77
Views
0
CrossRef citations to date
0
Altmetric
Review

Regulation of carboxylesterases and its impact on pharmacokinetics and pharmacodynamics: an up-to-date review

, &
Pages 377-397 | Received 28 Feb 2024, Accepted 24 Apr 2024, Published online: 06 May 2024

References

  • Wang D, Zou L, Jin Q, et al. Human carboxylesterases: a comprehensive review. Acta Pharm Sin B. 2018;8(5):699–712. doi: 10.1016/j.apsb.2018.05.005
  • Her L, Zhu HJ. Carboxylesterase 1 and precision pharmacotherapy: pharmacogenetics and nongenetic regulators. Drug Metab Dispos. 2020;48:230–244. doi: 10.1124/dmd.119.089680
  • Basit A, Neradugomma NK, Wolford C, et al. Characterization of differential tissue abundance of major non-CYP enzymes in human. Mol Pharm. 2020;17(11):4114–4124. doi: 10.1021/acs.molpharmaceut.0c00559
  • Wang X, He B, Shi J, et al. Comparative proteomics analysis of human liver microsomes and S9 fractions. Drug Metab Dispos. 2020;48:31–40. doi: 10.1124/dmd.119.089235
  • Li J, Liu S, Shi J, et al. Tissue-specific proteomics analysis of anti-COVID-19 nucleoside and nucleotide prodrug-activating enzymes provides insights into the optimization of prodrug design and pharmacotherapy strategy. ACS Pharmacol Transl Sci. 2021;4(2):870–887. doi: 10.1021/acsptsci.1c00016
  • Glubb DM, Innocenti F. Mechanisms of genetic regulation in gene expression: examples from drug metabolizing enzymes and transporters. Wiley Interdiscip Rev Syst Biol Med. 2011;3(3):299–313. doi: 10.1002/wsbm.125
  • Chen F, Zhang B, Parker RB, et al. Clinical implications of genetic variation in carboxylesterase drug metabolism. Expert Opin Drug Metab Toxicol. 2018;14(2):131–142. doi: 10.1080/17425255.2018.1420164
  • Wang X, Wang G, Shi J, et al. CES1 genetic variation affects the activation of angiotensin-converting enzyme inhibitors. Pharmacogenomics J. 2016;16(3):220–230. doi: 10.1038/tpj.2015.42
  • Sanford JC, Wang X, Shi J, et al. Regulatory effects of genomic translocations at the human carboxylesterase-1 (CES1) gene locus. Pharmacogenet Genom. 2016;26(5):197–207. doi: 10.1097/FPC.0000000000000206
  • Fukami T, Nakajima M, Maruichi T, et al. Structure and characterization of human carboxylesterase 1A1, 1A2, and 1A3 genes. Pharmacogenet Genom. 2008;18(10):911–920. doi: 10.1097/FPC.0b013e32830b0c5e
  • Yoshimura M, Kimura T, Ishii M, et al. Functional polymorphisms in carboxylesterase1A2 (CES1A2) gene involves specific protein 1 (Sp1) binding sites. Biochem Biophys Res Commun. 2008;369(3):939–942. doi: 10.1016/j.bbrc.2008.02.120
  • Rasmussen HB, Madsen MB, Lyauk YK, et al. Carboxylesterase 1A2 encoding gene with increased transcription and potential rapid drug metabolism in Asian populations. Drug Metab Pers Ther. 2017;32(3):163–168. doi: 10.1515/dmpt-2017-0012
  • Chen BB, Yan JH, Zheng J, et al. Copy number variation in the CES1 gene and the risk of non-alcoholic fatty liver in a Chinese Han population. Sci Rep. 2021;11(1):13984. doi: 10.1038/s41598-021-93549-2
  • Sai K, Saito Y, Tatewaki N, et al. Association of carboxylesterase 1A genotypes with irinotecan pharmacokinetics in Japanese cancer patients. Br J Clin Pharmacol. 2010;70(2):222–233. doi: 10.1111/j.1365-2125.2010.03695.x
  • Zhu HJ, Patrick KS, Yuan HJ, et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet. 2008;82(6):1241–1248. doi: 10.1016/j.ajhg.2008.04.015
  • Wang X, Rida N, Shi J, et al. A comprehensive functional assessment of carboxylesterase 1 nonsynonymous polymorphisms. Drug Metab Dispos. 2017;45(11):1149–1155. doi: 10.1124/dmd.117.077669
  • Xie C, Ding X, Gao J, et al. The effects of CES1A2 A(−816)C and CYP2C19 loss-of-function polymorphisms on clopidogrel response variability among Chinese patients with coronary heart disease. Pharmacogenet Genomics. 2014;24(4):204–210. doi: 10.1097/FPC.0000000000000035
  • Zou JJ, Chen SL, Fan HW, et al. CES1A –816C as a genetic marker to predict greater platelet clopidogrel response in patients with percutaneous coronary intervention. J Cardiovasc Pharmacol. 2014;63(2):178–183. doi: 10.1097/FJC.0000000000000037
  • Geshi E, Kimura T, Yoshimura M, et al. A single nucleotide polymorphism in the carboxylesterase gene is associated with the responsiveness to imidapril medication and the promoter activity. Hypertens Res. 2005;28(9):719–725. doi: 10.1291/hypres.28.719
  • Zhu HJ, Langaee TY, Gong Y, et al. CES1P1 variant –816A>C is not associated with hepatic carboxylesterase 1 expression and activity or antihypertensive effect of trandolapril. Eur J Clin Pharmacol. 2016;72(6):681–687. doi: 10.1007/s00228-016-2029-x
  • Her L, Shi J, Wang X, et al. Identification of regulatory variants of carboxylesterase 1 (CES1): a proof-of-concept study for the application of the Allele-Specific Protein Expression (ASPE) assay in identifying cis-acting regulatory genetic polymorphisms. Proteomics. 2023;23(1):e2200176. doi: 10.1002/pmic.202200176
  • Bruxel EM, Salatino-Oliveira A, Genro JP, et al. Association of a carboxylesterase 1 polymorphism with appetite reduction in children and adolescents with attention-deficit/hyperactivity disorder treated with methylphenidate. Pharmacogenomics J. 2013;13(5):476–480. doi: 10.1038/tpj.2012.25
  • Nelveg-Kristensen KE, Madsen MB, Torp-Pedersen C, et al. Prognostic impact of carboxylesterase 1 gene variants in patients with congestive heart failure treated with angiotensin-converting enzyme inhibitors. Pharmacogenet Genomics. 2016;26(4):169–177. doi: 10.1097/FPC.0000000000000203
  • Yamada S, Richardson K, Tang M, et al. Genetic variation in carboxylesterase genes and susceptibility to isoniazid-induced hepatotoxicity. Pharmacogenomics J. 2010;10:524–536. doi: 10.1038/tpj.2010.5
  • Wu MH, Chen P, Remo BF, et al. Characterization of multiple promoters in the human carboxylesterase 2 gene. Pharmacogenetics. 2003;13(7):425–435. doi: 10.1097/00008571-200307000-00008
  • Marsh S, Xiao M, Yu J, et al. Pharmacogenomic assessment of carboxylesterases 1 and 2. Genomics. 2004;84(4):661–668. doi: 10.1016/j.ygeno.2004.07.008
  • Kubo T, Kim SR, Sai K, et al. Functional characterization of three naturally occurring single nucleotide polymorphisms in the CES2 gene encoding carboxylesterase 2 (HCE-2). Drug Metab Dispos. 2005;33(10):1482–1487. doi: 10.1124/dmd.105.005587
  • Kim SR, Sai K, Tanaka-Kagawa T, et al. Haplotypes and a novel defective allele of CES2 found in a Japanese population. Drug Metab Dispos. 2007;35(10):1865–1872. doi: 10.1124/dmd.107.015339
  • Bellott R, Le Morvan V, Charasson V, et al. Functional study of the 830C>G polymorphism of the human carboxylesterase 2 gene. Cancer Chemother Pharmacol. 2008;61:481–488. doi: 10.1007/s00280-007-0493-9
  • Gibney ER, Nolan CM. Epigenetics and gene expression. Heredity (Edinb). 2010;105(1):4–13. doi: 10.1038/hdy.2010.54
  • Hori T, Hosokawa M. DNA methylation and its involvement in carboxylesterase 1A1 (CES1A1) gene expression. Xenobiotica. 2010;40(2):119–128. doi: 10.3109/00498250903431794
  • Xu J, Yin L, Xu Y, et al. Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels. PLoS One. 2014;9(10):e109663. doi: 10.1371/journal.pone.0109663
  • Wang X, Shi J, Zhu HJ. Functional study of carboxylesterase 1 protein isoforms. Proteomics. 2019;19(4):e1800288.
  • Shen Y, Shi Z, Yan B. Carboxylesterases: pharmacological inhibition regulated expression and transcriptional involvement of nuclear receptors and other transcription factors. Nuclear Receptor Research. 2019;6:101435.
  • Staudinger JL, Xu C, Cui YJ, et al. Nuclear receptor-mediated regulation of carboxylesterase expression and activity. Expert Opin Drug Metab Toxicol. 2010;6(3):261–271. doi: 10.1517/17425250903483215
  • Zhang Y, Cheng X, Aleksunes L, et al. Transcription factor-mediated regulation of carboxylesterase enzymes in livers of mice. Drug Metab Dispos. 2012;40(6):1191–1197. doi: 10.1124/dmd.111.043877
  • Collins JM, Lu R, Wang X, et al. Transcriptional regulation of carboxylesterase 1 in human liver: role of the nuclear receptor subfamily 1 group H member 3 and its splice isoforms. Drug Metab Dispos. 2022;50(1):43–48. doi: 10.1124/dmd.121.000649
  • Zhu W, Song L, Zhang H, et al. Dexamethasone differentially regulates expression of carboxylesterase genes in humans and rats. Drug Metab Dispos. 2000;28:186–191.
  • Zhang C, Gao P, Yin W, et al. Dexamethasone regulates differential expression of carboxylesterase 1 and carboxylesterase 2 through activation of nuclear receptors. J Huazhong Univ Sci Technolog Med Sci. 2012;32(6):798–805. doi: 10.1007/s11596-012-1037-z
  • Xiao D, Chen YT, Yang D, et al. Age-related inducibility of carboxylesterases by the antiepileptic agent phenobarbital and implications in drug metabolism and lipid accumulation. Biochem Pharmacol. 2012;84(2):232–239. doi: 10.1016/j.bcp.2012.04.002
  • Choi W, Cogdell D, Feng Y, et al. Transcriptional activation of the carboxylesterase 2 gene by the p53 pathway. Cancer Biol Ther. 2006;5(11):1450–1456. doi: 10.4161/cbt.5.11.3271
  • Xiao D, Yang D, Guo L, et al. Regulation of carboxylesterase-2 expression by p53 family proteins and enhanced anti-cancer activities among 5-fluorouracil, irinotecan and doxazolidine prodrug. Br J Pharmacol. 2013;168(8):1989–1999. doi: 10.1111/bph.12125
  • Shang W, Liu J, Chen R, et al. Fluoxetine reduces CES1, CES2, and CYP3A4 expression through decreasing PXR and increasing DEC1 in HepG2 cells. Xenobiotica. 2016;46(5):393–405. doi: 10.3109/00498254.2015.1082209
  • Xu M, Zhang L, Lin L, et al. Cisplatin increases carboxylesterases through increasing PXR mediated by the decrease of DEC1. J Biomed Res. 2023;37(6):431–447. doi: 10.7555/JBR.37.20230047
  • Yang X, Zhang X, Liu Y, et al. Insulin transcriptionally down-regulates carboxylesterases through pregnane X receptor in an Akt-dependent manner. Toxicology. 2019;422:60–68. doi: 10.1016/j.tox.2019.04.008
  • Maruichi T, Fukami T, Nakajima M, et al. Transcriptional regulation of human carboxylesterase 1A1 by nuclear factor-erythroid 2 related factor 2 (Nrf2). Biochem Pharmacol. 2010;79(2):288–295. doi: 10.1016/j.bcp.2009.08.019
  • Tian X, Yan F, Zheng J, et al. Endoplasmic reticulum targeting ratiometric fluorescent probe for Carboxylesterase 2 detection in drug-induced acute liver injury. Anal Chem. 2019;91(24):15840–15845. doi: 10.1021/acs.analchem.9b04189
  • Zhang C, Xu Y, Gao P, et al. Down-regulation of carboxylesterases 1 and 2 plays an important role in prodrug metabolism in immunological liver injury rats. Int Immunopharmacol. 2015;24(2):153–158. doi: 10.1016/j.intimp.2014.12.003
  • Li M, Lan L, Zhang S, et al. IL-6 downregulates hepatic carboxylesterases via NF-kappaB activation in dextran sulfate sodium-induced colitis. Int Immunopharmacol. 2021;99:107920. doi: 10.1016/j.intimp.2021.107920
  • Gao P, Li M, Lu J, et al. IL-33 downregulates hepatic carboxylesterase 1 in acute liver injury via macrophage-derived exosomal miR-27b-3p. J Clin Transl Hepatol. 2023;11:1130–1142. doi: 10.14218/JCTH.2022.00144
  • Yang D, Pearce RE, Wang X, et al. Human carboxylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin. Biochem Pharmacol. 2009;77(2):238–247. doi: 10.1016/j.bcp.2008.10.005
  • Zhu HJ, Appel DI, Jiang Y, et al. Age- and sex-related expression and activity of carboxylesterase 1 and 2 in mouse and human liver. Drug Metab Dispos. 2009;37(9):1819–1825. doi: 10.1124/dmd.109.028209
  • Hines RN, Simpson PM, McCarver DG. Age-dependent human hepatic carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) postnatal ontogeny. Drug Metab Dispos. 2016;44(7):959–966. doi: 10.1124/dmd.115.068957
  • Chen YT, Trzoss L, Yang D, et al. Ontogenic expression of human carboxylesterase-2 and cytochrome P450 3A4 in liver and duodenum: postnatal surge and organ-dependent regulation. Toxicology. 2015;330:55–61. doi: 10.1016/j.tox.2015.02.007
  • Boberg M, Vrana M, Mehrotra A, et al. Age-dependent absolute abundance of hepatic carboxylesterases (CES1 and CES2) by LC-MS/MS proteomics: application to PBPK modeling of oseltamivir in vivo pharmacokinetics in infants. Drug Metab Dispos. 2017;45(2):216–223. doi: 10.1124/dmd.116.072652
  • Shi J, Wang X, Eyler RF, et al. Association of oseltamivir activation with gender and carboxylesterase 1 genetic polymorphisms. Basic Clin Pharmacol Toxicol. 2016;119(6):555–561. doi: 10.1111/bcpt.12625
  • Zou LW, Jin Q, Wang DD, et al. Carboxylesterase inhibitors: an update. Curr Med Chem. 2018;25(14):1627–1649. doi: 10.2174/0929867325666171204155558
  • Song YQ, Jin Q, Wang DD, et al. Carboxylesterase inhibitors from clinically available medicines and their impact on drug metabolism. Chem Biol Interact. 2021;345:109566. doi: 10.1016/j.cbi.2021.109566
  • Takahashi S, Katoh M, Saitoh T, et al. Different inhibitory effects in rat and human carboxylesterases. Drug Metab Dispos. 2009;37(5):956–961. doi: 10.1124/dmd.108.024331
  • Fukami T, Takahashi S, Nakagawa N, et al. In vitro evaluation of inhibitory effects of antidiabetic and antihyperlipidemic drugs on human carboxylesterase activities. Drug Metab Dispos. 2010;38(12):2173–2178. doi: 10.1124/dmd.110.034454
  • Zhu HJ, Appel DI, Peterson YK, et al. Identification of selected therapeutic agents as inhibitors of carboxylesterase 1: potential sources of metabolic drug interactions. Toxicology. 2010;270(2–3):59–65. doi: 10.1016/j.tox.2010.01.009
  • Yanjiao X, Chengliang Z, Xiping L, et al. Evaluation of the inhibitory effects of antihypertensive drugs on human carboxylesterase in vitro. Drug Metab Pharmacokinet. 2013;28(6):468–474. doi: 10.2133/dmpk.dmpk-12-rg-143
  • Rhoades JA, Peterson YK, Zhu HJ, et al. Prediction and in vitro evaluation of selected protease inhibitor antiviral drugs as inhibitors of carboxylesterase 1: a potential source of drug-drug interactions. Pharm Res. 2012;29(4):972–982. doi: 10.1007/s11095-011-0637-9
  • Zhang C, Xu Y, Zhong Q, et al. In vitro evaluation of the inhibitory potential of pharmaceutical excipients on human carboxylesterase 1A and 2. PLoS One. 2014;9(4):e93819. doi: 10.1371/journal.pone.0093819
  • Shimizu M, Fukami T, Nakajima M, et al. Screening of specific inhibitors for human carboxylesterases or arylacetamide deacetylase. Drug Metab Dispos. 2014;42(7):1103–1109. doi: 10.1124/dmd.114.056994
  • Umehara K, Zollinger M, Kigondu E, et al. Esterase phenotyping in human liver in vitro: specificity of carboxylesterase inhibitors. Xenobiotica. 2016;46(10):862–867. doi: 10.3109/00498254.2015.1133867
  • Zhao YS, Qian XK, Guan XQ, et al. Discovery of natural alkaloids as potent and selective inhibitors against human carboxylesterase 2. Bioorg Chem. 2020;105:104367. doi: 10.1016/j.bioorg.2020.104367
  • Zhao T, Wang D, Zhao S, et al. Comparison of the inhibitory effects of clotrimazole and Ketoconazole against human carboxylesterase 2. Curr Drug Metab. 2021;22(5):391–398. doi: 10.2174/1389200222666210210115509
  • Hirosawa K, Fukami T, Nakano M, et al. Evaluation of drug-drug interactions via inhibition of hydrolases by Orlistat, an anti-obesity drug. Drug Metab Dispos. 2023;51(8):1016–1023. doi: 10.1124/dmd.123.001266
  • Xu J, Qiu JC, Ji X, et al. Potential pharmacokinetic herb-drug interactions: have we overlooked the importance of human carboxylesterases 1 and 2? Curr Drug Metab. 2019;20(2):130–137. doi: 10.2174/1389200219666180330124050
  • Qian Y, Markowitz JS. Natural products as modulators of CES1 activity. Drug Metab Dispos. 2020;48(10):993–1007. doi: 10.1124/dmd.120.000065
  • Lewis JP, Horenstein RB, Ryan K, et al. The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Genom. 2013;23(1):1–8. doi: 10.1097/FPC.0b013e32835aa8a2
  • Tarkiainen EK, Holmberg MT, Tornio A, et al. Carboxylesterase 1 c.428G>A single nucleotide variation increases the antiplatelet effects of clopidogrel by reducing its hydrolysis in humans. Clin Pharm Ther. 2015;97(6):650–658. doi: 10.1002/cpt.101
  • Neuvonen M, Tarkiainen EK, Tornio A, et al. Effects of genetic variants on carboxylesterase 1 gene expression, and clopidogrel pharmacokinetics and antiplatelet effects. Basic Clin Pharmacol Toxicol. 2018;122(3):341–345. doi: 10.1111/bcpt.12916
  • Xiao FY, Luo JQ, Liu M, et al. Effect of carboxylesterase 1 S75N on clopidogrel therapy among acute coronary syndrome patients. Sci Rep. 2017;7(1):7244. doi: 10.1038/s41598-017-07736-1
  • Mirzaev KB, Osipova DV, Kitaeva EJ, et al. Effects of the rs2244613 polymorphism of the CES1 gene on the antiplatelet effect of the receptor P2Y12 blocker clopidogrel. Drug Metab Pers Ther. 2019;34(3):20180039. doi: 10.1515/dmpt-2018-0039
  • Pare G, Eriksson N, Lehr T, et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation. 2013;127(13):1404–1412. doi: 10.1161/CIRCULATIONAHA.112.001233
  • Zhu Z, Qian C, Su C, et al. The impact of ABCB1 and CES1 polymorphisms on the safety of dabigatran in patients with non-valvular atrial fibrillation. BMC Cardiovasc Disord. 2022;22(1):481. doi: 10.1186/s12872-022-02910-4
  • Liu Y, Yang C, Qi W, et al. The impact of ABCB1 and CES1 polymorphisms on dabigatran pharmacokinetics in healthy Chinese subjects. Pharmgenomics Pers Med. 2021;14:477–485. doi: 10.2147/PGPM.S291723
  • Sychev D, Skripka A, Ryzhikova K, et al. Effect of CES1 and ABCB1 genotypes on the pharmacokinetics and clinical outcomes of dabigatran etexilate in patients with atrial fibrillation and chronic kidney disease. Drug Metab Pers Ther. 2020;35:20190029. doi: 10.1515/dmpt-2019-0029
  • Sychev DA, Levanov AN, Shelekhova TV, et al. The impact of ABCB1 (rs1045642 and rs4148738) and CES1 (rs2244613) gene polymorphisms on dabigatran equilibrium peak concentration in patients after total knee arthroplasty. Pharmgenomics Pers Med. 2018;11:127–137. doi: 10.2147/PGPM.S169277
  • Tarkiainen EK, Tornio A, Holmberg MT, et al. Effect of carboxylesterase 1 c.428G > a single nucleotide variation on the pharmacokinetics of quinapril and enalapril. Br J Clin Pharmacol. 2015;80(5):1131–1138. doi: 10.1111/bcp.12667
  • Stage C, Jurgens G, Guski LS, et al. The pharmacokinetics of enalapril in relation to CES1 genotype in healthy Danish volunteers. Basic Clin Pharmacol Toxicol. 2017;121(6):487–492. doi: 10.1111/bcpt.12835
  • Ikonnikova A, Rodina T, Dmitriev A, et al. The influence of the CES1 genotype on the pharmacokinetics of enalapril in patients with arterial hypertension. J Pers Med. 2022;12(4):580. doi: 10.3390/jpm12040580
  • Ikonnikova A, Kazakov R, Rodina T, et al. The influence of structural variants of the CES1 gene on the Pharmacokinetics of Enalapril, presumably due to linkage disequilibrium with the Intronic rs2244613. Genes (Basel). 2022;13(12):2225. doi: 10.3390/genes13122225
  • Her LH, Wang X, Shi J, et al. Effect of CES1 genetic variation on enalapril steady-state pharmacokinetics and pharmacodynamics in healthy subjects. Br J Clin Pharmacol. 2021;87(12):4691–4700. doi: 10.1111/bcp.14888
  • Wang X, Her L, Xiao J, et al. Impact of carboxylesterase 1 genetic polymorphism on trandolapril activation in human liver and the pharmacokinetics and pharmacodynamics in healthy volunteers. Clin Transl Sci. 2021;14(4):1380–1389. doi: 10.1111/cts.12989
  • Stage C, Dalhoff K, Rasmussen HB, et al. The impact of human CES1 genetic variation on enzyme activity assessed by ritalinic acid/methylphenidate ratios. Basic Clin Pharmacol Toxicol. 2019;125(1):54–61. doi: 10.1111/bcpt.13212
  • Stage C, Jurgens G, Guski LS, et al. The impact of CES1 genotypes on the pharmacokinetics of methylphenidate in healthy Danish subjects. Br J Clin Pharmacol. 2017;83(7):1506–1514. doi: 10.1111/bcp.13237
  • Brown JT, Beery N, Taran A, et al. Associations between CES1 variants and dosing and adverse effects in children taking methylphenidate. Front Pediatr. 2022;10:958622. doi: 10.3389/fped.2022.958622
  • Oxenbøll M, Kaalund-Jørgensen K, Rasmussen S, et al. Association of Carboxylesterase 1 Gene (CES1) polymorphism with weight loss in children with attention deficit hyperactivity disorder during methylphenidate treatment. J Proteomics & Bioinf. 2017;2:1010.
  • Hernandez MH, Bote V, Serra LA, et al. CES1 and SLC6A2 genetic variants as predictors of response to methylphenidate in autism spectrum disorders. Pharmgenomics Pers Med. 2022;15:951–957. doi: 10.2147/PGPM.S377210
  • Liu D, Li X, Li X, et al. Carboxylesterase 1 polymorphisms are associated with clinical outcomes in gastroenteric cancer patients treated with capecitabine. Cancer Chemother Pharmacol. 2021;87(5):681–687. doi: 10.1007/s00280-021-04247-9
  • Hamzic S, Kummer D, Milesi S, et al. Novel genetic variants in carboxylesterase 1 predict severe early-onset capecitabine-related toxicity. Clin Pharmacol Ther. 2017;102(5):796–804. doi: 10.1002/cpt.641
  • Matsumoto N, Kubota Y, Ishida H, et al. Variants of carboxylesterase 1 have no impact on capecitabine pharmacokinetics and toxicity in capecitabine plus oxaliplatin treated-colorectal cancer patients. Cancer Chemother Pharmacol. 2020;85(6):1119–1128. doi: 10.1007/s00280-020-04087-z
  • Cura Y, Sanchez-Martin A, Marquez-Pete N, et al. Association of single-nucleotide polymorphisms in capecitabine bioactivation pathway with adjuvant therapy safety in colorectal cancer patients. Pharmaceutics. 2023;15(11):2548. doi: 10.3390/pharmaceutics15112548
  • de with M, van Doorn L, Maasland DC, et al. Capecitabine-induced hand-foot syndrome: a pharmacogenetic study beyond DPYD. Biomed Pharmacother. 2023;159:114232. doi: 10.1016/j.biopha.2023.114232
  • Rouits E, Charasson V, Petain A, et al. Pharmacokinetic and pharmacogenetic determinants of the activity and toxicity of irinotecan in metastatic colorectal cancer patients. Br J Cancer. 2008;99(8):1239–1245. doi: 10.1038/sj.bjc.6604673
  • de with M, van Doorn L, Kloet E, et al. Irinotecan-induced toxicity: a pharmacogenetic study beyond UGT1A1. Clin Pharmacokinet. 2023;62:1589–1597. doi: 10.1007/s40262-023-01279-7
  • Tarkiainen EK, Backman JT, Neuvonen M, et al. Carboxylesterase 1 polymorphism impairs oseltamivir bioactivation in humans. Clin Pharmacol Ther. 2012;92(1):68–71. doi: 10.1038/clpt.2012.13
  • Zhu HJ, Wang X, Gawronski BE, et al. Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation. J Pharmacol Exp Ther. 2013;344(3):665–672. doi: 10.1124/jpet.112.201640
  • Shi J, Wang X, Nguyen JH, et al. Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender. Biochem Pharmacol. 2016;119:76–84. doi: 10.1016/j.bcp.2016.09.003
  • Yerrakula G, George SG, KK D, et al. Effect of non-synonymous single-nucleotide polymorphism of human carboxyl esterase 1 on the bioactivation of Dabigatran Etexilate. Int J Appl Pharm. 2022:208–213. doi: 10.22159/ijap.2022v14i5.44682
  • Laizure SC, Chen F, Farrar JE, et al. Carboxylesterase-2 plays a critical role in dabigatran etexilate active metabolite formation. Drug Metab Pharmacokinet. 2022;47:100479. doi: 10.1016/j.dmpk.2022.100479
  • Messerli FH, Bangalore S, Bavishi C, et al. Angiotensin-converting enzyme inhibitors in hypertension: to use or not to use? J Am Coll Cardiol. 2018;71(13):1474–1482. doi: 10.1016/j.jacc.2018.01.058
  • Jaeschke RR, Sujkowska E, Sowa-Kucma M. Methylphenidate for attention-deficit/hyperactivity disorder in adults: a narrative review. Psychopharmacol (Berl). 2021;238(10):2667–2691. doi: 10.1007/s00213-021-05946-0
  • Lyauk YK, Stage C, Bergmann TK, et al. Population pharmacokinetics of methylphenidate in healthy adults emphasizing novel and known effects of several carboxylesterase 1 (CES1) variants. Clin Transl Sci. 2016;9(6):337–345. doi: 10.1111/cts.12423
  • Xiao J, Shi J, Thompson BR, et al. Physiologically-based pharmacokinetic modeling to predict methylphenidate exposure affected by interplay among carboxylesterase 1 pharmacogenetics, drug-drug interactions, and sex. J Pharmaceut sci. 2022;111(9):2606–2613. doi: 10.1016/j.xphs.2022.04.019
  • Cura Y, Perez-Ramirez C, Sanchez-Martin A, et al. Influence of single-nucleotide polymorphisms on clinical outcomes of capecitabine-based chemotherapy in colorectal cancer patients: a systematic review. Cancers (Basel). 2023;15(6):1821. doi: 10.3390/cancers15061821
  • de Man FM, Goey AKL, van Schaik RHN, et al. Individualization of irinotecan treatment: a review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Clin Pharmacokinet. 2018;57:1229–1254. doi: 10.1007/s40262-018-0644-7
  • Capello M, Lee M, Wang H, et al. Carboxylesterase 2 as a determinant of response to Irinotecan and neoadjuvant FOLFIRINOX therapy in pancreatic ductal adenocarcinoma. J Natl Cancer Inst. 2015;107(8): doi: 10.1093/jnci/djv132
  • Oh J, Lee S, Lee H, et al. The novel carboxylesterase 1 variant c.662A>G may decrease the bioactivation of oseltamivir in humans. PLoS One. 2017;12(4):e0176320. doi: 10.1371/journal.pone.0176320
  • Chen Y, Ke M, Xu J, et al. Simulation of the pharmacokinetics of Oseltamivir and its active metabolite in normal populations and patients with hepatic cirrhosis using physiologically based pharmacokinetic modeling. AAPS Pharm Sci Tech. 2020;21(3):98. doi: 10.1208/s12249-020-1638-y
  • Zhang Q, Melchert PW, Markowitz JS. In vitro evaluation of the impact of covid-19 therapeutic agents on the hydrolysis of the antiviral prodrug remdesivir. Chemico-Biological Interactions. 2022;365:110097. doi: 10.1016/j.cbi.2022.110097
  • Zhang F, Li HX, Zhang TT, et al. Human carboxylesterase 1A plays a predominant role in the hydrolytic activation of remdesivir in humans. Chem Biol Interact. 2022;351:109744. doi: 10.1016/j.cbi.2021.109744
  • Patrick KS, Straughn AB, Reeves OT 3rd, et al. Comparative ethanol-induced potentiation of stimulatory responses to dexmethylphenidate versus methylphenidate. J Clin Psychopharmacol. 2015;35(4):464–467. doi: 10.1097/JCP.0000000000000348
  • Zhu HJ, Patrick KS, Straughn AB, et al. Ethanol interactions with dexmethylphenidate and dl-methylphenidate spheroidal oral drug absorption systems in healthy volunteers. J Clin Psychopharmacol. 2017;37(4):419–428. doi: 10.1097/JCP.0000000000000721
  • Parker RB, Hu ZY, Meibohm B, et al. Effects of alcohol on human carboxylesterase drug metabolism. Clin Pharmacokinet. 2015;54(6):627–638. doi: 10.1007/s40262-014-0226-2
  • Liu W, Yu S, Yan B. Effect of alcohol exposure on the efficacy and safety of tenofovir alafenamide fumarate, a major medicine against human immunodeficiency virus. Biochemical Pharmacology. 2022;204:115224. doi: 10.1016/j.bcp.2022.115224
  • Yang B, Parker RB, Meibohm B, et al. Alcohol inhibits the metabolism of dimethyl fumarate to the active metabolite responsible for decreasing relapse frequency in the treatment of multiple sclerosis. PLoS One. 2022;17(11):e0278111. doi: 10.1371/journal.pone.0278111
  • Ge PX, Jiang LP, Tai T, et al. Short-term standard alcohol consumption enhances platelet response to clopidogrel through inhibition of Nrf2/Ces1 pathway and induction of Cyp2c in mice. Life Sci. 2021;279:119268. doi: 10.1016/j.lfs.2021.119268
  • Jang K, Kim MK, Oh J, et al. Effects of dexamethasone coadministered with oseltamivir on the pharmacokinetics of oseltamivir in healthy volunteers. Drug Des Devel Ther. 2017;11:705–711. doi: 10.2147/DDDT.S124307
  • Chung H, Kim JM, Park JW, et al. Effects of simvastatin on pharmacokinetics and anticoagulant effects of dabigatran in healthy subjects. Pharmaceuticals (Basel). 2023;16(3):364. doi: 10.3390/ph16030364
  • Wang X, Zhu HJ, Markowitz JS. Carboxylesterase 1-mediated drug–drug interactions between clopidogrel and simvastatin. Biological & Pharmaceutical Bulletin. 2015;38(2):292–297. doi: 10.1248/bpb.b14-00679
  • Markowitz JS, De Faria L, Zhang Q, et al. The influence of Cannabidiol on the pharmacokinetics of methylphenidate in healthy subjects. Med Cannabis Cannabinoids. 2022;5(1):199–206. doi: 10.1159/000527189
  • Cressman AM, Macdonald EM, Fernandes KA, et al. A population-based study of the drug interaction between clopidogrel and angiotensin converting enzyme inhibitors. Br J Clin Pharmacol. 2015;80(4):662–669. doi: 10.1111/bcp.12682
  • Kristensen KE, Zhu HJ, Wang X, et al. Clopidogrel bioactivation and risk of bleeding in patients cotreated with angiotensin-converting enzyme inhibitors after myocardial infarction: a proof-of-concept study. Clin Pharmacol Ther. 2014;96(6):713–722. doi: 10.1038/clpt.2014.183
  • Zhang J, Zhang Y, Lai YS, et al. Elucidation of carboxylesterase mediated pharmacokinetic interactions between Irinotecan and oroxylin a in rats via physiologically based pharmacokinetic modeling. Pharm Res. 2023;40(11):2627–2638. doi: 10.1007/s11095-023-03590-1
  • Shi J, Xiao J, Wang X, et al. Plasma carboxylesterase 1 predicts methylphenidate exposure: a proof-of-concept study using plasma protein biomarker for hepatic drug metabolism. Clinical pharmacology and therapeutics. Clin Pharmacol Ther. 2022;111(4):878–885. doi: 10.1002/cpt.2486
  • Wang DD, Zou LW, Jin Q, et al. Bioluminescent sensor reveals that carboxylesterase 1A is a novel endoplasmic reticulum-derived serologic indicator for hepatocyte injury. ACS Sens. 2020;5(7):1987–1995. doi: 10.1021/acssensors.0c00384
  • Ettmayer P, Amidon GL, Clement B, et al. Lessons learned from marketed and investigational prodrugs. J Med Chem. 2004;47(10):2393–2404. doi: 10.1021/jm0303812
  • Hu W-J, Chang L, Yang Y, et al. Pharmacokinetics and tissue distribution of remdesivir and its metabolites nucleotide monophosphate, nucleotide triphosphate, and nucleoside in mice. Acta Pharmacol Sin. 2021;42(7):1195–1200. doi: 10.1038/s41401-020-00537-9
  • Li R, Liclican A, Xu Y, et al. Key metabolic enzymes involved in remdesivir activation in human lung cells. Antimicrob Agents Chemother. 2021;65(9):e0060221. doi: 10.1128/aac.00602-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.