297
Views
0
CrossRef citations to date
0
Altmetric
Review

Overview of the pharmacokinetics and pharmacodynamics of URAT1 inhibitors for the treatment of hyperuricemia and gout

, , , & ORCID Icon
Pages 895-909 | Received 17 May 2023, Accepted 21 Nov 2023, Published online: 25 Nov 2023

References

  • Zhang S, Wang Y, Cheng J, et al. Hyperuricemia and Cardiovascular Disease. Curr Pharm Des. 2019;25(6):700–709. eng. doi: 10.2174/1381612825666190408122557
  • Pai H-L, Hsieh S-T, Su Y-S, et al. Short-term hyperuricemia Leads to structural Retinal changes that can be reversed by serum uric acid lowering agents in mice. Invest Ophthalmol Visual Sci. 2022;63(10):8. eng. doi: 10.1167/iovs.63.10.8
  • Smith E, Hoy D, Cross M, et al. The global burden of gout: estimates from the global burden of disease 2010 study. Ann Rheumatic Dis. 2014;73(8):1470–1476. eng. doi: 10.1136/annrheumdis-2013-204647
  • Dehlin M, Jacobsson L, Roddy E. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 2020;16(7):380–390. eng. doi: 10.1038/s41584-020-0441-1
  • Pathmanathan K, Robinson PC, Hill CL, et al. The prevalence of gout and hyperuricaemia in Australia: an updated systematic review. Semin Arthritis Rheum. 2021;51(1):121–128. eng. doi: 10.1016/j.semarthrit.2020.12.001
  • Kumar AUA, Browne LD, Li X, et al. Temporal trends in hyperuricaemia in the Irish health system from 2006-2014: a cohort study. PLoS One. 2018;13(5):e0198197. eng. doi: 10.1371/journal.pone.0198197
  • Major TJ, Topless RK, Dalbeth N, et al. Evaluation of the diet wide contribution to serum urate levels: meta-analysis of population based cohorts. BMJ eng. 2018;363:k3951. doi: 10.1136/bmj.k3951
  • Chonchol M, Shlipak MG, Katz R, et al. Relationship of uric acid with progression of kidney disease. Am J Kidney Dis. 2007;50(2):239–247. eng. doi: 10.1053/j.ajkd.2007.05.013
  • Shimodaira M, Okaniwa S, Nakayama T. Association of low urine pH with insulin resistance in non-diabetic Japanese subjects. Exp Clin Endocrinol Diabetes. 2018;126(6):357–361. eng. doi: 10.1055/s-0043-122943
  • Cicero AFG, Fogacci F, Desideri G, et al. Arterial stiffness, sugar-sweetened beverages and fruits intake in a rural population sample: data from the brisighella heart study. Nutrients. 2019;11(11):2674. eng. doi: 10.3390/nu11112674
  • Li Q-H, Zou Y-W, Lian S-Y, et al. Sugar-sweeten beverage consumption is associated with more obesity and higher serum uric acid in Chinese male gout patients with early onset. Front Nutr eng. 2022;9:916811. doi: 10.3389/fnut.2022.916811
  • Ebrahimpour-Koujan S, Saneei P, Larijani B, et al. Consumption of sugar sweetened beverages and dietary fructose in relation to risk of gout and hyperuricemia: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2020;60(1):1–10. eng. doi: 10.1080/10408398.2018.1503155
  • Kuo C-F, Grainge MJ, Zhang W, et al. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol. 2015;11(11):649–662. eng. doi: 10.1038/nrrheum.2015.91
  • Brook RA, Forsythe A, Smeeding JE, et al. Chronic gout: epidemiology, disease progression, treatment and disease burden. Curr Med Res Opin. 2010;26(12):2813–2821. eng. doi: 10.1185/03007995.2010.533647
  • Fogacci F, Borghi C, Di Micoli A, et al. Inequalities in enrollment of women and racial minorities in trials testing uric acid lowering drugs. Nutr Metab Cardiovasc Dis. 2021;31(12):3305–3313. eng. doi: 10.1016/j.numecd.2021.09.011
  • Tátrai P, Erdő F, Dörnyei G, et al. Modulation of urate transport by drugs. Pharmaceutics. 2021;13(6):899. [cited. doi: 10.3390/pharmaceutics13060899
  • Cicero AFG, Pontremoli R, Fogacci F, et al. Effect of bempedoic acid on serum uric acid and related outcomes: a systematic review and meta-analysis of the available Phase 2 and Phase 3 clinical studies. Drug Saf. 2020 Aug 01;43(8):727–736. doi: 10.1007/s40264-020-00931-6
  • Furihata K, Nagasawa K, Hagino A, et al. A drug–drug interaction study of a novel, selective urate reabsorption inhibitor dotinurad and the non-steroidal anti-inflammatory drug oxaprozin in healthy adult males. Clin Exp Nephrol. 2020;24(Suppl 1):36–43. eng. doi: 10.1007/s10157-020-01855-2
  • Gravatt L. Gout–is adequate attention devoted to preventing haemorrhagic risk when benzbromarone is administered with warfarin? N Z Med J. 2013;126(1382): 116–117. eng.
  • Yang D-H, Chen H-C, Wei J-C. Early urate-lowering therapy in gouty arthritis with acute flares: a double-blind placebo controlled clinical trial. Eur J Med Res. 2023;28(1):10. eng. doi: 10.1186/s40001-022-00982-8
  • Stocker SL, Graham GG, McLachlan AJ, et al. Pharmacokinetic and pharmacodynamic interaction between allopurinol and probenecid in patients with gout. J Rheumatol. 2011;38(5):904–910. eng. doi: 10.3899/jrheum.101160
  • Dalbeth N, Jones G, Terkeltaub R, et al. Lesinurad, a selective uric acid reabsorption inhibitor, in combination with febuxostat in patients with tophaceous gout: findings of a Phase III clinical trial. Arthritis Rheumatol (Hoboken, NJ). 2017;69(9):1903–1913. eng. doi: 10.1002/art.40159
  • Fukase H, Okui D, Sasaki T, et al. Effects of mild and moderate renal dysfunction on pharmacokinetics, pharmacodynamics, and safety of dotinurad: a novel selective urate reabsorption inhibitor. Clin Exp Nephrol. 2020 Mar 01;24(1):17–24. doi: 10.1007/s10157-019-01825-3
  • Lin Y, Gu X, Liu J, et al. Effects of different doses glimepiride intake on the pharmacokinetics of benzbromarone in rats. Pak J Pharm Sci. 2023 Jan;36(1):191–197. PubMed PMID: 36967511; eng.
  • D PG, P JM, C RF, et al. STUDIES OF THE FATE OF METABOLITES AND ANALOGS OF PROBENECID. Drug Metab Dispos. 1973;1(6):742.
  • Shen Z, Rowlings C, Kerr B, et al. Pharmacokinetics, pharmacodynamics, and safety of lesinurad, a selective uric acid reabsorption inhibitor, in healthy adult males. Drug Design Develop Therapy eng. 2015;9:3423–3434. doi: 10.2147/DDDT.S85193
  • Smith WB, Hall J, Berg JK, et al. Effect of renal impairment on the pharmacokinetics and pharmacodynamics of verinurad, a selective uric acid reabsorption inhibitor. Clin Drug Investig. 2018 Aug 01;38(8):703–713. doi: 10.1007/s40261-018-0652-2
  • Shiramoto M, Liu S, Shen Z, et al. Verinurad combined with febuxostat in Japanese adults with gout or asymptomatic hyperuricaemia: a phase 2a, open-label study. Rheumatology (Oxford). 2018 Sep 1;57(9):1602–1610. PubMed PMID: 29868853; PubMed Central PMCID: PMCPMC6105922. eng. doi: 10.1093/rheumatology/key100
  • Johansson S, Han D, Hunt T, et al. Pharmacokinetics, pharmacodynamics, and safety of verinurad with and without allopurinol in healthy Asian, Chinese, and non-Asian participants. Pharmacol Res Perspec. 2022;10(3):e00929. eng. doi: 10.1002/prp2.929
  • Steinberg AS, Vince BD, Choi Y-J, et al. The pharmacodynamics, pharmacokinetics, and safety of Arhalofenate in combination with febuxostat when treating hyperuricemia associated with gout. J Rheumatol. 2017;44(3):374–379. eng. doi: 10.3899/jrheum.161062
  • Liang B, Wang J, Bai N, et al. Effect of Food on the pharmacokinetics and pharmacodynamics of a single oral dose of SHR4640, a selective urate transporter 1 inhibitor, in healthy Chinese male volunteers. Clin Pharmacol Drug Dev. 2023 Apr;12(4):392–396. doi: 10.1002/cpdd.1191. PubMed PMID: 36317751; eng.
  • Azizi M, Chatellier G, Guyene TT, et al. Pharmacokinetic-pharmacodynamic interactions of candesartan cilexetil and losartan. J Hypertens. 1999 Apr;17(4):561–568. doi: 10.1097/00004872-199917040-00015. PubMed PMID: 10404959; eng.
  • Hedaya MA, Helmy SA Modeling of the pharmacokinetic/pharmacodynamic interaction between irbesartan and hydrochlorothiazide in normotensive subjects. Biopharm Drug Dispos. 2015 May;36(4):216–231. doi: 10.1002/bdd.1935. PubMed PMID: 25545238; eng.
  • An G, Liu W, Duan WR, et al. Population pharmacokinetics and exposure-uric acid analyses after single and multiple doses of ABT-639, a calcium channel blocker, in healthy volunteers. AAPS J. 2015;17(2):416–426. eng. doi: 10.1208/s12248-014-9709-1
  • Lee HA, Yu K-S, Park S-I, et al. URC102, a potent and selective inhibitor of hURAT1, reduced serum uric acid in healthy volunteers. Rheumatology. 2019;58(11):1976–1984. eng. doi: 10.1093/rheumatology/kez140
  • Guo Z, Liu M, Meng J, et al. Mechanistic study on the species differences in excretion pathway of HR011303 in humans and rats. Drug Metab Dispos. 2022;50(6):809–818. eng. doi: 10.1124/dmd.121.000582
  • Taniguchi T, Ashizawa N, Matsumoto K, et al. Pharmacological Evaluation of Dotinurad, a Selective Urate Reabsorption Inhibitor. J Pharmacol Exp Ther. 2019;371(1):162–170. eng. doi: 10.1124/jpet.119.259341
  • Nakatani H, Fushimi M, Sasaki T, et al. Clinical pharmacological study of dotinurad administered to male and female elderly or young subjects. Clin Exp Nephrol. 2020;24(Suppl 1):8–16. eng. doi: 10.1007/s10157-019-01836-0
  • Omura K, Miyata K, Kobashi S, et al. Ideal pharmacokinetic profile of dotinurad as a selective urate reabsorption inhibitor. Drug Metabol Pharmacokinetics. 2020;35(3):313–320. eng. doi: 10.1016/j.dmpk.2020.03.002
  • Koichi O, Keisuke M, Seiichi K, et al. Identification of human UDP-Glucuronosyltransferase and sulfotransferase as responsible for the metabolism of dotinurad, a novel selective urate reabsorption inhibitor. Drug Metab Dispos. 2021;49(11):1016. doi: 10.1124/dmd.120.000251
  • Kumagai Y, Sakaki M, Furihata K, et al. Dotinurad: a clinical pharmacokinetic study of a novel, selective urate reabsorption inhibitor in subjects with hepatic impairment. Clin Exp Nephrol. 2020;24(Suppl 1):25–35. eng. 10.1007/s10157-019-01816-4
  • Uda J, Kobashi S, Miyata S, et al. Discovery of dotinurad (FYU-981), a New phenol derivative with highly potent uric acid lowering activity. ACS Med Chem Lett. 2020 Oct 8;11(10):2017–2023. doi: 10.1021/acsmedchemlett.0c00176. PubMed PMID: 33062187; PubMed Central PMCID: PMCPMC7549256. eng.
  • Zhang J, Dong Y, Gao S, et al. Design, synthesis and activity evaluation of novel lesinurad analogues containing thienopyrimidinone or pyridine substructure as human urate transporter 1 inhibitors. Eur J Med Chem eng. 2022;244:114816. doi: 10.1016/j.ejmech.2022.114816
  • Hosoya T, Furuno K, Kanda S. A non-inferiority study of the novel selective urate reabsorption inhibitor dotinurad versus febuxostat in hyperuricemic patients with or without gout. Clin Exp Nephrol. 2020;24(Suppl 1):71–79. eng. doi: 10.1007/s10157-020-01851-6
  • Hosoya T, Sano T, Sasaki T, et al. Dotinurad versus benzbromarone in Japanese hyperuricemic patient with or without gout: a randomized, double-blind, parallel-group, phase 3 study. Clin Exp Nephrol. 2020;24(Suppl 1):62–70. eng. doi: 10.1007/s10157-020-01849-0
  • Tanaka Y, Nagoshi T, Takahashi H, et al. URAT1-selective inhibition ameliorates insulin resistance by attenuating diet-induced hepatic steatosis and brown adipose tissue whitening in mice. Mol Metabol eng. 2022;55:101411. doi: 10.1016/j.molmet.2021.101411
  • Motoki K, Igarashi T, Omura K, et al. Pharmacokinetic/Pharmacodynamic modeling and simulation of dotinurad, a novel uricosuric agent, in healthy volunteers. Pharmacol Res Perspect. 2019 Dec;7(6):e00533. doi: 10.1002/prp2.533. PubMed PMID: 31788318; PubMed Central PMCID: PMCPMC6880184. eng.
  • Lin Y, Chen X, Ding H, et al. Efficacy and safety of a selective URAT1 inhibitor SHR4640 in Chinese subjects with hyperuricaemia: a randomized controlled phase II study. Rheumatology. 2021;60(11):5089–5097. eng. doi: 10.1093/rheumatology/keab198
  • Uchida S, Shimada K, Misaka S, et al. Benzbromarone pharmacokinetics and pharmacodynamics in different cytochrome P450 2C9 genotypes. Drug Metabol Pharmacokinetics. 2010;25(6):605–610. eng. doi: 10.2133/dmpk.DMPK-10-NT-040
  • Jain AK, Ryan JR, McMahon FG, et al. Effect of single oral doses of benzbromarone on serum and urinary uric acid. Arthritis & Rheumatism. 1974;17(2):149–157. eng. doi: 10.1002/art.1780170207
  • Yan F, Xue X, Lu J, et al. Superiority of low-dose benzbromarone to low-dose febuxostat in a prospective, randomized comparative effectiveness trial in gout patients with renal uric acid underexcretion. Arthritis Rheumatol (Hoboken, NJ). 2022;74(12):2015–2023. eng. doi: 10.1002/art.42266
  • Lee M-H, Graham GG, Williams KM, et al. A benefit-risk assessment of benzbromarone in the treatment of gout. Drug Saf. 2008 Aug 01;31(8):643–665. doi: 10.2165/00002018-200831080-00002
  • Hanvivadhanakul P, Akkasilpa S, Deesomchok U. Efficacy of benzbromarone compared to allopurinol in lowering serum uric acid level in hyperuricemic patients. J Med Assoc Thai. 2002;85(Suppl 1): S40–47. eng.
  • Perez-Ruiz F, Calabozo M, Fernandez-Lopez MJ, et al. Treatment of chronic gout in patients with renal function impairment: an open, randomized, actively controlled study. J Clin Rheumatol. 1999;5(2):49–55. eng. doi: 10.1097/00124743-199904000-00003
  • Reinders MK, Haagsma C, Jansen TLTA, et al. A randomised controlled trial on the efficacy and tolerability with dose escalation of allopurinol 300-600 mg/day versus benzbromarone 100-200 mg/day in patients with gout. Ann Rheumatic Dis. 2009;68(6):892–897. eng. doi: 10.1136/ard.2008.091462
  • Gao H. Clinical efficacy and safety of benzbromarone in elderly hypertensive patients with hyperuricemia. Pak J Pharm Sci. 2019;32(4(Supplementary): 1869–1871. eng.
  • Veenstra F, Wanten SAC, Verhoef LM, et al. Sex differences in response to allopurinol and benzbromarone in gout: a retrospective cohort study. Rheumatol Adv Pract. 2021;5(1):rkab002. eng. doi: 10.1093/rap/rkab002
  • Liu D, Zhou B, Li Z, et al. Effectiveness of benzbromarone versus febuxostat in gouty patients: a retrospective study. Clin Rheumatol. 2022;41(7):2121–2128. eng. doi: 10.1007/s10067-022-06110-5
  • Yu H, Liu X, Song Y, et al. Safety and efficacy of benzbromarone and febuxostat in hyperuricemia patients with chronic kidney disease: a prospective pilot study. Clin Exp Nephrol. 2018 Dec 01;22(6):1324–1330. doi: 10.1007/s10157-018-1586-y
  • De Vries JX, Walter-Sack I, Voss A, et al. Metabolism of benzbromarone in man: structures of new oxidative metabolites, 6-hydroxy- and 1’-oxo-benzbromarone, and the enantioselective formation and elimination of 1’-hydroxybenzbromarone. Xenobiotica. 1993;23(12):1435–1450. eng. doi: 10.3109/00498259309059452
  • Broekhuysen J, Pacco M, Sion R, et al. Metabolism of benzbromarone in man. Eur J Clin Pharmacol. 1972;4(2):125–130. eng. doi: 10.1007/BF00562509
  • Sun P, Zhu J-J, Wang T, et al. Benzbromarone aggravates hepatic steatosis in obese individuals. Biochimica Et Biophysica Acta Mol Basis Dis. 2018;1864(6 Pt A):2067–2077. eng. doi: 10.1016/j.bbadis.2018.03.009
  • Zhang M-Y, Niu J-Q, Wen X-Y, et al. Liver failure associated with benzbromarone: a case report and review of the literature. World J Clin Cases. 2019;7(13):1717–1725. eng
  • Lee M-H, Graham GG, Williams KM, et al. A benefit-risk assessment of benzbromarone in the treatment of gout. Was its withdrawal from the market in the best interest of patients? Drug Saf. 2008;31(8):643–665. eng. doi: 10.2165/00002018-200831080-00002
  • Gao J, Yin H, Dong Y, et al. A novel role of uricosuric agent benzbromarone in BK channel activation and reduction of airway smooth muscle contraction. Mol Pharmacol. 2023;103(4):241–254. eng. doi: 10.1124/molpharm.122.000638
  • Cheungpasitporn W, Rossetti S, Friend K, et al. Treatment effect, adherence, and safety of high fluid intake for the prevention of incident and recurrent kidney stones: a systematic review and meta-analysis. J Nephrol. 2016 Apr 01;29(2):211–219. doi: 10.1007/s40620-015-0210-4
  • Lawrence RC, Felson DT, Helmick CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008 Jan;58(1):26–35. doi: 10.1002/art.23176. PubMed PMID: 18163497; PubMed Central PMCID: PMCPMC3266664. eng.
  • Yamanaka H. Japanese society of G, nucleic acid M. Japanese guideline for the management of hyperuricemia and gout: second edition. Nucleosides Nucleotides Nucleic Acids. 2011;30(12):1018–1029. eng. doi: 10.1080/15257770.2011.596496
  • Emanuelsson BM, Paalzow LK Dose-dependent pharmacokinetics of probenecid in the rat. Biopharm Drug Dispos. 1988 Jan;9(1):59–70. doi: 10.1002/bod.2510090107. PubMed PMID: 3342285; eng.
  • Cunningham RF, Israili ZH, Dayton PG. Clinical Pharmacokinetics of Probenecid. Clin Pharmacokinet. 1981 Apr 01;6(2):135–151
  • Borgi L, McMullan C, Wohlhueter A, et al. Effect of uric acid-lowering agents on endothelial function: a randomized, double-blind, placebo-controlled trial. Hypertens. 2017;69(2):243–248. eng. doi: 10.1161/HYPERTENSIONAHA.116.08488
  • Granados JC, Bhatnagar V, Nigam SK. Blockade of organic anion transport in humans after treatment with the drug probenecid leads to major metabolic alterations in plasma and urine. Clin Pharmacol Ther. 2022;112(3):653–664. eng. doi: 10.1002/cpt.2630
  • Bartels EC, Matossian GS. Gout: six-year follow-up on probenecid (benemid) therapy. Arthritis & Rheumatism. 1959;2(3):193–202. eng. doi: 10.1002/1529-0131(195906)2:3<193:AID-ART1780020302>3.0.CO;2-8
  • Cicero AFG, Fogacci F, Kuwabara M, et al. Therapeutic strategies for the treatment of chronic hyperuricemia: an evidence-based update. Medicina (Kaunas). 2021;57(1):58. eng. doi: 10.3390/medicina57010058
  • Burckhardt G. Drug transport by organic anion transporters (OATs). Pharmacol Ther. 2012;136(1):106–130. eng. doi: 10.1016/j.pharmthera.2012.07.010
  • Yang C, Zhou D, Shen Z, et al. Characterization of stereoselective metabolism, inhibitory effect on uric acid uptake transporters, and pharmacokinetics of Lesinurad Atropisomers. Drug Metab Dispos. 2019;47(2):104–113. eng. doi: 10.1124/dmd.118.080549
  • Dean L, Lesinurad therapy and CYP2C9 genotype. In: Pratt V, Scott S, and Pirmohamed M, editors. et al, Medical genetics summaries. Bethesda (MD): National Center for Biotechnology Information (US); 2012. p. 419–425. https://www.ncbi.nlm.nih.gov/books/NBK537366/
  • Terkeltaub R, Malamet R, Bos K, et al. THU0455 Renal safety of lesinurad: a pooled analysis of phase iii and extension studies. Ann Rheumatic Dis. 2017;76(Suppl 2):379. doi: 10.1136/annrheumdis-2017-eular.4632
  • Shen Z, Lee CA, Wallach K, et al. Lesinurad: evaluation of pharmacokinetic and pharmacodynamic interactions with warfarin in healthy volunteers. Clin Pharmacol Drug Dev. 2019;8(5):657–663. eng. doi: 10.1002/cpdd.662
  • Shen Z, Lee CA, Valdez S, et al. Effects of Food and antacids on pharmacokinetics and pharmacodynamics of lesinurad, a selective urate reabsorption inhibitor. Clin Pharmacol Drug Dev. 2019;8(5):647–656. eng. doi: 10.1002/cpdd.663
  • Heitel P, Gellrich L, Heering J, et al. Urate transporter inhibitor lesinurad is a selective peroxisome proliferator-activated receptor gamma modulator (sPPARγM) in vitro. Sci Rep. 2018 Sep 10;8(1):13554. doi: 10.1038/s41598-018-31833-4
  • Fleischmann R, Kerr B, Yeh L-T, et al. Pharmacodynamic, pharmacokinetic and tolerability evaluation of concomitant administration of lesinurad and febuxostat in gout patients with hyperuricaemia. Rheumatology. 2014;53(12):2167–2174. eng. doi: 10.1093/rheumatology/ket487
  • Leander J, Sunnåker M, Rekić D, et al. A semi-mechanistic exposure–response model to assess the effects of verinurad, a potent URAT1 inhibitor, on serum and urine uric acid in patients with hyperuricemia-associated diseases. J Pharmacokinet Pharmacodyn. 2021;48(4):525–541. eng. 10.1007/s10928-021-09747-y
  • Stack AG, Han D, Goldwater R, et al. Dapagliflozin Added to Verinurad Plus Febuxostat Further Reduces Serum Uric Acid in Hyperuricemia: The QUARTZ Study. J Clin Endocrinol Metab. 2021;106(5):e2347–e2356. eng. doi: 10.1210/clinem/dgaa748
  • Parkinson J, Dota C, Källgren C, et al. Verinurad does not prolong QTc interval: a thorough QT study using concentration–QTc modelling. Brit J Clinical Pharma. 2023;89(6):1747–1755. eng
  • Wang G, Zuo T, Li R. The mechanism of Arhalofenate in alleviating hyperuricemia-activating PPARγ thereby reducing caspase-1 activity. Drug Dev Res. 2020;81(7):859–866. eng. doi: 10.1002/ddr.21699
  • Poiley J, Steinberg AS, Choi Y-J, et al. A randomized, double-blind, active- and placebo-controlled efficacy and safety study of Arhalofenate for reducing flare in patients with gout. Arthritis Rheumatol (Hoboken, NJ). 2016;68(8):2027–2034. eng. doi: 10.1002/art.39684
  • Wang C, Yu Q, Jiang X, et al. A drug-drug interaction study of a novel selective urate reabsorption inhibitor, SHR4640, and xanthine oxidase inhibitor, Febuxostat, in patients with primary hyperuricemia. J Clin Pharmacol. 2023;63(2):239–249. eng. doi: 10.1002/jcph.2159
  • Hamada T, Ichida K, Hosoyamada M, et al. Uricosuric action of losartan via the inhibition of urate transporter 1 (URAT 1) in hypertensive patients. Am J Hypertens. eng. 2008;21(10):1157–1162. 10.1038/ajh.2008.245
  • Sato M, Iwanaga T, Mamada H, et al. Involvement of uric acid transporters in alteration of serum uric acid level by angiotensin II receptor blockers. Pharm Res. 2008;25(3):639–646. eng. doi: 10.1007/s11095-007-9401-6
  • Iwanaga T, Sato M, Maeda T, et al. Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter. J Pharmacol Exp Ther. 2007;320(1):211–217. eng. doi: 10.1124/jpet.106.112755
  • Nakamura M, Sasai N, Hisatome I, et al. Effects of irbesartan on serum uric acid levels in patients with hypertension and diabetes. Clin Pharmacol eng. 2014;6:79–86. doi: 10.2147/CPAA.S61462
  • Nakamura M, Anzai N, Jutabha P, et al. Concentration-dependent inhibitory effect of irbesartan on renal uric acid transporters. J Pharmacol Sci. 2010;114(1):115–118. doi: 10.1254/jphs.10064SC
  • Dang A, Zhang Y, Liu G, et al. Effects of losartan and irbesartan on serum uric acid in hypertensive patients with hyperuricaemia in Chinese population. J Hum Hypertens. 2006;20(1):45–50. eng. doi: 10.1038/sj.jhh.1001941
  • Sung Oh A, Shuichi O, Jumpei K, et al. Stronger uricosuric effects of the novel selective URAT1 inhibitor UR-1102 lowered plasma urate in tufted capuchin monkeys to a greater extent than Benzbromarone. J Pharmacol Exp Ther. 2016;357(1):157. doi: 10.1124/jpet.115.231647
  • Mandal AK, Mercado A, Foster A, et al. Uricosuric targets of tranilast. Pharmacol Res Perspect. 2017;5(2):e00291. eng. doi: 10.1002/prp2.291
  • Dua P, Gurrell R, Kirby S, et al. Acute kidney injury observed during phase 1 clinical trials of a novel xanthine oxidase/URAT1 dual inhibitor PF-06743649. Clin Rheumatol. 2016 Aug 01;35(8):2045–2051. doi: 10.1007/s10067-016-3273-2
  • Wang J, Yao W, Fan D, et al. An LC-MS/MS method for quantification of HR011303, a novel highly selective urate transporter 1 inhibitor in beagle dogs and the application to a pharmacokinetic study. Biomed Chromatogr. 2019;33(10):e4604. eng. doi: 10.1002/bmc.4604
  • Zhao Z, Luo J, Liao H, et al. Pharmacological evaluation of a novel skeleton compound isobavachin (4’,7-dihydroxy-8-prenylflavanone) as a hypouricemic agent: dual actions of URAT1/GLUT9 and xanthine oxidase inhibitory activity. Bioorg Chem eng. 2023;133:106405. doi: 10.1016/j.bioorg.2023.106405
  • Chen X, Zhao Z, Luo J, et al. Novel natural scaffold as hURAT1 inhibitor identified by 3D-shape-based, docking-based virtual screening approach and biological evaluation. Bioorg Chem eng. 2021;117:105444. doi: 10.1016/j.bioorg.2021.105444
  • Tashiro Y, Sakai R, Hirose-Sugiura T, et al. Effects of Osthol isolated from cnidium monnieri fruit on urate transporter 1. Molecules (Basel, Switzerland). 2018;23(11):2837. eng. doi: 10.3390/molecules23112837
  • Hande KR, Noone RM, Stone WJ. Severe allopurinol toxicity. Description and guidelines for prevention in patients with renal insufficiency. The American Journal Of Medicine. 1984;76(1):47–56. eng. doi: 10.1016/0002-9343(84)90743-5
  • Richette P, Bardin T. Gout. Lancet. 2010;375(9711):318–328. doi: 10.1016/S0140-6736(09)60883-7
  • Adomako E, Moe OW. Uric acid and urate in Urolithiasis: the innocent bystander, instigator, and Perpetrator. Semin Nephrol. 2020;40(6):564–573. eng. doi: 10.1016/j.semnephrol.2020.12.003
  • Zhao T, Meng Q, Sun Z, et al. Novel human urate transporter 1 inhibitors as hypouricemic drug candidates with favorable druggability. J Med Chem. 2020 Oct 08;63(19):10829–10854. doi: 10.1021/acs.jmedchem.0c00223
  • Zhao Z, Liu J, Yuan L, et al. Discovery of novel benzbromarone analogs with improved pharmacokinetics and benign toxicity profiles as antihyperuricemic agents. Eur J Med Chem. 2022;242:114682. eng. 10.1016/j.ejmech.2022.114682
  • Toyoda Y, Takada T, Saito H, et al. Identification of inhibitory activities of dietary flavonoids against URAT1, a renal urate re-absorber: In Vitro screening and fractional approach focused on rooibos leaves. Nutrients. 2022;14(3):575. eng. doi: 10.3390/nu14030575
  • Cao J, Liu Q, Hao H, et al. Lactobacillus paracasei X11 ameliorates hyperuricemia and modulates Gut Microbiota in mice. Front Immunol eng. 2022;13:940228. doi: 10.3389/fimmu.2022.940228
  • Sung Y-Y, Kim D-S. Eggshell Membrane Ameliorates Hyperuricemia by Increasing Urate Excretion in Potassium Oxonate-Injected Rats. Nutrients. 2021;13(10):3323. eng. doi: 10.3390/nu13103323
  • Sung Y-Y, Yuk HJ, Kim D-S. Saengmaeksan, a traditional herbal formulation consisting of panax ginseng, ameliorates hyperuricemia by inhibiting xanthine oxidase activity and enhancing urate excretion in rats. J Ginseng Res. 2021;45(5):565–574. eng. doi: 10.1016/j.jgr.2021.01.001
  • Lin G, Yu Q, Xu L, et al. Berberrubine attenuates potassium oxonate- and hypoxanthine-induced hyperuricemia by regulating urate transporters and JAK2/STAT3 signaling pathway. Eur J Pharmacol eng. 2021;912:174592. doi: 10.1016/j.ejphar.2021.174592
  • Zhang C-L, Zhang J-J, Zhu Q-F, et al. Antihyperuricemia and antigouty arthritis effects of persicaria capitata herba in mice. Phytomedicine eng. 2021;93:153765. doi: 10.1016/j.phymed.2021.153765
  • Wei B, Ren P, Yang R, et al. Ameliorative Effect of Mannuronate Oligosaccharides on Hyperuricemic Mice via Promoting Uric Acid Excretion and Modulating Gut Microbiota. Nutrients. 2023;15(2):417. eng. doi: 10.3390/nu15020417
  • Wu D, Chen R, Li Q, et al. Tea (Camellia sinensis) Ameliorates Hyperuricemia via Uric Acid Metabolic Pathways and Gut Microbiota. Nutrients. 2022;14(13):2666. eng. doi: 10.3390/nu14132666
  • Yang H, Gao L, Niu Y, et al. Mangiferin Inhibits Renal Urate Reabsorption by Modulating Urate Transporters in Experimental Hyperuricemia. Biol Pharm Bull. 2015;38(10):1591–1598. eng. doi: 10.1248/bpb.b15-00402
  • Tan J, Wan L, Chen X, et al. Conjugated linoleic acid ameliorates high fructose-induced hyperuricemia and renal inflammation in rats via NLRP3 inflammasome and TLR4 signaling pathway. Molecular Nutrition Food Res. 2019;63(12):e1801402. eng. doi: 10.1002/mnfr.201801402

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.