache in covid-19: a study of 2194 patients. Sci Rep. 2021 Jul 19;11(1):14674. doi: 10.1038/s41598-021-94220-6
  • Gonzalez-Martinez A, Fanjul V, Ramos C, et al. Headache during SARS-CoV-2 infection as an early symptom associated with a more benign course of disease: a case–control study. Eur J Neurol. 2021 Oct;28(10):3426–3436. doi: 10.1111/ene.14718
  • Dos Anjos de Paula RC, de Maria Frota Vasconcelos T, da Costa FBS, et al. Characterization of headache in COVID-19: a retrospective multicenter study. Mol Neurobiol. 2021 Sep;58(9):4487–4494. doi: 10.1007/s12035-021-02430-w
  • García-Azorín D, García-Ruiz C, Sierra-Mencía Á. Acute and preventive treatment of COVID-19 related headache: a series of 100 patients. Res Square. 2022.
  • García-Azorín D, Trigo J, Talavera B, et al. Frequency and type of red flags in patients with COVID-19 and headache: a series of 104 hospitalized patients. Headache. 2020 Sep;60(8):1664–1672. doi: 10.1111/head.13927
  • Gallardo VJ, Shapiro RE, Caronna E, et al. The relationship of headache as a symptom to COVID-19 survival: a systematic review and meta-analysis of survival of 43,169 inpatients with COVID-19. Headache. 2022 Sep;62(8):1019–1028. doi: 10.1111/head.14376
  • Fernández-de-Las-Peñas C, Cuadrado ML, Gómez-Mayordomo V, et al. Headache as a COVID-19 onset symptom and post-COVID-19 symptom in hospitalized COVID-19 survivors infected with the Wuhan, alpha, or Delta SARS-CoV-2 variants. Headache. 2022 Oct;62(9):1148–1152. doi: 10.1111/head.14398
  • Garcia-Azorin D, Layos-Romero A, Porta-Etessam J, et al. Post-COVID-19 persistent headache: a multicentric 9-months follow-up study of 905 patients. Cephalalgia. 2022 Jul;42(8):804–809. doi: 10.1177/03331024211068074
  • Tana C, Bentivegna E, Cho SJ, et al. Long COVID headache. J Headache Pain. 2022 Aug 1;23(1):93. doi: 10.1186/s10194-022-01450-8
  • López JT, García-Azorín D, Planchuelo-Gómez Á, et al. Phenotypic characterization of acute headache attributed to SARS-CoV-2: an ICHD-3 validation study on 106 hospitalized patients. Cephalalgia. 2020 Nov;40(13):1432–1442. doi: 10.1177/0333102420965146
  • Gonzalez-Martinez A, Guerrero-Peral ÁL, Arias-Rivas S, et al. Amitriptyline for post-COVID headache: effectiveness, tolerability, and response predictors. J Neurol. 2022 Nov;269(11):5702–5709. doi: 10.1007/s00415-022-11225-5
  • Caronna E, Alpuente A, Torres-Ferrus M, et al. Toward a better understanding of persistent headache after mild COVID-19: three migraine-like yet distinct scenarios. Headache. 2021 Sep;61(8):1277–1280. doi: 10.1111/head.14197
  • Karadaş Ö, Gül HL, Öztürk B, et al. Greater occipital nerve block efficacy in COVID‑19 associated headache: a preliminary study. Acta Neurobiol Exp (Wars). 2021;81(4):386–392.
  • Dono F, Consoli S, Evangelista G, et al. New daily persistent headache after SARS-CoV-2 infection: a report of two cases. Neurol Sci. 2021 Oct;42(10):3965–3968. doi: 10.1007/s10072-021-05444-3
  • Moskatel LS, Smirnoff L. Protracted headache after COVID-19: a case series of 31 patients from a tertiary headache center. Headache. 2022 Jul;62(7):903–907. doi: 10.1111/head.14337
  • Krymchantowski AV, Silva-Néto RP, Jevoux C, et al. Indomethacin for refractory COVID or post-COVID headache: a retrospective study. Acta Neurol Belg. 2022 Apr;122(2):465–469. doi: 10.1007/s13760-021-01790-3
  • Tana C, Giamberardino MA, Martelletti P. Long COVID and especially headache syndromes. Curr Opin Neurol. 2023 Jun 1;36(3):168–174. doi: 10.1097/WCO.0000000000001153
  • Ekizoglu E, Gezegen H, Yalınay Dikmen P, et al. The characteristics of COVID-19 vaccine-related headache: clues gathered from the healthcare personnel in the pandemic. Cephalalgia. 2021 Sep;12(4–5):366–375. doi: 10.1177/03331024211042390
  • Göbel CH, Heinze A, Karstedt S, et al. Headache attributed to vaccination against COVID-19 (coronavirus SARS-CoV-2) with the ChAdOx1 nCoV-19 (AZD1222) vaccine: a multicenter observational cohort study. Pain Ther. 2021 Dec;10(2):1309–1330. doi: 10.1007/s40122-021-00296-3
  • Sekiguchi K, Watanabe N, Miyazaki N, et al. Incidence of headache after COVID-19 vaccination in patients with history of headache: a cross-sectional study. Cephalalgia. 2021 Aug;18(3):266–272. doi: 10.1177/03331024211038654
  • Caronna E, van den Hoek TC, Bolay H, et al. Headache attributed to SARS-CoV-2 infection, vaccination and the impact on primary headache disorders of the COVID-19 pandemic: a comprehensive review. Cephalalgia. 2023 Jan;43(1):3331024221131337. doi: 10.1177/03331024221131337
  • Magdy R, Khedr D, Yacoub O, et al. Epidemiological aspects of headache after different types of COVID-19 vaccines: an online survey. Headache. 2022 Sep;62(8):1046–1052. doi: 10.1111/head.14374
  • Göbel CH, Heinze A, Karstedt S, et al. Clinical characteristics of headache after vaccination against COVID-19 (coronavirus SARS-CoV-2) with the BNT162b2 mRNA vaccine: a multicentre observational cohort study. Brain Commun. 2021;3(3):fcab169.
  • Buoninfante A, Andeweg A, Baker AT, et al. Understanding thrombosis with thrombocytopenia syndrome after COVID-19 vaccination. NPJ Vaccines. 2022 Nov 9;7(1):141. doi: 10.1038/s41541-022-00569-8
  • Lange M, Enkhbaatar P, Traber DL, et al. Role of calcitonin gene-related peptide (CGRP) in ovine burn and smoke inhalation injury. J Appl Physiol (1985). 2009 Jul;107(1):176–184. doi: 10.1152/japplphysiol.00094.2009
  • Aoki-Nagase T, Nagase T, Oh-Hashi Y, et al. Calcitonin gene-related peptide mediates acid-induced lung injury in mice. Respirology. 2007 Nov;12(6):807–813. doi: 10.1111/j.1440-1843.2007.01172.x
  • Barklin A, Theodorsson E, Tyvold SS, et al. Alteration of neuropeptides in the lung tissue correlates brain death-induced neurogenic edema. J Heart Lung Transplant. 2009 Jul;28(7):725–732. doi: 10.1016/j.healun.2009.04.008
  • Sakuta H, Inaba K, Muramatsu S. Calcitonin gene-related peptide enhances apoptosis of thymocytes. J Neuroimmunol. 1996 Jul;67(2):103–109. doi: 10.1016/0165-5728(96)00053-7
  • Trigo J, García-Azorín D, Sierra-Mencía Á, et al. Cytokine and interleukin profile in patients with headache and COVID-19: a pilot, CASE-control, study on 104 patients. J Headache Pain. 2021 Jun 4;22(1):51. doi: 10.1186/s10194-021-01268-w
  • Gárate G, Pascual M, Rivero M, et al. Serum Calcitonin gene-related peptide α and β levels are increased in COVID-19 inpatients. Arch Med Res. 2023 Jan;54(1):56–63. doi: 10.1016/j.arcmed.2022.12.002
  • Gárate G, Toriello M, González-Quintanilla V, et al. Serum alpha-CGRP levels are increased in COVID-19 patients with headache indicating an activation of the trigeminal system. BMC neurol. 2023 Mar 17;23(1):109. doi: 10.1186/s12883-023-03156-z
  • Rizzi M, Tonello S, Morani F, et al. CGRP plasma levels correlate with the clinical evolution and prognosis of hospitalized acute COVID-19 patients. Viruses. 2022 Sep 26;14(10):2123. doi: 10.3390/v14102123
  • Ochoa-Callejero L, García-Sanmartín J, Villoslada-Blanco P, et al. Circulating levels of Calcitonin gene-related peptide are lower in COVID-19 patients. J Endocr Soc. 2021 Mar 1;5(3):bvaa199. doi: 10.1210/jendso/bvaa199
  • Bolay H, Karadas Ö, Oztürk B, et al. HMGB1, NLRP3, IL-6 and ACE2 levels are elevated in COVID-19 with headache: a window to the infection-related headache mechanism. J Headache Pain. 2021 Aug 12;22(1):94. doi: 10.1186/s10194-021-01306-7
  • Wang K, Fenton BT, Deng Y, et al. Calcitonin gene–related peptide monoclonal antibodies and risk of SARS-CoV-2 infection and severe COVID-19 outcomes among veterans with migraine disorder. JAMA Netw Open. 2023 Jul 3;6(7):e2326371. doi: 10.1001/jamanetworkopen.2023.26371
  • Pooventhiran T, Marondedze EF, Govender PP, et al. Energy and reactivity profile and proton affinity analysis of rimegepant with special reference to its potential activity against SARS-CoV-2 virus proteins using molecular dynamics. J Mol Model. 2021 Sep 4;27(10):276. doi: 10.1007/s00894-021-04885-z
  • Beghi E, Giussani G, Westenberg E, et al. Acute and post-acute neurological manifestations of COVID-19: present findings, critical appraisal, and future directions. J Neurol. 2022 May;269(5):2265–2274. doi: 10.1007/s00415-021-10848-4
  • Taquet M, Sillett R, Zhu L, et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry. 2022 Oct;9(10):815–827. doi: 10.1016/S2215-0366(22)00260-7
  • Cilia R, Bonvegna S, Straccia G, et al. Effects of COVID-19 on Parkinson’s disease clinical features: a community-based case-control study. Mov Disord. 2020 Aug;35(8):1287–1292. doi: 10.1002/mds.28170
  • Esselin F, De La Cruz E, Pageot N, et al. Increased worsening of amyotrophic lateral sclerosis patients during Covid-19-related lockdown in France. Amyotroph Lateral Scler Frontotemporal Degener. 2021 Nov;22(7–8):505–507. doi: 10.1080/21678421.2021.1883669
  • Cascini S, Agabiti N, Marino C, et al. Incidence and outcomes of SARS-CoV-2 infection in older adults living with dementia: a population-based cohort study. J Alzheimers Dis. 2022;89(2):681–693.
  • Hu Y, Yang H, Hou C, et al. COVID-19 related outcomes among individuals with neurodegenerative diseases: a cohort analysis in the UK biobank. BMC neurol. 2022 Jan 7;22(1):15. doi: 10.1186/s12883-021-02536-7
  • Liu YH, Wang YR, Wang QH, et al. Post-infection cognitive impairments in a cohort of elderly patients with COVID-19. Mol Neurodegener. 2021 Jul 19;16(1):48. doi: 10.1186/s13024-021-00469-w
  • Douaud G, Lee S, Alfaro-Almagro F, et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature. 2022 Apr;604(7907):697–707. doi: 10.1038/s41586-022-04569-5
  • García-Azorín D, Seeher KM, Newton CR, et al. Disruptions of neurological services, its causes and mitigation strategies during COVID-19: a global review. J Neurol. 2021 Nov;268(11):3947–3960. doi: 10.1007/s00415-021-10588-5
  • Gonzalez-Martinez A, Planchuelo-Gómez Á, Guerrero ÁL, et al. Evaluation of the impact of the COVID-19 lockdown in the clinical course of migraine. Pain Medicine. 2021 Sep 8;22(9):2079–2091. doi: 10.1093/pm/pnaa449
  • Gonzalez-Martinez A, Planchuelo-Gómez Á, Guerrero ÁL, et al. Effects of the onabotulinumtoxinA follow-up delay in migraine course during the COVID-19 lockdown. Neurol Sci. 2021 Dec;42(12):5087–5092. doi: 10.1007/s10072-021-05180-8
  • Fernández-de-Las-Peñas C, Gómez-Mayordomo V, Cuadrado ML, et al. The presence of headache at onset in SARS-CoV-2 infection is associated with long-term post-COVID headache and fatigue: a case-control study. Cephalalgia. 2021 Nov;41(13):1332–1341. doi: 10.1177/03331024211020404
  • Martelletti P, Bentivegna E, Spuntarelli V, et al. Long-COVID headache. SN Compr Clin Med. 2021;3(8):1704–1706.
  • World Health Organization. A clinical case definition of post COVID-19 condition by a Delphi consensus. 2021 Oct 6. Available from: https://www.who.int/publications/i/item/WHO-2019-nCoV-Post_Covid-19_condition-Clinical_case_definition-2021.1
  • Rogers JP, Watson CJ, Badenoch J, et al. Neurology and neuropsychiatry of COVID-19: a systematic review and meta-analysis of the early literature reveals frequent CNS manifestations and key emerging narratives. J Neurol Neurosurg Psychiatry. 2021 Sep;92(9):932–941. doi: 10.1136/jnnp-2021-326405
  • Cagnazzo F, Arquizan C, Derraz I, et al. Neurological manifestations of patients infected with the SARS-CoV-2: a systematic review of the literature. J Neurol. 2021 Aug;268(8):2656–2665. doi: 10.1007/s00415-020-10285-9
  • Guerrero JI, Barragán LA, Martínez JD, et al. Central and peripheral nervous system involvement by COVID-19: a systematic review of the pathophysiology, clinical manifestations, neuropathology, neuroimaging, electrophysiology, and cerebrospinal fluid findings. BMC Infect Dis. 2021 Jun 2;21(1):515. doi: 10.1186/s12879-021-06185-6
  • Yassin A, Nawaiseh M, Shaban A, et al. Neurological manifestations and complications of coronavirus disease 2019 (COVID-19): a systematic review and meta-analysis. BMC neurol. 2021 Mar 30;21(1):138. doi: 10.1186/s12883-021-02161-4
  • Nouraeinejad A. Brain fog as a long-term sequela of COVID-19. SN Compr Clin Med. 2023;5(1):9. doi: 10.1007/s42399-022-01352-5
  • Crivelli L, Palmer K, Calandri I, et al. Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis. Alzheimers Dement. 2022 May;18(5):1047–1066. doi: 10.1002/alz.12644
  • Smadja DM, Yue QY, Chocron R, et al. Vaccination against COVID-19: insight from arterial and venous thrombosis occurrence using data from VigiBase. Eur Respir J. 2021 Jul;58(1):2100956. doi: 10.1183/13993003.00956-2021
  • Luo W, Liu X, Bao K, et al. Ischemic stroke associated with COVID-19: a systematic review and meta-analysis. J Neurol. 2022 Apr;269(4):1731–1740. doi: 10.1007/s00415-021-10837-7
  • Edvinsson L, Chan KY, Eftekhari S, et al. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries. Cephalalgia. 2010 Oct;30(10):1233–1240. doi: 10.1177/0333102410362122
  • Depre C, Antalik L, Starling A, et al. A randomized, double-blind, placebo-controlled study to evaluate the effect of erenumab on exercise time during a treadmill test in patients with stable angina. Headache. 2018 May;58(5):715–723. doi: 10.1111/head.13316
  • Chaitman BR, Ho AP, Behm MO, et al. A randomized, placebo-controlled study of the effects of telcagepant on exercise time in patients with stable angina. Clin Pharmacol Ther. 2012 Mar;91(3):459–466. doi: 10.1038/clpt.2011.246
  • Taquet M, Devinsky O, Cross JH, et al. Incidence of Epilepsy and Seizures Over the First 6 Months After a COVID-19 Diagnosis: A Retrospective Cohort Study. Neurology. 2023 Feb 21;100(8):e790–e799. doi: 10.1212/WNL.0000000000201595
  • Shan D, Li S, Xu R, et al. Post-COVID-19 human memory impairment: a PRISMA-based systematic review of evidence from brain imaging studies. Front Aging Neurosci. 2022;14:1077384. doi: 10.3389/fnagi.2022.1077384
  • Brusaferri L, Alshelh Z, Martins D, et al. The pandemic brain: neuroinflammation in non-infected individuals during the COVID-19 pandemic. Brain Behav Immun. 2022 May;102:89–97.
  • Planchuelo-Gómez Á, García-Azorín D, Guerrero ÁL, et al. Structural brain changes in patients with persistent headache after COVID-19 resolution. J Neurol. 2023 Jan;270(1):13–31. doi: 10.1007/s00415-022-11398-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.