751
Views
0
CrossRef citations to date
0
Altmetric
Review

In-silico approaches to assessing multiple high-level drug-drug and drug-disease adverse drug effects

, , , , , , & ORCID Icon show all
Received 31 Aug 2023, Accepted 21 Dec 2023, Published online: 01 Feb 2024

References

  • Wise L, Parkinson J, Raine J, et al. New approaches to drug safety: a pharmacovigilance tool kit. Nat Rev Drug Discov. 2009;8(10):779–782. doi: 10.1038/nrd3002
  • Hsu PL, Robbins H. Complete convergence and the law of large numbers. Proc Natl Acad Sci USA. 1947;33:25–31.
  • Pharmacovigilance [Internet]. [cited 2023 Jul 11]. Available from: https://www.who.int/teams/regulation-prequalification/regulation-and-safety/pharmacovigilance
  • Santoro A, Genov G, Spooner A, et al. Promoting and protecting public health: how the European union pharmacovigilance system works. Drug Saf. 2017;40(10):855–869. doi: 10.1007/s40264-017-0572-8
  • Pitts PJ, Louet HL, Moride Y, et al. 21st century pharmacovigilance: efforts, roles, and responsibilities. Lancet Oncol. 2016;17(11):e486–e492. doi: 10.1016/S1470-2045(16)30312-6
  • U.S. Food & Drug Administration. Preventable adverse drug reactions: a focus on drug interactions [internet]. FDA; 2021 [cited 2023 Jul 25]. Available from: https://www.fda.gov/drugs/drug-interactions-labeling/preventable-adverse-drug-reactions-focus-drug-interactions
  • Wilke RA, Lin DW, Roden DM, et al. Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov. 2007;6(11):904–916. doi: 10.1038/nrd2423
  • Pontes H, Clément M, Rollason V. Safety signal detection: the relevance of literature review. Drug Saf. 2014;37(7):471–479. doi: 10.1007/s40264-014-0180-9
  • Banda JM, Evans L, Vanguri RS, et al. A curated and standardized adverse drug event resource to accelerate drug safety research. Sci Data. 2016;3(1):160026. doi: 10.1038/sdata.2016.26
  • Guo M, Shu Y, Chen G, et al. A real-world pharmacovigilance study of FDA adverse event reporting system (FAERS) events for niraparib. Sci Rep. 2022;12(1):20601. doi: 10.1038/s41598-022-23726-4
  • Dolladille C, Ederhy S, Sassier M, et al. Immune Checkpoint Inhibitor Rechallenge After Immune-Related Adverse Events in Patients With Cancer. JAMA Oncol. 2020;6(6):865–871. doi: 10.1001/jamaoncol.2020.0726
  • Reese JA, Li X, Hauben M, et al. Identifying drugs that cause acute thrombocytopenia: an analysis using 3 distinct methods. Blood. 2010;116(12):2127–2133. doi: 10.1182/blood-2010-03-276691
  • Research C for DE and. Questions and answers on FDA’s adverse event reporting system (FAERS) [internet]. FDA; 2019 [cited 2023 Jul 14]. Available from: https://www.fda.gov/drugs/surveillance/questions-and-answers-fdas-adverse-event-reporting-system-faers.
  • Uppsala Monitoring Centre. VigiBase Services [Internet]. [cited 2023 Jul 14]. Available from: https://who-umc.org/vigibase/vigibase-services/
  • European Medicines Agency. EudraVigilance [Internet]. European Medicines Agency. 2018 [cited 2023 Jul 14]. Available from: https://www.ema.europa.eu/en/human-regulatory/research-development/pharmacovigilance/eudravigilance
  • Canada H About MedEffect Canada [Internet]. 2003 [cited 2023 Aug 16]. Available from: https://www.canada.ca/en/health-canada/services/drugs-health-products/medeffect-canada/medeffect-canada.html
  • Vaccine adverse event reporting system (VAERS) [internet]. [cited 2023 Jul 14]. Available from: https://vaers.hhs.gov/index.html
  • Medical dictionary for regulatory activities terminology (MedDRA). MedDRA hierarchy | MedDRA [Internet]. [cited 2023 Mar 21]. Available from: https://www.meddra.org/how-to-use/basics/hierarchy
  • WHO collaborating centre for drug statistics methodology - structure and principles for the anatomical therapeutic chemical (ATC) classification system [Internet]. [cited 2023 Jul 14]. Available from: https://www.whocc.no/atc/structure_and_principles/
  • Harpaz R, DuMouchel W, Shah NH, et al. Novel data-mining methodologies for adverse drug event discovery and analysis. Clin Pharmacol Ther. 2012;91(6):1010–1021. doi: 10.1038/clpt.2012.50
  • Lavertu A, Vora B, Giacomini KM, et al. A new era in pharmacovigilance: toward real-world data and digital monitoring. Clin Pharmacol Ther. 2021;109(5):1197–1202. doi: 10.1002/cpt.2172
  • Huang L, Guo T, Zalkikar JN, et al. A review of statistical methods for safety surveillance. Ther Innov Regul Sci. 2014;48(1):98–108. doi: 10.1177/2168479013514236
  • Bate A, Evans SJW. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009;18(6):427–436. doi: 10.1002/pds.1742
  • Cone EB, Reese S, Marchese M, et al. Cardiovascular toxicities associated with abiraterone compared to enzalutamide–A pharmacovigilance study. EClinicalMedicine. 2021;36:100887.
  • Sarker A, Ginn R, Nikfarjam A, et al. Utilizing social media data for pharmacovigilance: A review. J Biomed Informat. 2015;54:202–212. doi: 10.1016/j.jbi.2015.02.004
  • Menni C, Klaser K, May A, et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom study app in the UK: a prospective observational study. Lancet Infect Dis. 2021;21(7):939–949. doi: 10.1016/S1473-3099(21)00224-3
  • Madigan D, Ryan P, Simpson S, et al. Bayesian methods in pharmacovigilance. Bayesian Stat. 2010;9:421–438.
  • Tiwari R, Zalkikar J, Huang L. Signal Detection for medical scientists: likelihood ratio test-based methodology. Boca Raton, FL, USA: CRC Press; 2021.
  • Suling M, Pigeot I. Signal detection and monitoring based on longitudinal healthcare data. Pharmaceutics. 2012;4(4):607–640.
  • van Puijenbroek EP, Bate A, Leufkens HGM, et al. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf. 2002;11(1):3–10. doi: 10.1002/pds.668
  • Evans SJW, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf. 2001;10(6):483–486.
  • Yates F. Contingency tables involving small numbers and the χ2 test. Suppl J R Stat Soc. 1934;1(2):217–235.
  • Huang L, Zalkikar J, Tiwari RC. A likelihood ratio test based method for signal detection with application to FDA’s drug safety data. J Am Stat Assoc. 2011;106(496):1230–1241.
  • MacKay DJ. Information theory, inference and learning algorithms. Cambridge, UK: Cambridge university press; 2003.
  • Rodrigues PP, Ferreira-Santos D, Silva A, et al. Causality assessment of adverse drug reaction reports using an expert-defined Bayesian network. Artif Intell Med. 2018;91:12–22. doi: 10.1016/j.artmed.2018.07.005
  • Bate A, Lindquist M, Edwards IR, et al. A bayesian neural network method for adverse drug reaction signal generation. E J Clin Pharmacol. 1998;54(4):315–321. doi: 10.1007/s002280050466
  • Dumouchel W. Bayesian data mining in large frequency tables, with an application to the FDA spontaneous reporting system. null. Am Stat. 1999;53(3):177–190. doi: 10.1080/00031305.1999.10474456
  • Heckerman D. Bayesian networks for data mining. Data Mining Knowledge Discovery. 1997;1(1):79–119. doi: 10.1023/A:1009730122752
  • Khouri C, Revol B, Lepelley M, et al. A meta-epidemiological study found lack of transparency and poor reporting of disproportionality analyses for signal detection in pharmacovigilance databases. J Clinical Epidemiol. 2021;139:191–198. doi: 10.1016/j.jclinepi.2021.07.014
  • Szarfman A, Machado SG, O’Neill RT. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database. Drug-Safety. 2002;25(6):381–392. doi: 10.2165/00002018-200225060-00001
  • Ang PS, Chen Z, Chan CL, et al. Data mining spontaneous adverse drug event reports for safety signals in Singapore–a comparison of three different disproportionality measures. Expert Opin Drug Saf. 2016;15(5):583–590. doi: 10.1517/14740338.2016.1167184
  • Xu X, Kawakami J, Gedara NIM, et al. Data mining methodology for response to hypertension symptomology—application to COVID-19-related pharmacovigilance. Elife. 2021;10:e70734. doi: 10.7554/eLife.70734
  • Nguyen LS, Cooper LT, Kerneis M, et al. Systematic analysis of drug-associated myocarditis reported in the World Health Organization pharmacovigilance database. Nat Commun. 2022;13(1):25. doi: 10.1038/s41467-021-27631-8
  • McBride WG. Thalidomide and congenital abnormalities. Lancet. 1961;2:90927–90928.
  • Finney DJ. From thalidomide to pharmacovigilance: a personal account. Side Effects Of Drugs Annual Elsevier. 2003;26:xxv–xxxii.
  • Fornasier G, Francescon S, Leone R, et al. An historical overview over pharmacovigilance. Int J Clin Pharm. 2018;40(4):744–747. doi: 10.1007/s11096-018-0657-1
  • Lu M, Yin J, Zhu Q, et al. Artificial intelligence in pharmaceutical sciences. Eng. 2023. doi: 10.1016/j.eng.2023.01.014
  • Wang DY, Salem J-E, Cohen JV, et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4(12):1721–1728. doi: 10.1001/jamaoncol.2018.3923
  • Salem J-E, Manouchehri A, Moey M, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19(12):1579–1589. doi: 10.1016/S1470-2045(18)30608-9
  • Beers E, Van Puijenbroek EP, Bartelink IH, et al. Syndrome of inappropriate antidiuretic hormone secretion (SIADH) or hyponatraemia associated with valproic acid: four case reports from the Netherlands and a case/non-case analysis of vigibase. Drug Saf. 2010;33(1):47–55. doi: 10.2165/11318950-000000000-00000
  • Tatonetti NP, Ye PP, Daneshjou R, et al. Data-driven prediction of drug effects and interactions. Science translational medicine. Sci, trans med. 2012;4(125):ra12531–ra12531. doi: 10.1126/scitranslmed.3003377
  • Mazhar F, Battini V, Gringeri M, et al. The impact of anti-TNFα agents on weight-related changes: new insights from a real-world pharmacovigilance study using the FDA adverse event reporting system (FAERS) database. Expert Opin Biol Ther. 2021;21(9):1281–1290. doi: 10.1080/14712598.2021.1948529
  • Poleksic A, Xie L. Database of adverse events associated with drugs and drug combinations. Sci Rep. 2019;9(1):20025. doi: 10.1038/s41598-019-56525-5
  • Zhou C, Peng S, Lin A, et al. Psychiatric disorders associated with immune checkpoint inhibitors: a pharmacovigilance analysis of the FDA adverse event reporting system (FAERS) database. Eclinicalmedicine. 2023;59:101967. doi: 10.1016/j.eclinm.2023.101967
  • Ali TB, Schleret TR, Reilly BM, et al. Adverse effects of cholinesterase inhibitors in dementia, according to the pharmacovigilance databases of the United-States and Canada. PLoS One. 2015;10(12):e0144337. doi: 10.1371/journal.pone.0144337
  • Zhao S, Nishimura T, Chen Y, et al. Systems pharmacology of adverse event mitigation by drug combinations. Sci Trans Med. 2013;5(206):ra206140–ra206140. doi: 10.1126/scitranslmed.3006548
  • Wilson JL, Steinberg E, Racz R, et al. A network paradigm predicts drug synergistic effects using downstream protein–protein interactions. CPT Pharmacom Syst Pharma. 2022;11(11):1527–1538. doi: 10.1002/psp4.12861
  • Berger SI, Ma’ayan A, Iyengar R. Systems pharmacology of arrhythmias. Sci Signaling. 2010;3(118):ra30–ra30.
  • Candore G, Juhlin K, Manlik K, et al. Comparison of statistical signal detection methods within and across spontaneous reporting databases. Drug Saf. 2015;38(6):577–587. doi: 10.1007/s40264-015-0289-5
  • Seabroke S, Candore G, Juhlin K, et al. Performance of stratified and subgrouped disproportionality analyses in spontaneous databases. Drug Saf. 2016;39(4):355–364. doi: 10.1007/s40264-015-0388-3
  • Slattery J, Alvarez Y, Hidalgo A. Choosing thresholds for statistical signal detection with the proportional reporting ratio. Drug Saf. 2013;36(8):687–692.
  • Stamatellos V-P, Siafis S, Papazisis G. Disease-modifying agents for multiple sclerosis and the risk for reporting cancer: a disproportionality analysis using the US food and drug administration adverse event reporting system database. Brit J Clin Pharma. 2021;87(12):4769–4779.
  • Noguchi Y, Tachi T, Teramachi H. Detection algorithms and attentive points of safety signal using spontaneous reporting systems as a clinical data source. Brief Bioinform. 2021;22(6):bbab347.
  • Ding Y, Markatou M, Ball R. An evaluation of statistical approaches to postmarketing surveillance. Stat Med. 2020;39(7):845–874. doi: 10.1002/sim.8447
  • Moulis G, Palmaro A, Montastruc J-L, et al. Epidemiology of incident immune thrombocytopenia: a nationwide population-based study in France. Blood. 2014;124(22):3308–3315. doi: 10.1182/blood-2014-05-578336
  • Gagne JJ. Finding meaningful patterns in adverse drug event reports. JAMA Intern Med. 2014;174(12):1934–1935.
  • Mouffak A, Lepelley M, Revol B, et al. High prevalence of spin was found in pharmacovigilance studies using disproportionality analyses to detect safety signals: a meta-epidemiological study. J Clinical Epidemiol. 2021;138:73–79. doi: 10.1016/j.jclinepi.2021.06.022
  • Raschi E, Poluzzi E, Salvo F, et al. Pharmacovigilance of sodium-glucose co-transporter-2 inhibitors: what a clinician should know on disproportionality analysis of spontaneous reporting systems. Nutr Metab Cardiovasc Dis. 2018;28(6):533–542. doi: 10.1016/j.numecd.2018.02.014
  • Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58(5):295–300. doi: 10.1177/003591576505800503
  • Arku D, Yousef C, Abraham I. Changing paradigms in detecting rare adverse drug reactions: from disproportionality analysis, old and new, to machine learning. Expert Opin Drug Saf. 2022;21(10):1235–1238.
  • Cami A, Arnold A, Manzi S, et al. Predicting adverse drug events using pharmacological network models. Sci Trans Med. 2011;3(114):ra114127–ra114127. doi: 10.1126/scitranslmed.3002774
  • Lange JH, Reinders J-H, Tolboom JT, et al. Principal component analysis differentiates the receptor binding profiles of three antipsychotic drug candidates from current antipsychotic drugs. J Med Chem. 2007;50(21):5103–5108. doi: 10.1021/jm070516u
  • Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9(3):432–441.
  • Liao G, Yang Y, Xie A, et al. Applicability of anticancer drugs for the triple-negative breast cancer based on homologous recombination repair deficiency. Front Cell Dev Biol. 2022;10:845950. doi: 10.3389/fcell.2022.845950
  • Gibbs NE, Poole J, William G, et al. An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J Numer Anal. 1976;13(2):236–250.
  • Stafford EG, Riviere JE, Xu X, et al. Pharmacovigilance in patients with diabetes: a data-driven analysis identifying specific RAS antagonists with adverse pulmonary safety profiles that have implications for COVID-19 morbidity and mortality. J Am Pharm Assoc. 2020;60(6):e145–e152. doi: 10.1016/j.japh.2020.05.018
  • Jaberi-Douraki M, Meyer E, Riviere J, et al. Pulmonary adverse drug event data in hypertension with implications on COVID-19 morbidity. Sci Rep. 2021;11(1):1–9. doi: 10.1038/s41598-021-92734-7
  • Xu X, Mazloom R, Goligerdian A, et al. Making sense of pharmacovigilance and drug adverse event reporting: comparative similarity association analysis using ai machine learning algorithms in dogs and cats. Top Companion Anim Med. 2019;37:100366. doi: 10.1016/j.tcam.2019.100366
  • Cai C, Fang J, Guo P, et al. In silico pharmacoepidemiologic evaluation of drug-induced cardiovascular complications using combined classifiers. J Chem Inf Model. 2018;58(5):943–956. doi: 10.1021/acs.jcim.7b00641
  • Fang J, Zhang P, Zhou Y, et al. Endophenotype-based in silico network medicine discovery combined with insurance record data mining identifies sildenafil as a candidate drug for Alzheimer’s disease. Nat Aging. 2021;1(12):1175–1188. doi: 10.1038/s43587-021-00138-z
  • Nguyen PA, Born DA, Deaton AM, et al. Phenotypes associated with genes encoding drug targets are predictive of clinical trial side effects. Nat Commun. 2019;10(1):1579. doi: 10.1038/s41467-019-09407-3
  • Xu X, Jaberi-Douraki M, Anwer F, et al. A novel risk assessment metric for antimyeloma therapies and drug interactions. J Clin Oncol. 2023;41(16_suppl):e24082–e24082. doi: 10.1200/JCO.2023.41.16_suppl.e24082
  • Xu X, Raza S, Gadara NM, et al. Identification of genes encoding targets associated with adverse events in multiple myeloma. J Clin Oncol. 2023;41(16_suppl):1556–1556. doi: 10.1200/JCO.2023.41.16_suppl.1556
  • Jaberi-Douraki M, Xu X, Faiman B, et al. Disparities in multiple myeloma: A global perspective on drug toxicity trends. J Clin Oncol. 2023;41(16_suppl):8015–8015. doi: 10.1200/JCO.2023.41.16suppl.8015
  • Drögemöller BI, Monzon JG, Bhavsar AP, et al. Association between SLC16A5 genetic variation and cisplatin-induced ototoxic effects in adult patients with testicular cancer. JAMA Oncol. 2017;3(11):1558–1562. doi: 10.1001/jamaoncol.2017.0502
  • Wolff J, Hefner G, Normann C, et al. Predicting the risk of drug–drug interactions in psychiatric hospitals: a retrospective longitudinal pharmacovigilance study. BMJ Open. 2021;11(4):e045276. doi: 10.1136/bmjopen-2020-045276