128
Views
0
CrossRef citations to date
0
Altmetric
Review

Drug-drug interactions between COVID-19 drug therapies and antidepressants

, , , & ORCID Icon
Pages 937-950 | Received 06 Aug 2023, Accepted 03 Nov 2023, Published online: 30 Nov 2023

References

  • Roehrig C. Mental disorders top the list of the most costly conditions in the United States roehrig C mental disorders top the list of the most costly conditions in the United States: $201 billion. Health Aff. 2016 Jun 1;35(6):1130–1135. doi:10.1377/hlthaff.2015.1659
  • Theis KA, Roblin DW, Helmick CG, et al. Prevalence and causes of work disability among working-age U.S. adults, 2011-2013, NHIS. Disabil Health J. 2018 Jan;11(1):108–115. doi: 10.1016/j.dhjo.2017.04.010
  • Wittchen HU, Jacobi F, Rehm J, et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol. 2011 Sep;21(9):655–679. doi: 10.1016/j.euroneuro.2011.07.018
  • Nicola M, Alsafi Z, Sohrabi C, et al. The socio-economic implications of the coronavirus pandemic (COVID-19): a review. Int J Surg. 2020 Jun;78:185–193.
  • Sohrabi C, Alsafi Z, O’Neill N, et al. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg. 2020 Apr;76:71–76.
  • Magro L, Moretti U, Leone R. Epidemiology and characteristics of adverse drug reactions caused by drug-drug interactions. Expert Opin Drug Saf. 2012 Jan;11(1):83–94. doi: 10.1517/14740338.2012.631910
  • Hutson S. Researchers sound alarm on ‘silent’ drug interactions. Nat Med. 2011 Jan;17(1):6. doi: 10.1038/nm0111-6
  • Manjhi PK, Kumar R, Priya A, et al. Drug-drug interactions in patients with COVID-19: a retrospective study at a tertiary care hospital in Eastern India. Maedica (Bucur). 2021 Jun;16(2):163–169. doi: 10.26574/maedica.2021.16.2.163
  • Harmer CJ, Duman RS, Cowen PJ. How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry. 2017;4(5):409–418. doi: 10.1016/S2215-0366(17)30015-9
  • Hirschfeld RM. History and evolution of the monoamine hypothesis of depression. J Clin Psychiatry. 2000;61 Suppl 6(6):4–6.
  • Wong DT, Bymaster FP, Engleman EA. Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci. 1995;57(5):411–441. doi: 10.1016/0024-3205(95)00209-O
  • Kokras N, Dalla C. Sex differences in animal models of psychiatric disorders. Br J Pharmacol. 2014 Oct;171(20):4595–619. doi: 10.1111/bph.12710
  • Kokras N, Dalla C. Preclinical sex differences in depression and antidepressant response: Implications for clinical research. J Neurosci Res. 2017 Jan 2;95(1–2):731–736. doi: 10.1002/jnr.23861
  • Kokras N, Dalla C, Papadopoulou-Daifoti Z. Sex differences in pharmacokinetics of antidepressants. Expert opinion on drug metabolism & toxicology. Expert Opin Drug Metab Toxicol. 2011;7(2):213–226. doi: 10.1517/17425255.2011.544250
  • Ables AZ, BAUGHMAN IO. Antidepressants: update on new agents and indications. Am Fam Physician. 2003;67(3):547–555.
  • Zohar J, Stahl S, Moller H-J, et al. A review of the current nomenclature for psychotropic agents and an introduction to the neuroscience-based nomenclature. Eur Neuropsychopharmacol. 2015;25(12):2318–2325.
  • Miguel C, Albuquerque E. Drug interaction in psycho-oncology: antidepressants and antineoplastics. Pharmacology. 2011;88(5–6):333–339. doi: 10.1159/000334738
  • Richelson E. Pharmacokinetic drug interactions of new antidepressants: a review of the effects on the metabolism of other drugs. Mayo Clin Proc. 1997 Sep;72(9):835–847. doi: 10.4065/72.9.835
  • Spina E, Barbieri MA, Cicala G, et al. Clinically relevant drug interactions between newer antidepressants and oral anticoagulants. Expert Opin Drug Metab Toxicol. 2020;16(1):31–44.
  • Nemeroff CB, DeVane CL, Pollock BG. Newer antidepressants and the cytochrome P450 system. Am J Psychiatry. 1996;153(3):311–320.
  • Greenblatt DJ, Von Moltke LL, Harmatz JS, et al. Drug interactions with newer antidepressants: role of human cytochromes P450. J Clin Psychiatry. 1998;59(15):19–27. doi: 10.1097/00004714-199910001-00003
  • Zemanova N, Anzenbacher P, Anzenbacherova E. The role of cytochromes P450 in the metabolism of selected antidepressants and anxiolytics under psychological stress. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2022;166(2):140–149. doi: 10.5507/bp.2022.019
  • Sandson NB, Armstrong SC, Cozza KL. An overview of psychotropic drug-drug interactions. Psychosomatics. 2005 Sep;46(5):464–494. doi: 10.1176/appi.psy.46.5.464
  • Gandhi RT, Lynch JB, Del Rio C, et al. Mild or moderate covid-19. N Engl J Med. 2020 Oct 29;383(18):1757–1766. doi: 10.1056/NEJMcp2009249
  • Lui G, Guaraldi G. Drug treatment of COVID-19 infection. Curr Opin Pulm Med. 2023 May 1;29(3):174–183. doi: 10.1097/MCP.0000000000000953
  • AC–TfIwC-S G, Ginde AA, Paredes R. Tixagevimab–cilgavimab for treatment of patients hospitalised with COVID-19: a randomised, double-blind, phase 3 trial. Lancet Respir Med. 2022 Oct;10(10):972–984. doi: 10.1016/S2213-2600(22)00215-6
  • Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Effect of Sotrovimab on hospitalization or death among high-risk patients with mild to moderate COVID-19: a randomized clinical trial. JAMA. 2022 Apr 5;327(13):1236–1246. doi: 10.1001/jama.2022.2832
  • Stasi C, Fallani S, Voller F, et al. Treatment for COVID-19: an overview. Eur J Pharmacol. 2020 Dec 15;889:173644. doi: 10.1016/j.ejphar.2020.173644
  • COVID-19 Treatment Guidelines. [Internet]. Bethesda (MD): National Institutes of Health (NIH). [cited 2023 Jul 7]. Available from: https://www.covid19treatmentguidelines.nih.gov/.
  • Anakirna emergency use authorization. [Internet]. (MD) United States: FDA [cited 2023 Jul 8]. Available from: https://www.fda.gov/media/163081/download.
  • Levy G, Guglielmelli P, Langmuir P, et al. JAK inhibitors and COVID-19. J Immunother Cancer. 2022 Apr;10(4):e002838. doi: 10.1136/jitc-2021-002838
  • Kmietowicz Z. Covid-19: WHO recommends baricitinib and sotrovimab to treat patients. BMJ. 2022 Jan 13;376:o97. doi: 10.1136/bmj.o97
  • Reddy Vegivinti CT, Pederson JM, Saravu K, et al. Remdesivir therapy in patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. Ann Med Surg. 2021 Feb;62:43–48.
  • Vlaar APJ, Witzenrath M, van Paassen P, et al. Anti-C5a antibody (vilobelimab) therapy for critically ill, invasively mechanically ventilated patients with COVID-19 (PANAMO): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir Med. 2022 Dec;10(12):1137–1146. doi: 10.1016/S2213-2600(22)00297-1
  • Ma H, O’Kennedy R. The structure of natural and recombinant antibodies. Methods Mol Biol. 2015;1348:7–11.
  • Wootla B, Denic A, Rodriguez M. Polyclonal and monoclonal antibodies in clinic. Methods Mol Biol. 2014;1060:79–110.
  • Nelson PN, Reynolds GM, Waldron EE, et al. Monoclonal antibodies. Mol Pathol. 2000 Jun;53(3):111–117. doi: 10.1136/mp.53.3.111
  • Shepard HM, Phillips GL, DT C, et al. Developments in therapy with monoclonal antibodies and related proteins. Clin Med. 2017 Jun;17(3):220–232. doi: 10.7861/clinmedicine.17-3-220
  • Lloyd EC, Gandhi TN, Petty LA. Monoclonal antibodies for COVID-19. JAMA. 2021 Mar 9;325(10):1015. doi: 10.1001/jama.2021.1225
  • Hwang YC, Lu RM, Su SC, et al. Monoclonal antibodies for COVID-19 therapy and SARS-CoV-2 detection. J Biomed Sci. 2022 Jan 4;29(1):1. doi: 10.1186/s12929-021-00784-w
  • Chavda VP, Prajapati R, Lathigara D, et al. Therapeutic monoclonal antibodies for COVID-19 management: an update. Expert Opin Biol Ther. 2022 Jun;22(6):763–780. doi: 10.1080/14712598.2022.2078160
  • Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016 Mar 17;531(7594):381–385. doi: 10.1038/nature17180
  • Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of covid-19 - final report. N Engl J Med. 2020 Nov 5;383(19):1813–1826. doi: 10.1056/NEJMoa2007764
  • Gottlieb RL, Vaca CE, Paredes R, et al. Early remdesivir to prevent progression to severe covid-19 in outpatients. N Engl J Med. 2022 Jan 27;386(4):305–315. doi: 10.1056/NEJMoa2116846
  • Gordon CJ, Tchesnokov EP, Woolner E, et al. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem. 2020 May 15;295(20):6785–6797. doi: 10.1074/jbc.RA120.013679
  • Deb S, Reeves AA, Hopefl R, et al. ADME and pharmacokinetic properties of Remdesivir: its drug interaction potential. Pharmaceuticals (Basel). 2021 Jul 8;14(7):655. doi: 10.3390/ph14070655
  • Yang K. What do we know about remdesivir drug interactions? Clin Transl Sci. 2020 Sep;13(5):842–844. doi: 10.1111/cts.12815
  • National Institutes of Health. Remdesivir 2023. Available from: https://www.covid19treatmentguidelines.nih.gov/antiviral-therapy/remdesivir
  • European Medicines Agency. Summary on compassionate use: remdesivir 2020. Available from: https://www.ema.europa.eu/en/documents/other/summary-compassionate-use-remdesivir-gilead_en.pdf
  • Bahcecioglu OF, Gok S, Durmus M. Is it safe to use remdesivir in combination with a combined p-glycoprotein and CYP3A4 inhibitor? Eur J Hosp Pharm. 2021 Mar;28(2):e6. doi: 10.1136/ejhpharm-2021-002680
  • Indari O, Jakhmola S, Manivannan E, et al. An update on antiviral therapy against SARS-CoV-2: how far have we come? Front Pharmacol. 2021;12:632677. doi: 10.3389/fphar.2021.632677
  • van Harten J. Overview of the pharmacokinetics of fluvoxamine. Clin Pharmacokinet. 1995;29(1):1–9. doi: 10.2165/00003088-199500291-00003
  • Brunotte L, Zheng S, Mecate-Zambrano A, et al. Combination therapy with fluoxetine and the nucleoside analog gs-441524 exerts synergistic antiviral effects against different SARS-CoV-2 variants in vitro. Pharmaceutics. 2021 Sep 3;13(9):1400. doi: 10.3390/pharmaceutics13091400
  • Schloer S, Brunotte L, Mecate-Zambrano A, et al. Drug synergy of combinatory treatment with remdesivir and the repurposed drugs fluoxetine and itraconazole effectively impairs SARS-CoV-2 infection in vitro. Br J Pharmacol. 2021 Jun;178(11):2339–2350. doi: 10.1111/bph.15418
  • Zhou SF. Drugs behave as substrates, inhibitors and inducers of human cytochrome P450 3A4. Curr Drug Metab. 2008 May;9(4):310–322. doi: 10.2174/138920008784220664
  • Landerholm A, Fedotova NO, Levy-Carrick NC, et al. C-L case conference: torsades de pointes in a patient with lifelong Medical trauma, COVID-19, remdesivir, citalopram, quetiapine, and Hemodialysis. J Acad Consult Liaison Psychiatry. 2023 Mar;64(2):147–157. doi: 10.1016/j.jaclp.2022.11.001
  • de Gage S B, Collin C, Le-Tri T, et al. Antidepressants and Hepatotoxicity: a cohort study among 5 million individuals registered in the French National Health Insurance database. CNS Drugs. 2018 Jul;32(7):673–684. doi: 10.1007/s40263-018-0537-1
  • Hampton T. New flu antiviral Candidate May thwart drug resistance. JAMA. 2020 Jan 7;323(1):17. doi: 10.1001/jama.2019.20225
  • EUA for Lagevrio. [Internet]. (MD) United States: FDA [cited 2023 Jul 7]. Available from: https://www.fda.gov/media/155054/download.
  • European Medicines Agency. Lagevrio: withdrawal of the marketing authorisation application 2023. Available from: https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/lagevrio
  • Atmar RL, Finch N. New perspectives on antimicrobial agents: molnupiravir and Nirmatrelvir/ritonavir for treatment of COVID-19. Antimicrob Agents Chemother. 2022 Aug 16;66(8):e0240421. doi: 10.1128/aac.02404-21
  • Molnupiravir and NHC as perpetrators. [Internet]. Amsterdam: European Medicines Agency (EMA), [cited 2023 Jul 7]. Available from: https://www.ema.europa.eu/en/documents/referral/lagevrio-also-known-molnupiravir-mk-4482-covid-19-article-53-procedure-assessment-report_en.pdf.
  • Najjar-Debbiny R, Gronich N, Weber G, et al. Effectiveness of Paxlovid in reducing severe coronavirus disease 2019 and mortality in high-risk patients. Clin Infect Dis. 2023 Feb 8;76(3):e342–e349. doi: 10.1093/cid/ciac443
  • Cai H, Yan J, Liu S, et al. Paxlovid for hospitalized COVID-19 patients with chronic kidney disease. Antiviral Res. 2023 Jun 25;216:105659. doi: 10.1016/j.antiviral.2023.105659
  • EUA for Paxlovid. [Internet]. (MD) United States: FDA [cited 2023 Jul 7]. Available from: https://www.fda.gov/media/155049/download.
  • Blair HA. Nirmatrelvir plus ritonavir in COVID-19: a profile of its use. Drugs Ther Perspect. 2023;39(2):41–47. doi: 10.1007/s40267-022-00971-1
  • Kane AM, Keenan EM, Lee K, et al. Nirmatrelvir-ritonavir treatment of COVID-19 in a high-risk patient population: a retrospective observational study. J Am Coll Clin Pharm. 2023 Jan;6(1):29–33. doi: 10.1002/jac5.1729
  • Azanza JR, Mensa J, Gonzalez Del Castillo J, et al. Interactions listed in the Paxlovid fact sheet, classified according to risks, pharmacological groups, and consequences. Rev Esp Quimioter. 2022 Aug;35(4):357–361. doi: 10.37201/req/054.2022
  • Penzak SR, Hon YY, Lawhorn WD, et al. Influence of ritonavir on olanzapine pharmacokinetics in healthy volunteers. J Clin Psychopharmacol. 2002 Aug;22(4):366–370. doi: 10.1097/00004714-200208000-00006
  • VandenBrink BM, Foti RS, Rock DA, et al. Prediction of CYP2D6 drug interactions from in vitro data: evidence for substrate-dependent inhibition. Drug Metab Dispos. 2012 Jan;40(1):47–53. doi: 10.1124/dmd.111.041210
  • Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005 May 26;352(21):2211–21. doi: 10.1056/NEJMra032424
  • Slaughter RL, Edwards DJ. Recent advances: the cytochrome P450 enzymes. Ann Pharmacother. 1995 Jun;29(6):619–624. doi: 10.1177/106002809502900612
  • Chou WH, Yan FX, de Leon J, et al. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol. 2000 Apr;20(2):246–251. doi: 10.1097/00004714-200004000-00019
  • Loos NHC, Beijnen JH, Schinkel AH. The mechanism-based inactivation of CYP3A4 by Ritonavir: what mechanism? Int J Mol Sci. 2022 Aug 30;23(17):9866. doi: 10.3390/ijms23179866
  • IL K, Calmy A, Ambrosioni J, et al. Serotonin syndrome following drug-drug interactions and CYP2D6 and CYP2C19 genetic polymorphisms in an HIV-infected patient. AIDS. 2012 Nov 28;26(18):2417–2418. doi: 10.1097/QAD.0b013e32835a11ba
  • Group RC, Abbas A, Abbas F. Baricitinib in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial and updated meta-analysis. Lancet. 2022 Jul 30;400(10349):359–368. doi: 10.1016/S0140-6736(22)01109-6
  • Baricitinib EUA Letter of authorization. [Internet]. (MD) United States: FDA [cited 2023 Jul 7]. Available from: https://www.fda.gov/media/143822/download.
  • Pairo-Castineira E, Clohisey S, Klaric L, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021 Mar;591(7848):92–98. doi: 10.1038/s41586-020-03065-y
  • Richardson P, Griffin I, Tucker C, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020 Feb 15;395(10223):e30–e31. doi: 10.1016/S0140-6736(20)30304-4
  • Assadiasl S, Fatahi Y, Mosharmovahed B, et al. Baricitinib: From Rheumatoid Arthritis to COVID-19. J Clin Pharmacol. 2021 Oct;61(10):1274–1285. doi: 10.1002/jcph.1874
  • Singh RK, Shi J, Zemaitaitis BW, et al. Olanzapine increases RGS7 protein expression via stimulation of the janus tyrosine kinase-signal transducer and activator of transcription signaling cascade. J Pharmacol Exp Ther. 2007 Jul;322(1):133–140. doi: 10.1124/jpet.107.120386
  • Fernandez-Clotet A, Castro-Poceiro J, Panes J. Tofacitinib for the treatment of ulcerative colitis. Expert Rev Clin Immunol. 2018 Nov;14(11):881–892. doi: 10.1080/1744666X.2018.1532291
  • Berekmeri A, Mahmood F, Wittmann M, et al. Tofacitinib for the treatment of psoriasis and psoriatic arthritis. Expert Rev Clin Immunol. 2018 Sep;14(9):719–730. doi: 10.1080/1744666X.2018.1512404
  • Dhillon S. Tofacitinib: a review in rheumatoid arthritis. Drugs. 2017 Dec;77(18):1987–2001. doi: 10.1007/s40265-017-0835-9
  • Ghoreschi K, Jesson MI, Li X, et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol. 2011 Apr 1;186(7):4234–4243. doi: 10.4049/jimmunol.1003668
  • Dowty ME, Lin J, Ryder TF, et al. The pharmacokinetics, metabolism, and clearance mechanisms of tofacitinib, a janus kinase inhibitor, in humans. Drug Metab Dispos. 2014 Apr;42(4):759–773. doi: 10.1124/dmd.113.054940
  • Ye Z, Hu J, Wang J, et al. The effect of Resveratrol on the pharmacokinetic profile of tofacitinib and the underlying mechanism. Chem Biol Interact. 2023 Apr 1;374:110398. doi: 10.1016/j.cbi.2023.110398
  • Walton A, Paik J, Quebe A, et al. Frequency of prescription claims for drugs that May interact with janus kinase inhibitors among patients with rheumatoid arthritis in the US. Rheumatol Ther. 2021 Mar;8(1):599–607. doi: 10.1007/s40744-020-00275-8
  • Vastert SJ, Jamilloux Y, Quartier P, et al. Anakinra in children and adults with still’s disease. Rheumatology (Oxford). 2019 Nov 1;58(Suppl 6):vi9–vi22. doi: 10.1093/rheumatology/kez350
  • Dahms K, Mikolajewska A, Ansems K, et al. Anakinra for the treatment of COVID-19 patients: a systematic review and meta-analysis. Eur J Med Res. 2023 Feb 25;28(1):100. doi: 10.1186/s40001-023-01072-z
  • Yang BB, Gozzi P, Sullivan JT. Pharmacokinetics of anakinra in subjects of heavier vs. Lighter body weights. Clin Transl Sci. 2019 Jul;12(4):371–378. doi: 10.1111/cts.12622
  • Lemaitre F, Solas C, Gregoire M, et al. Potential drug-drug interactions associated with drugs currently proposed for COVID-19 treatment in patients receiving other treatments. Fundam Clin Pharmacol. 2020 Oct;34(5):530–547. doi: 10.1111/fcp.12586
  • Cayot A, Laroche D, Disson-Dautriche A, et al. Cytochrome P450 interactions and clinical implication in rheumatology. Clin Rheumatol. 2014 Sep;33(9):1231–1238. doi: 10.1007/s10067-014-2710-3
  • Gupta A, Bagri NK, Tripathy SK, et al. Successful use of tocilizumab in amyloidosis secondary to systemic juvenile idiopathic arthritis. Rheumatol Int. 2020 Jan;40(1):153–159. doi: 10.1007/s00296-019-04363-z
  • Stone JH, Tuckwell K, Dimonaco S, et al. Trial of tocilizumab in Giant-Cell Arteritis. N Engl J Med. 2017 Jul 27;377(4):317–328. doi: 10.1056/NEJMoa1613849
  • Scott LJ. Tocilizumab: A Review in Rheumatoid Arthritis. Drugs. 2017 Nov;77(17):1865–1879. doi: 10.1007/s40265-017-0829-7
  • Kotch C, Barrett D, Teachey DT. Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Rev Clin Immunol. 2019 Aug;15(8):813–822. doi: 10.1080/1744666X.2019.1629904
  • WHOREAfC-TW G, Shankar-Hari M, Vale CL, et al. Association between administration of IL-6 Antagonists and mortality among patients hospitalized for COVID-19: a meta-analysis. JAMA. 2021 Aug 10;326(6):499–518. doi: 10.1001/jama.2021.11330
  • Abidi E, El Nekidy WS, Alefishat E, et al. Tocilizumab and COVID-19: timing of administration and efficacy. Front Pharmacol. 2022;13:825749. doi: 10.3389/fphar.2022.825749
  • Conti V, Corbi G, Sellitto C, et al. Effect of tocilizumab in reducing the mortality rate in COVID-19 patients: a systematic review with meta-analysis. J Pers Med. 2021 Jul 1;11(7):628. doi: 10.3390/jpm11070628
  • Investigators R-C, Gordon AC, Mouncey PR, et al. Interleukin-6 receptor antagonists in critically ill patients with covid-19. N Engl J Med. 2021 Apr 22;384(16):1491–1502.
  • Gupta S, Wang W, Hayek SS, et al. Association between early treatment with tocilizumab and mortality among critically ill patients with COVID-19. JAMA Intern Med. 2021 Jan 1;181(1):41–51. doi: 10.1001/jamainternmed.2020.6252
  • Maraolo AE, Crispo A, Piezzo M, et al. The use of tocilizumab in patients with COVID-19: a systematic review, meta-analysis and trial sequential analysis of randomized controlled studies. J Clin Med. 2021 Oct 25;10(21):4935. doi: 10.3390/jcm10214935
  • Gatti M, Fusaroli M, Caraceni P, et al. Serious adverse events with tocilizumab: pharmacovigilance as an aid to prioritize monitoring in COVID-19. Br J Clin Pharmacol. 2021 Mar;87(3):1533–1540. doi: 10.1111/bcp.14459
  • Schmitt C, Kuhn B, Zhang X, et al. Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther. 2011 May;89(5):735–740. doi: 10.1038/clpt.2011.35
  • Villemure S, Trenaman SC, Goralski KB. The impact of COVID-19 infection on cytochrome P450 3A4-mediated drug metabolism and drug interactions. Expert Opin Drug Metab Toxicol. 2023 Jun 26;19(6):1–4. doi: 10.1080/17425255.2023.2228680
  • Pelechas E, Voulgari PV, Drosos AA. Clinical evaluation of the safety, efficacy and tolerability of sarilumab in the treatment of moderate to severe rheumatoid arthritis. Ther Clin Risk Manag. 2019;15:1073–1079. doi: 10.2147/TCRM.S167452
  • Livertox. Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012-. Sarilumab. [Updated 2021 May 11]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK547964/
  • Khiali S, Rezagholizadeh A, Entezari-Maleki T. A comprehensive review on sarilumab in COVID-19. Expert Opin Biol Ther. 2021 May;21(5):615–626. doi: 10.1080/14712598.2021.1847269
  • Chamlagain R, Shah S, Sharma Paudel B, et al. Efficacy and safety of sarilumab in COVID-19: a systematic review. Interdiscip Perspect Infect Dis. 2021;2021:8903435. doi: 10.1155/2021/8903435
  • Marino A, Munafo A, Augello E, et al. Sarilumab administration in COVID-19 patients: literature review and considerations. Infect Dis Rep. 2022 May 11;14(3):360–371. doi: 10.3390/idr14030040
  • Lee EB, Daskalakis N, Xu C, et al. Disease-drug interaction of sarilumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacokinet. 2017 Jun;56(6):607–615. doi: 10.1007/s40262-016-0462-8
  • Syed YY. Regdanvimab: first approval. Drugs. 2021 Dec;81(18):2133–2137. doi: 10.1007/s40265-021-01626-7
  • Yang M, Li A, Jiang L, et al. Regdanvimab improves disease mortality and morbidity in patients with COVID-19: a meta-analysis. J Infect. 2022 Oct;85(4):e122–e124. doi: 10.1016/j.jinf.2022.05.044
  • Food and drug administration. Fact sheet for healthcare providers: emergency use authorization (EUA) of Sotrovimab 2022. Available from: https://www.fda.gov/media/149534/download
  • Heo Y-A. Sotrovimab: first approval. Drugs. 2022;82(4):477–484. doi: 10.1007/s40265-022-01690-7
  • Spanakis M, Ioannou P, Tzalis S, et al. Drug-drug interactions among patients hospitalized with COVID-19 in Greece. J Clin Med. 2022 Dec 2;11(23):7172. doi: 10.3390/jcm11237172
  • Food and Drug Administration. FACT SHEET for HEALTHCARE PROVIDERS: EMERGENCY USE AUTHORIZATION for EVUSHELDTM (tixagevimab co-packaged with cilgavimab) 2023. Available from: https://www.fda.gov/media/154701/download
  • European Medicines Agency. Evusheld (tixagevimab/cilgavimab) 2022. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/evusheld
  • No Authors Listed Tixagevimab and Cilgavimab (Evusheld) for Pre-Exposure Prophylaxis of COVID-19. JAMA. 2022 Jan 25 3274:384–385.10.1001/jama.2021.24931
  • Sherchan R, JP C. Casirivimab. StatPearls. Treasure Island (FL) 2023.
  • Deeks ED. Casirivimab/Imdevimab: First Approval. Drugs. 2021 Nov;81(17):2047–2055. doi: 10.1007/s40265-021-01620-z
  • Gatti M, De Ponti F, Pea F. Clinically significant drug interactions between psychotropic agents and repurposed COVID-19 therapies. CNS Drugs. 2021 Apr;35(4):345–384. doi: 10.1007/s40263-021-00811-2
  • Vai B, Mazza MG, Marisa CD, et al. Joint European policy on the COVID-19 risks for people with mental disorders: an umbrella review and evidence-and consensus-based recommendations for mental and public health. Eur Psychiatry. 2022;65(1):e47.
  • Sarko J. Antidepressants, old and new. A review of their adverse effects and toxicity in overdose. Emerg Med Clin North Am. 2000 Nov;18(4):637–654. doi: 10.1016/S0733-8627(05)70151-6
  • de Leon J. Why do you keep telling me that drug-drug interactions are important in psychopharmacology when I do not see them in my clinical practice?: my failure to convince clinicians. J Clin Psychopharmacol. 2019;39(1):1–4. doi: 10.1097/JCP.0000000000000924
  • Boyer EW, Shannon M. The serotonin syndrome. N Engl J Med. 2005 Mar 17;352(11):1112–1120. doi: 10.1056/NEJMra041867
  • Beach SR, Celano CM, Noseworthy PA, et al. QTc prolongation, torsades de pointes, and psychotropic medications. Psychosomatics. 2013;54(1):1–13.
  • Ellahi R. Serotonin syndrome: a spectrum of toxicity. BJPsych Adv. 2015;21(5):324–332. doi: 10.1192/apt.bp.114.013037
  • Uddin MF, Alweis, R, Shah, SR, et al. Controversies in Serotonin Syndrome Diagnosis and Management: A Review. J Clin Diagn Res. 2017 Sep;11(9):OE05–OE07. doi: 10.7860/JCDR/2017/29473.10696
  • Juurlink D. Revisiting the drug interaction between tamoxifen and SSRI antidepressants. BMJ. 2016;i5309. doi: 10.1136/bmj.i5309
  • Crook H, Raza S, Nowell J, et al. Long covid—mechanisms, risk factors, and management. BMJ. 2021;374:n1648. doi: 10.1136/bmj.n1648
  • Stauning MA, Gür DJ, Torp-Pedersen C, et al. COVID-19 mortality among selective serotonin reuptake inhibitor users—results from a nationwide cohort. Clin Microbiol Infect. 2023;29(8):1075–1082. doi: 10.1016/j.cmi.2023.04.028
  • Mahdi M, Herman L, Rethelyi JM, et al. Potential role of the antidepressants fluoxetine and fluvoxamine in the treatment of COVID-19. Int J Mol Sci. 2022 Mar 30;23(7):3812. doi: 10.3390/ijms23073812
  • Zheng W, Sun H-L, Cai H, et al. Antidepressants for COVID-19: a systematic review. J Affective Disorders. 2022;307:108–114. doi: 10.1016/j.jad.2022.03.059
  • Conti V, Sellitto C, Torsiello M, et al. Identification of drug interaction adverse events in patients with COVID-19: a systematic review. JAMA Netw Open. 2022 Apr 1;5(4):e227970. doi: 10.1001/jamanetworkopen.2022.7970
  • Borah P, Deb PK, Chandrasekaran B, et al. Neurological consequences of SARS-CoV-2 infection and concurrence of treatment-induced neuropsychiatric adverse events in COVID-19 patients: navigating the uncharted. Front Mol Biosci. 2021;8:627723. doi: 10.3389/fmolb.2021.627723
  • Plasencia-Garcia BO, Rodriguez-Menendez G, Rico-Rangel MI, et al. Drug-drug interactions between COVID-19 treatments and antipsychotics drugs: integrated evidence from 4 databases and a systematic review. Psychopharmacol (Berl). 2021 Feb;238(2):329–340. doi: 10.1007/s00213-020-05716-4
  • Marengoni A, Onder G. Guidelines, polypharmacy, and drug-drug interactions in patients with multimorbidity. BMJ. 2015;350(mar11 4):h1059–h1059. doi: 10.1136/bmj.h1059
  • Dumbreck S, Flynn A, Nairn M, et al. Drug-disease and drug-drug interactions: systematic examination of recommendations in 12 UK national clinical guidelines. BMJ. 2015;350(mar11 2):h949–h949.
  • Scott IA, Hilmer SN, Reeve E, et al. Reducing inappropriate polypharmacy: the process of deprescribing. JAMA Intern Med. 2015;175(5):827–834.
  • Spina E, Hiemke C, de Leon J. Assessing drug-drug interactions through therapeutic drug monitoring when administering oral second-generation antipsychotics. Expert Opin Drug Metab Toxicol. 2016;12(4):407–422. doi: 10.1517/17425255.2016.1154043
  • Monteith S, Glenn T. Comparison of potential psychiatric drug interactions in six drug interaction database programs: a replication study after 2 years of updates. Hum Psychopharmacol Clin Exp. 2021;36(6):e2802. doi: 10.1002/hup.2802

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.