174
Views
4
CrossRef citations to date
0
Altmetric
Review

Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives

, , , , , , , , & show all
Pages 561-577 | Received 05 Sep 2023, Accepted 20 Dec 2023, Published online: 29 Dec 2023

References

  • Omiecinski CJ, Vanden Heuvel JP, Perdew GH, et al. Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol Sci. 2011;120(Supplement 1):S49–S75. doi: 10.1093/toxsci/kfq338
  • Roy RC. History of anesthesia and introduction to the specialty. In: Ehrenfeld J, Urman R Segal B, editors Anesthesia student survival guide: a case-based approach. Cham: Springer International Publishing; 2022. p. 27–40.
  • Downs JW, Wills BK. Phenol Toxicity. Treasure Island (FL): StatPearls Publishing; 2023.
  • Li AJ, Pal VK, Kannan K. A review of environmental occurrence, toxicity, biotransformation and biomonitoring of volatile organic compounds. Environ Chem Ecotoxicol. 2021;3:91–116. doi: 10.1016/j.enceco.2021.01.001
  • Ross JA, Eldridge DL. Pediatric Toxicology. Emerg Med Clin North Am. 2022;40(2):237–250. doi: 10.1016/j.emc.2022.01.004
  • Mansouri K, Abdelaziz A, Rybacka A, et al. CERAPP: collaborative estrogen receptor activity prediction project. Environ Health Perspect. 2016;124(7):1023–1033. doi: 10.1289/ehp.1510267
  • Mansouri K, Kleinstreuer N, Abdelaziz AM, et al. CoMPARA: collaborative modeling project for androgen receptor activity. Environ Health Perspect. 2020;128(2):027002. doi: 10.1289/EHP5580
  • Mansouri K, Karmaus AL, Fitzpatrick J, et al. CATMoS: collaborative acute toxicity modeling suite. Environ Health Perspect. 2021;129(4):047013. doi: 10.1289/EHP8495
  • Trisciuzzi D, Alberga D, Mansouri K, et al. Predictive structure-based toxicology approaches to assess the androgenic potential of chemicals. J Chem Inf Model. 2017;57(11):2874–2884. doi: 10.1021/acs.jcim.7b00420
  • Trisciuzzi D, Alberga D, Mansouri K, et al. Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data. Future Med Chem. 2015;7(14):1921–1936. doi: 10.4155/fmc.15.103
  • Trisciuzzi D, Alberga D, Leonetti F, et al. Molecular Docking for Predictive Toxicology. Methods Mol Biol. 2018;1800:181–197.
  • Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci. 2016;6(2):147–172. doi: 10.1002/wcms.1240
  • EMA. ICH S5 (R3) Guideline on detection of reproductive and developmental toxicity for human pharmaceuticals - Scientific guideline. EMA/CHMP/ICH/544278/1998 Feb 18, 2020.
  • Alberga D, Trisciuzzi D, Mansouri K, et al. Prediction of acute oral systemic toxicity using a multifingerprint similarity approach. Toxicol Sci. 2019;167(2):484–495. doi: 10.1093/toxsci/kfy255
  • OECD. Test No. 414: prenatal developmental toxicity study. Paris: Organisation for Economic Co-operation and Development; 2018.
  • Hougaard KS. Next generation reproductive and developmental toxicology: crosstalk into the future. Front Toxicol. 2021;3:3. doi: 10.3389/ftox.2021.652571
  • Štefanac T, Grgas D, Landeka Dragičević T. Xenobiotics—Division and methods of detection: a review. J Xenobiot. 2021;11(4):130–141. doi: 10.3390/jox11040009
  • Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–338. doi: 10.1016/S1474-4422(13)70278-3
  • Schildroth S, Kordas K, Bauer JA, et al. Environmental metal exposure, neurodevelopment, and the role of iron status: a review. Curr Environ Health Rep. 2022;9(4):758–787. doi: 10.1007/s40572-022-00378-0
  • Holmes LB. Memories of the Teratology Society: 1972–2020. Birth Defects Res. 2020;112(12):935–941. doi: 10.1002/bdr2.1667
  • Li M, Gong J, Gao L, et al. Advanced human developmental toxicity and teratogenicity assessment using human organoid models. Ecotoxicol Environ Saf. 2022;235:113429. doi: 10.1016/j.ecoenv.2022.113429
  • Shepard TH, Lemire RJ. Catalog of teratogenic agents. Baltimore (MD): JHU Press; 2004.
  • Koch WE, Koch BA, Martin AH, et al. Examination of the development of chicken embryos following exposure to magnetic fields. Comp Biochem Physiol A: Physiol. 1993;105(4):617–624. doi: 10.1016/0300-9629(93)90261-2
  • Vetter M, Oskouian RJ, Tubbs RS. Contributions to our modern understanding of spina bifida: Camille Dareste (1822–1899). Childs Nerv Syst. 2020;36(2):225–226. doi: 10.1007/s00381-018-3759-0
  • Kavlock JMR, Roben J. Developmental Toxicology. Reproductive and developmental toxicology. Korach KS, editor. Ney York, USA: CRC Press; 1998. p. 47–72.
  • Woolf AD. Chapter 2.4 - Thalidomide tragedy, 1950s. In: Woolf A, editor. History of modern clinical toxicology. Academic Press; 2022. p. 165–175. https://www.sciencedirect.com/science/article/abs/pii/B9780128222188000582?via%3Dihub
  • Collins TFX. History and evolution of reproductive and developmental toxicology guidelines. Curr Pharm Des. 2006;12(12):1449–1465. doi: 10.2174/138161206776389813
  • Brent RL. Utilization of animal studies to determine the effects and human risks of environmental toxicants (drugs, chemicals, and physical agents). Pediatrics. 2004;113(Supplement_3):984–995. doi: 10.1542/peds.113.S3.984
  • Rovida C, Longo F, Rabbit RR. How are reproductive toxicity and developmental toxicity addressed in REACH dossiers? Anim. Exp - Altern. ALTEX. 2011;28(4):273–294. doi: 10.14573/altex.2011.4.273
  • Kaplan YC, Demir O. Use of phenytoin, Phenobarbital Carbamazepine, Levetiracetam Lamotrigine and valproate in pregnancy and breastfeeding: risk of Major Malformations, dose-dependency, monotherapy vs polytherapy, pharmacokinetics and clinical implications. Curr Neuropharmacol. 2021;19(11):1805–1824. doi: 10.2174/1570159X19666210211150856
  • Pizzo F, Gadaleta D, Lombardo A, et al. Identification of structural alerts for liver and kidney toxicity using repeated dose toxicity data. Chem Cent J. 2015;9(1):62. doi: 10.1186/s13065-015-0139-7
  • Roi AJ, Kolar R. Chapter 4.2 - Dissemination of information on alternative methods: databases and systems. In: Balls M, Combes R, and Worth A, editors The History of alternative test methods in toxicology. Academic Press, Elsevier; 2019. p. 253–261. https://shop.elsevier.com/books/the-history-of-alternative-test-methods-in-toxicology/balls/978-0-12-813697-3
  • Niethammer M, Burgdorf T, Wistorf E, et al. In vitro models of human development and their potential application in developmental toxicity testing. Development. 2022;149(20):dev200933. doi: 10.1242/dev.200933
  • Kurosawa H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007;103(5):389–398. doi: 10.1263/jbb.103.389
  • Liu H, Ren C, Liu W, et al. Embryotoxicity estimation of commonly used compounds with embryonic stem cell test. Mol Med Rep. 2017;16(1):263–271. doi: 10.3892/mmr.2017.6552
  • Whitlow S, Bürgin H, Clemann N. The embryonic stem cell test for the early selection of pharmaceutical compounds. ALTEX - Altern Anim Exp. 2007;24:3–7. doi: 10.14573/altex.2007.1.3
  • OECD. Guidance document on the reporting of defined approaches to be used within integrated approaches to testing and assessment. OECD; 2017.
  • ECHA - European Chemicals Agency. Availabe from: https://echa.europa.eu/it/
  • US EPA - Environmental Protection Agency. Availabe from: https://www.epa.gov/
  • Branch LS Consolidated federal laws of Canada, Canadian Environmental Protection Act, 1999. 2023.
  • Bercu J, Masuda‐Herrera MJ, Trejo-Martin A, et al. A cross-industry collaboration to assess if acute oral toxicity (Q)SAR models are fit-for-purpose for GHS classification and labelling. Environ Chem Ecotoxicol. 2021;120:104843. doi: 10.1016/j.yrtph.2020.104843
  • Classification and labelling (CLP/GHS) - Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006.
  • OECD. Reproduction/Developmental Toxicity Screening Test (OECD TG 421) and Combined Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test (OECD TG 422). Paris: OECD; 2018. p. 515–529.
  • Test No. 443: Extended One-Generation Reproductive Toxicity Study. OECD.
  • ICH S6 (R1) Preclinical safety evaluation of biotechnology-derived pharmaceuticals. European Medicines Agency. 2018.
  • EMA. EMA, Scientific guidelines [Internet]. European Medicines Agency. 2018. Available from: https://www.ema.europa.eu/en/human-regulatory/research-development/scientific-guidelines
  • Scialli AR. The challenge of reproductive and developmental toxicology under REACH. Regul Toxicol Pharmacol. 2008;51(2):244–250. doi: 10.1016/j.yrtph.2008.04.008
  • Zhang H, Ren J-X, Kang Y-L, et al. Development of novel in silico model for developmental toxicity assessment by using naïve Bayes classifier method. Reprod Toxicol. 2017;71:8–15. doi: 10.1016/j.reprotox.2017.04.005
  • Huggins J. Alternatives to animal testing: Research, trends, validation, regulatory acceptance. ALTEX - Altern Anim Exp. 2003;20:3–61.
  • Gissi A, Lombardo A, Roncaglioni A, et al. Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint: The bioconcentration factor (BCF). Environ Res. 2015;137:398–409. doi: 10.1016/j.envres.2014.12.019
  • Planchart A, Mattingly CJ, Allen D, et al. Advancing toxicology research using in vivo high throughput toxicology with small fish models. ALTEX - Altern Anim Exp. 2016;33:435–452. doi: 10.14573/altex.1601281
  • Rai M, Singh AV, Paudel N, et al. Herbal concoction Unveiled: A computational analysis of phytochemicals’ pharmacokinetic and toxicological profiles using novel approach methodologies (NAMs). Curr Res Toxicol. 2023;5:100118. doi: 10.1016/j.crtox.2023.100118
  • Mangiatordi GF, Alberga D, Altomare CD, et al. Mind the Gap! A Journey towards computational toxicology. Mol Inf. 2016;35(8–9):294–308. doi: 10.1002/minf.201501017
  • Nicolotti O, Benfenati E, Carotti A, et al. REACH and in silico methods: an attractive opportunity for medicinal chemists. Drug Discov Today. 2014;19(11):1757–1768. doi: 10.1016/j.drudis.2014.06.027
  • Marahrens M, Kleinschmidt N, Di Nardo A, et al. Risk assessment in animal welfare – Especially referring to animal transport. Prev Vet Med. 2011;102(2):157–163. doi: 10.1016/j.prevetmed.2011.04.010
  • Becker RA, Bianchi E, LaRocca J, et al. Identifying the landscape of developmental toxicity new approach methodologies. Birth Defects Res. 2022;114(17):1123–1137. doi: 10.1002/bdr2.2075
  • Rovida C. Internationalization of read-across as a validated new approach method (NAM) for regulatory toxicology. ALTEX - Altern Anim Exp. 2020. doi: 10.14573/altex.1912181
  • Avila AM, Bebenek I, Bonzo JA, et al. An FDA/CDER perspective on nonclinical testing strategies: Classical toxicology approaches and new approach methodologies (NAMs). Environ Chem Ecotoxicol. 2020;114:104662. doi: 10.1016/j.yrtph.2020.104662
  • Roy A, Nair S, Sen N, et al. In silico methods for design of biological therapeutics. Methods. 2017;131:33–65. doi: 10.1016/j.ymeth.2017.09.008
  • Alberga D, Gambacorta N, Trisciuzzi D, et al. De Novo Drug design of targeted chemical libraries based on artificial intelligence and pair-based multiobjective optimization. J Chem Inf Model. 2020;60:4582–4593. doi: 10.1021/acs.jcim.0c00517
  • Nicolotti O, Catto M, Giangreco I, et al. Design, synthesis and biological evaluation of 5-hydroxy, 5-substituted-pyrimidine-2,4,6-triones as potent inhibitors of gelatinases MMP-2 and MMP-9. Eur J Med Chem. 2012;58:368–376. doi: 10.1016/j.ejmech.2012.09.036
  • Roncaglioni A, Toropov AA, Toropova AP, et al. In silico methods to predict drug toxicity. Curr Opin Pharmacol. 2013;13(5):802–806. doi: 10.1016/j.coph.2013.06.001
  • Stanton K, Kruszewski FH. Quantifying the benefits of using read-across and in silico techniques to fulfill hazard data requirements for chemical categories. Regul Toxicol Pharmacol. 2016;81:250–259. doi: 10.1016/j.yrtph.2016.09.004
  • Marzo M, Kulkarni S, Manganaro A, et al. Integrating in silico models to enhance predictivity for developmental toxicity. Toxicology. 2016;370:127–137. doi: 10.1016/j.tox.2016.09.015
  • Pizzo F, Lombardo A, Brandt M, et al. A new integrated in silico strategy for the assessment and prioritization of persistence of chemicals under REACH. Environ Int. 2016;88:250–260. doi: 10.1016/j.envint.2015.12.019
  • Lombardo A, Pizzo F, Benfenati E, et al. A new in silico classification model for ready biodegradability, based on molecular fragments. Chemosphere. 2014;108:10–16. doi: 10.1016/j.chemosphere.2014.02.073
  • Lilienblum W, Dekant W, Foth H, et al. Alternative methods to safety studies in experimental animals: role in the risk assessment of chemicals under the new European chemicals Legislation (REACH). Arch Toxicol. 2008;82(4):211–236. doi: 10.1007/s00204-008-0279-9
  • Gambacorta N, Trisciuzzi D, Ciriaco F, et al. Chapter 26 - Machine learning resources for drug design. In: Roy K, editor. Cheminformatics, QSAR and machine learning applications for novel drug development. Academic Press, Elsevier; 2023. p. 663–678. https://shop.elsevier.com/books/cheminformatics-qsar-and-machine-learning-applications-for-novel-drug-development/roy/978-0-443-18638-7
  • Pattnaik PK, Rautaray SS, Das H, et al. editors. Progress in computing, analytics and networking. Singapore: Springer; 2018.
  • Mak K-K, Pichika MR. Artificial intelligence in drug development: present status and future prospects. Drug Discov Today. 2019;24(3):773–780. doi: 10.1016/j.drudis.2018.11.014
  • Nicolotti O, Miscioscia TF, Leonetti F, et al. Screening of matrix metalloproteinases available from the Protein data Bank: insights into biological functions, Domain Organization, and zinc binding groups. J Chem Inf Model. 2007;47(6):2439–2448. doi: 10.1021/ci700119r
  • Lin Z, Chou W-C. Machine learning and Artificial intelligence in toxicological sciences. Toxicol Sci. 2022;189(1):7–19. doi: 10.1093/toxsci/kfac075
  • Lee J. Artificial Intelligence and International Law. Singapore: Springer Nature; 2022.
  • Singh AV, Bansod G, Mahajan M, et al. Digital transformation in toxicology: improving communication and efficiency in risk assessment. ACS Omega. 2023;8(24):21377–21390. doi: 10.1021/acsomega.3c00596
  • Bron EE, Smits M, van der Flier WM, et al. Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: the CADDementia challenge. Neuroimage. 2015;111:562–579. doi: 10.1016/j.neuroimage.2015.01.048
  • Amoroso N, Diacono D, Fanizzi A, et al. Deep learning reveals Alzheimer’s disease onset in MCI subjects: results from an international challenge. J Neurosci Methods. 2018;302:3–9. doi: 10.1016/j.jneumeth.2017.12.011
  • Choobdar S, Ahsen ME, Crawford J, et al. Assessment of network module identification across complex diseases. Nat Methods. 2019;16(9):843–852. doi: 10.1038/s41592-019-0509-5
  • FAIR Principles. [cited 2023 Jul 12]. Available from: https://www.go-fair.org/fair-principles/
  • Tox21 Data Challenge 2014. [cited 2023 Jul 12]. Available from: https://tripod.nih.gov/tox21/challenge/
  • Meyer P, Saez-Rodriguez J. Advances in systems biology modeling: 10 years of crowdsourcing DREAM challenges. Cell Syst. 2021;12(6):636–653. doi: 10.1016/j.cels.2021.05.015
  • Kaggle: Your machine learning and data science community. [cited 2023 Jul 12]. Available from: https://www.kaggle.com/
  • Jiménez-Luna J, Grisoni F, Weskamp N, et al. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin Drug Discov. 2021;16(9):949–959. doi: 10.1080/17460441.2021.1909567
  • Zhu T, Cao S, Su P-C, et al. Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis. J Med Chem. 2013;56(17):6560–6572. doi: 10.1021/jm301916b
  • Yang S, Kar S. Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity. Artif Intell Chem. 2023;1(2):100011. doi: 10.1016/j.aichem.2023.100011
  • Lavecchia A. Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today. 2015;20(3):318–331. doi: 10.1016/j.drudis.2014.10.012
  • Trisciuzzi D, Siragusa L, Baroni M, et al. Getting insights into structural and energetic properties of reciprocal peptide–protein interactions. J Chem Inf Model. 2022;62(4):1113–1125. doi: 10.1021/acs.jcim.1c01343
  • Trisciuzzi D, Siragusa L, Baroni M, et al. An integrated machine learning model to spot peptide binding pockets in 3D protein screening. J Chem Inf Model. 2022;62(24):6812–6824. doi: 10.1021/acs.jcim.2c00583
  • Singh AV, Varma M, Laux P, et al. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Arch Toxicol. 2023;97(4):963–979. doi: 10.1007/s00204-023-03471-x
  • Challa AP, Beam AL, Shen M, et al. Machine learning on drug-specific data to predict small molecule teratogenicity. Reprod Toxicol. 2020;95:148–158. doi: 10.1016/j.reprotox.2020.05.004
  • Mahesh B. Machine learning algorithms - a review. Int j sci res. 2020Jan;9(1):381–386.
  • Monaco A, Pantaleo E, Amoroso N, et al. A primer on machine learning techniques for genomic applications. Comput Struct Biotechnol J. 2021;19:4345–4359. doi: 10.1016/j.csbj.2021.07.021
  • Gunčar G, Kukar M, Notar M, et al. An application of machine learning to haematological diagnosis. Sci Rep. 2018;8(1):411. doi: 10.1038/s41598-017-18564-8
  • Koohy H. The rise and fall of machine learning methods in biomedical research. F1000Res. 2018;6:2012. doi: 10.12688/f1000research.13016.2
  • Chen H, Engkvist O, Wang Y, et al. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241–1250. doi: 10.1016/j.drudis.2018.01.039
  • Tan RK, Liu Y, Xie L. Reinforcement learning for systems pharmacology-oriented and personalized drug design. Expert Opin Drug Discov. 2022;17(8):849–863. doi: 10.1080/17460441.2022.2072288
  • Singh AV, Rosenkranz D, Ansari MHD, et al. Artificial intelligence and machine learning empower advanced biomedical material design to toxicity prediction. Adv Intell Syst. 2020;2(12):2000084. doi: 10.1002/aisy.202000084
  • Schultz TW, Cronin M, Walker J, et al. Quantitative structure–activity relationships (QSARs) in toxicology: a historical perspective. J Mol Struct Theochem. 2003;622(1–2):1–22. doi: 10.1016/S0166-1280(02)00614-0
  • Nicolotti O, Carotti A. QSAR and QSPR studies of a highly structured physicochemical domain. J Chem Inf Model. 2006;46(1):264–276. doi: 10.1021/ci050293l
  • Ciriaco F, Gambacorta N, Trisciuzzi D, et al. PLATO: a predictive drug discovery web platform for efficient target fishing and bioactivity profiling of small molecules. Int J Mol Sci. 2022;23(9):5245. doi: 10.3390/ijms23095245
  • Consonni V, Todeschini R. Molecular Descriptors. In: Puzyn T, Leszczynski J, Cronin M, editors. Recent Advances in QSAR Studies. Challenges and Advances in Computational Chemistry and Physics; 2010. Vol. 8. Dordrecht: Springer. doi: 10.1007/978-1-4020-9783-6_3
  • Nicolotti O, editor. Computational toxicology: methods and protocols. NY (NY): Springer; 2018.
  • Varnek A, Baskin I. Machine learning methods for property prediction in Chemoinformatics: Quo Vadis? J Chem Inf Model. 2012;52(6):1413–1437. doi: 10.1021/ci200409x
  • Maltarollo VG, Gertrudes JC, Oliveira PR, et al. Applying machine learning techniques for ADME-Tox prediction: a review. Expert Opin Drug Metab Toxicol. 2015;11(2):259–271. doi: 10.1517/17425255.2015.980814
  • Grégoire G. Multiple Linear Regression. Eur Astron Soc Publ Ser. 2014;66:45–72. doi: 10.1051/eas/1466005
  • Zhang Y-H, Xia Z-N, Yan L, et al. Prediction of placental barrier permeability: A model based on partial least squares variable selection procedure. Molecules. 2015;20(5):8270–8286. doi: 10.3390/molecules20058270
  • Rish I. An empirical study of the naive Bayes classifier. IJCAI-2001 Work Empir Methods AI. [Internet]. IBM Tech Rep RC22230; 2001.
  • Peterson L. K-nearest neighbour. Scholarpedia. 2009;4(2):1883. doi: 10.4249/scholarpedia.1883
  • Togo MV, Mastrolorito F, Ciriaco F, et al. TIRESIA: An eXplainable artificial intelligence platform for predicting developmental toxicity. J Chem Inf Model. 2022;63:56–66. doi: 10.1021/acs.jcim.2c01126
  • Gupta B, Rawat A, Jain A, et al. Analysis of various decision tree algorithms for classification in data mining. IJCA. 2017;163(8):15–19. doi: 10.5120/ijca2017913660
  • Zhou Z-H. Ensemble Learning. In: Zhou Z-H, editor. Machine Learning. Singapore: Springer; 2021. p. 181–210.
  • Parmar A, Katariya R, Patel V A review on random forest: an ensemble classifier. In: Hemanth J, Fernando X Lafata P, editors International Conference on Intelligent Data Communication Technologies and Internet of Things (ICICI) 2018. Cham: Springer International Publishing; 2019. p. 758–763.
  • Sekhar CR, Minal ME. Mode choice analysis using random forest decision trees. Transp Res Procedia. 2016;17:644–652. doi: 10.1016/j.trpro.2016.11.119
  • Wright LG, Onodera T, Stein MM, et al. Deep physical neural networks trained with backpropagation. Nature. 2022;601(7894):549–555. doi: 10.1038/s41586-021-04223-6
  • Burden F, Winkler D. Bayesian regularization of neural networks. Methods Mol Biol. 2008;458:25–44.
  • Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–1828. doi: 10.1109/TPAMI.2013.50
  • Lindsay GW. Convolutional neural networks as a Model of the visual system: past, present, and future. J Cognitive Neurosci. 2021;33(10):2017–2031. doi: 10.1162/jocn_a_01544
  • Segler MHS, Kogej T, Tyrchan C, et al. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci. 2018;4(1):120–131. doi: 10.1021/acscentsci.7b00512
  • Arthur D, Vassilvitskii S K-Means++: The advantages of careful seeding. Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms. USA: Society for Industrial and Applied Mathematics; 2007. p. 1027–1035.
  • Rifaioglu AS, Atas H, Martin MJ, et al. Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases. Brief Bioinform. 2019;20(5):1878–1912. doi: 10.1093/bib/bby061
  • Krogh A. What are artificial neural networks? Nature Biotechnol. 2008;26(2):195–197. doi: 10.1038/nbt1386
  • HB C, Luthra H, Ankur. Impact of machine learning practices on biomedical informatics, its challenges and future benefits. In: Artificial intelligence technologies for computational biology. CRC Press; 2022. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003246688-12/impact-machine-learning-practices-biomedical-informatics-challenges-future-benefits-hina-bansal-hiya-luthra-ankur-chaurasia
  • Pantic I, Paunovic J, Cumic J, et al. Artificial neural networks in contemporary toxicology research. Chem Biol Interact. 2023;369:110269. doi: 10.1016/j.cbi.2022.110269
  • Muster W, Breidenbach A, Fischer H, et al. Computational toxicology in drug development. Drug Discov Today. 2008;13(7–8):303–310. doi: 10.1016/j.drudis.2007.12.007
  • Ciallella HL, Russo DP, Sharma S, et al. Predicting prenatal developmental toxicity based on the combination of chemical structures and biological data. Environ Sci Technol. 2022;56(9):5984–5998. doi: 10.1021/acs.est.2c01040
  • Worth A, Lo PE, Joint Research Centre, Institute for Health and Consumer Protection. Review of QSAR models and software tools for predicting developmental and reproductive toxicity. Publications Office. 2010. https://data.europa.eu/doi/10.2788/9628
  • Hewitt M, Ellison CM, Enoch SJ, et al. Integrating (Q)SAR models, expert systems and read-across approaches for the prediction of developmental toxicity. Reprod Toxicol. 2010;30(1):147–160. doi: 10.1016/j.reprotox.2009.12.003
  • Worth A, Fuart GM, Joint Research Centre, Institute for Health and Consumer Protection. Review of software tools for toxicity prediction. Publications Office; 2010. https://data.europa.eu/doi/10.2788/60101
  • Arvidson KB. FDA toxicity databases and real-time data entry. Toxicol Appl Pharmacol. 2008;233(1):17–19. doi: 10.1016/j.taap.2007.12.033
  • Matthews EJ, Kruhlak NL, Daniel Benz R, et al. A comprehensive model for reproductive and developmental toxicity hazard identification: I. Development of a weight of evidence QSAR database. Environ Chem Ecotoxicol. 2007;47(2):115–135. doi: 10.1016/j.yrtph.2006.11.002
  • ToxRefDB - Release user-friendly web-based tool for mining ToxRefDB |. Available from: https://cfpub.epa.gov/
  • US EPA O. Distributed Structure-Searchable Toxicity (DSSTox) Database. [cited 2023 Jul 12]. Available from: https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database
  • Sussman NB, Arena VC, Yu S, et al. Decision tree SAR models for developmental toxicity based on an FDA/TERIS database. SAR QSAR Environ Res. 2003;14(2):83–96. doi: 10.1080/1062936031000073126
  • Wexler P. TOXNET: an evolving web resource for toxicology and environmental health information. Toxicology. 2001;157(1–2):3–10. doi: 10.1016/S0300-483X(00)00337-1
  • Judson R, Richard A, Dix D, et al. ACToR — Aggregated computational toxicology resource. Toxicol Appl Pharmacol. 2008;233(1):7–13. doi: 10.1016/j.taap.2007.12.037
  • Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–D1213. doi: 10.1093/nar/gkv951
  • TERIS - The Teratogen Information System. [cited 2023 Jul 12].
  • Software to predict toxicity | Safety endpoints calculator | Tox Suite | ACD/Labs. [cited 2023 Jul 12]. Available from: https://www.acdlabs.com/products/percepta-platform/tox-suite/
  • CAESAR. [cited 2023 Jul 12]. Available from: http://www.caesar-project.eu/-
  • Lhasa Limited | Shared Knowledge, Shared Progress. Available from: https://www.lhasalimited.org/
  • QSAR Toolbox. QSAR Toolbox. [cited 2023 Jul 12]. Available from: https://qsartoolbox.org/
  • Home - MultiCASE. [cited 2023 Jul 12]. Available from: https://multicase.com/-
  • TopKat® - Toxit. [cited 2023 Jul 12]. Available from: https://www.toxit.it/en/services/software/topkat
  • US EPA, ORCD. Toxicity Estimation Software Tool (TEST). [cited 2023 Jul 12]. Available from: https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
  • Maunz A, Gütlein M, Rautenberg M, et al. lazar: a modular predictive toxicology framework. Front Pharmacol. 2013;4:4. doi: 10.3389/fphar.2013.00038
  • Blanco-González A, Cabezón A, Seco-González A, et al. The Role of AI in drug discovery: challenges, opportunities, and strategies. Pharmaceuticals. 2023;16(6):891. doi: 10.3390/ph16060891
  • Schenk B, Weimer M, Bremer S, et al. The ReProTect feasibility study, a novel comprehensive in vitro approach to detect reproductive toxicants. Reprod Toxicol. 2010;30(1):200–218. doi: 10.1016/j.reprotox.2010.05.012
  • Mistry P, Neagu D, Trundle PR, et al. Using random forest and decision tree models for a new vehicle prediction approach in computational toxicology. Soft Comput. 2016;20(8):2967–2979. doi: 10.1007/s00500-015-1925-9
  • Arena VC, Sussman NB, Mazumdar S, et al. The Utility of Structure–Activity Relationship (SAR) models for prediction and covariate selection in developmental toxicity: comparative analysis of logistic regression and decision tree models. SAR QSAR Environ Res. 2004;15(1):1–18. doi: 10.1080/1062936032000169633
  • Thomson J, Johnson K, Chapin R, et al. Not a walk in the park: the ECVAM whole embryo culture model challenged with pharmaceuticals and attempted improvements with random forest design. Birth Defects Res B Dev Reprod Toxicol. 2011;92:111–121. doi: 10.1002/bdrb.20289
  • Cassano A, Manganaro A, Martin T, et al. CAESAR models for developmental toxicity. Chem Cent J. 2010;4(S1):S4. doi: 10.1186/1752-153X-4-S1-S4
  • Gissi A, Gadaleta D, Floris M, et al. An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes. ALTEX - Altern Anim Exp. 2014;31:23–36.
  • Gunturi SB, Ramamurthi N. A novel approach to generate robust classification models to predict developmental toxicity from imbalanced datasets. SAR QSAR Environ Res. 2014;25(9):711–727. doi: 10.1080/1062936X.2014.942357
  • Olawoyin R. Application of backpropagation artificial neural network prediction model for the PAH bioremediation of polluted soil. Chemosphere. 2016;161:145–150. doi: 10.1016/j.chemosphere.2016.07.003
  • Carney MW, Erwin K, Hardman R, et al. Differential developmental toxicity of naphthoic acid isomers in medaka (oryzias latipes) embryos. Mar Pollut Bull. 2008;57(6–12):255–266. doi: 10.1016/j.marpolbul.2008.02.036
  • Marzo M, Benfenati E. Classification of a Naïve Bayesian Fingerprint model to predict reproductive toxicity $. SAR QSAR Environ Res. 2018;29(8):631–645. doi: 10.1080/1062936X.2018.1499125
  • Zhang H, Mao J, Qi H-Z, et al. In silico prediction of drug-induced developmental toxicity by using machine learning approaches. Mol Divers. 2020;24(4):1281–1290. doi: 10.1007/s11030-019-09991-y
  • Lavado GJ, Gadaleta D, Toma C, et al. Zebrafish AC50 modelling: (Q)SAR models to predict developmental toxicity in zebrafish embryo. Ecotoxicol Environ Saf. 2020;202:110936. doi: 10.1016/j.ecoenv.2020.110936
  • Lavado GJ, Baderna D, Carnesecchi E, et al. QSAR models for soil ecotoxicity: Development and validation of models to predict reproductive toxicity of organic chemicals in the collembola Folsomia candida. J Hazard Mater. 2022;423:127236. doi: 10.1016/j.jhazmat.2021.127236
  • eChemportal OECD. The Global Portal To Information On Chemical Substances. Available from: https://www.echemportal.org/echemportal/
  • Jiang C, Yang H, Di P, et al. In silico prediction of chemical reproductive toxicity using machine learning. J Appl Toxicol. 2019;39(6):844–854. doi: 10.1002/jat.3772
  • Molecular Operating Environment (MOE) | MOEsaic | PSILO.
  • Kelleci Çelik F, Karaduman G. In silico QSAR modeling to predict the safe use of antibiotics during pregnancy. Drug Chem Toxicol. 2023;46(5):962–971. doi: 10.1080/01480545.2022.2113888
  • Yang P, Henle EA, Fern XZ, et al. Classifying the toxicity of pesticides to honey bees via support vector machines with random walk graph kernels. J Chem Phys. 2022;157(3):034102. doi: 10.1063/5.0090573
  • Chou C-Y, Lin P, Kim J, et al. Ensemble learning for predicting ex vivo human placental barrier permeability. BMC Bioinf. 2022;22(S10):629. doi: 10.1186/s12859-022-04937-y
  • Bryce TJ, Dewhirst MW, Floyd CE, et al. Artificial neural network model of survival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1998;41(2):339–345. doi: 10.1016/S0360-3016(98)00016-9
  • Hruba H, Abdelsalam EEE, Anisimov N, et al. Reproductive toxicity of fluoroquinolones in birds. BMC Vet Res. 2019;15(1):209. doi: 10.1186/s12917-019-1957-y
  • Adadi A, Berrada M. Peeking inside the black-box: a survey on explainable Artificial Intelligence (XAI). IEEE Access. 2018;6:52138–52160. doi: 10.1109/ACCESS.2018.2870052
  • Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nat Mach Intell. 2020;2(10):573–584. doi: 10.1038/s42256-020-00236-4
  • Tjoa E, Guan C. A survey on Explainable Artificial Intelligence (XAI): toward medical XAI. IEEE Trans Neural Netw Learning Syst. 2021;32(11):4793–4813. doi: 10.1109/TNNLS.2020.3027314
  • Wellawatte GP, Gandhi HA, Seshadri A, et al. A perspective on explanations of molecular prediction models. J Chem Theory Comput. 2023;19(8):2149–2160. doi: 10.1021/acs.jctc.2c01235
  • Freeborough W, van Zyl T. Investigating explainability methods in recurrent neural network architectures for financial time series data. Appl Sci. 2022;12(3):1427. doi: 10.3390/app12031427
  • Boobier S, Osbourn A, Mitchell JBO. Can human experts predict solubility better than computers? J Cheminform. 2017;9(1):63. doi: 10.1186/s13321-017-0250-y
  • Heberle H, Zhao L, Schmidt S, et al. XSMILES: interactive visualization for molecules, SMILES and XAI attribution scores. J Cheminform. 2023;15(1):2. doi: 10.1186/s13321-022-00673-w
  • Brasse J, Broder HR, Förster M, et al. Explainable artificial intelligence in information systems: A review of the status quo and future research directions. Electron Markets. 2023;33(1):26. doi: 10.1007/s12525-023-00644-5
  • Iswarya B, Manimekalai K. Drug discovery with XAI using deep learning. In: Principles and methods of explainable artificial intelligence in healthcare. IGI Global; 2022. p. 19. doi: 10.4018/978-1-6684-3791-9.ch006
  • Nicolotti O, Gillet VJ, Fleming PJ, et al. Multiobjective Optimization in Quantitative Structure−Activity Relationships: Deriving Accurate and Interpretable QSARs. J Med Chem. 2002;45(23):5069–5080. doi: 10.1021/jm020919o
  • Nicolotti O, Giangreco I, Introcaso A, et al. Strategies of multi-objective optimization in drug discovery and development. Expert Opin Drug Discov. 2011;6(9):871–884. doi: 10.1517/17460441.2011.588696
  • Gambacorta N, Ciriaco F, Amoroso N, et al. CIRCE: web-based platform for the prediction of cannabinoid receptor ligands using explainable machine learning. J Chem Inf Model. 2023;63(18):5916–5926. doi: 10.1021/acs.jcim.3c00914
  • Waddah S, Christian O. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowledge-Based Systems. 2023;263:110273. doi: 10.1016/j.knosys.2023.110273
  • Mele M, Imbrici P, Mele A, et al. Short-term anti-remodeling effects of gliflozins in diabetic patients with heart failure and reduced ejection fraction: an explainable artificial intelligence approach. Front Pharmacol. 2023;14:1175606. doi: 10.3389/fphar.2023.1175606
  • Di Stefano M, Galati S, Piazza L, et al. VenomPred 2.0: A novel in silico platform for an extended and human interpretable toxicological profiling of small molecules. J Chem Inf Model. 2023. doi:10.1021/acs.jcim.3c00692
  • Wu S, Fisher J, Naciff J, et al. Framework for identifying chemicals with structural features associated with the potential to act as developmental or reproductive toxicants. Chem Res Toxicol. 2013;26(12):1840–1861. doi: 10.1021/tx400226u
  • Landrum G RDKit |. 2010. [cited Jul 12, 2023]. Available from: https://www.rdkit.org/-
  • Moriwaki H, Tian Y-S, Kawashita N, et al. Mordred: a molecular descriptor calculator. J Cheminform. 2018;10(1):4. doi: 10.1186/s13321-018-0258-y
  • Shapley LS. A Value for n-Person Games. In: Kuhn H, Tucker A, editors. Contributions to the Theory of Games II. Princeton: Princeton University Press; 1953. p. 307–318. doi: 10.1515/9781400881970-018
  • Guo J, Liu K, Yang J, et al. Prenatal exposure to bisphenol a and neonatal health outcomes: A systematic review. Environ Pollut. 2023;335:122295. doi: 10.1016/j.envpol.2023.122295
  • Tomson T, Battino D, Bonizzoni E, et al. Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry. Lancet Neurol. 2018;17(6):530–538. doi: 10.1016/S1474-4422(18)30107-8
  • Levita J, Wilar G, Wahyuni I, et al. Clinical Toxicology of Vitamin D in Pediatrics: A Review and Case Reports. Toxics. 2023;11(7):642. doi: 10.3390/toxics11070642
  • Bookstaver PB, Bland CM, Griffin B, et al. A review of Antibiotic use in pregnancy. Pharmacotherapy. 2015;35(11):1052–1062. doi: 10.1002/phar.1649
  • Rai M, Paudel N, Sakhrie M, et al. Perspective on Quantitative Structure–Toxicity Relationship (QSTR) models to predict hepatic biotransformation of xenobiotics. Livers. 2023;3(3):448–462. doi: 10.3390/livers3030032
  • Öztürk H, Özgür A, Schwaller P, et al. Exploring chemical space using natural language processing methodologies for drug discovery. Drug Discov Today. 2020;25(4):689–705. doi: 10.1016/j.drudis.2020.01.020
  • Cadeddu A, Wylie EK, Jurczak J, et al. Organic chemistry as a language and the implications of chemical linguistics for structural and retrosynthetic analyses. Angew Chem Int Ed Engl. 2014;53(31):8108–8112. doi: 10.1002/anie.201403708
  • Humer C, Heberle H, Montanari F, et al. ChemInformatics Model Explorer (CIME): exploratory analysis of chemical model explanations. J Cheminform. 2022;14(1):21. doi: 10.1186/s13321-022-00600-z
  • Shtar G, Rokach L, Shapira B, et al. Explainable multimodal machine learning model for classifying pregnancy drug safety. Bioinformatics. 2022;38(4):1102–1109. doi: 10.1093/bioinformatics/btab769
  • Singh AV, Chandrasekar V, Paudel N, et al. Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomed Pharmacother. 2023;163:114784. doi: 10.1016/j.biopha.2023.114784
  • Amoroso N, Gambacorta N, Mastrolorito F, et al. Making sense of chemical space network shows signs of criticality. Sci Rep. 2023;13(1):21335. doi: 10.1038/s41598-023-48107-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.