49
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Contribution of aldehyde oxidase to methotrexate-induced hepatotoxicity: in vitro and pharmacoepidemiological approaches

, , ORCID Icon, , , & ORCID Icon show all
Pages 399-406 | Received 13 Jan 2024, Accepted 19 Apr 2024, Published online: 09 May 2024

References

  • Weinblatt ME, Coblyn JS, Fox DA, et al. Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med. 1985;312(13):818–822. doi: 10.1056/NEJM198503283121303
  • Jolivet J, Cowan KH, Curt GA, et al. The pharmacology and clinical use of methotrexate. N Engl J Med. 1983;309(18):1094–1104. doi: 10.1056/NEJM198311033091805
  • Stoller RG, Hande KR, Jacobs SA, et al. Use of plasma pharmacokinetics to predict and prevent methotrexate toxicity. N Engl J Med. 1977;297(12):630–634. doi: 10.1056/NEJM197709222971203
  • Jordan CG, Rashidi MR, Laljee H, et al. Aldehyde oxidase-catalysed oxidation of methotrexate in the liver of guinea-pig, rabbit and man. J Pharm Pharmacol. 1999;51(4):411–418. doi: 10.1211/0022357991772619
  • Ezhilarasan D. Hepatotoxic potentials of methotrexate: understanding the possible toxicological molecular mechanisms. Toxicology. 2021;458:152840. doi: 10.1016/j.tox.2021.152840
  • van de Meeberg MM, Fidder HH, Oldenburg B, et al. Therapeutic drug monitoring of methotrexate in patients with Crohn’s disease. Aliment Pharmacol Ther. 2023;58(11–12):1151–1162. doi: 10.1111/apt.17719
  • Vlaming ML, Pala Z, van Esch A, et al. Functionally overlapping roles of Abcg2 (Bcrp1) and Abcc2 (Mrp2) in the elimination of methotrexate and its main toxic metabolite 7-hydroxymethotrexate in vivo. Clin Cancer Res. 2009;15(9):3084–3093. doi: 10.1158/1078-0432.CCR-08-2940
  • Vlaming ML, van Esch A, Pala Z, et al. Abcc2 (Mrp2), Abcc3 (Mrp3), and Abcg2 (Bcrp1) are the main determinants for rapid elimination of methotrexate and its toxic metabolite 7-hydroxymethotrexate in vivo. Mol Cancer Ther. 2009;8(12):3350–3359. doi: 10.1158/1535-7163.MCT-09-0668
  • Ikemura K, Hiramatsu SI, Shinogi Y, et al. Concomitant febuxostat enhances methotrexate-induced hepatotoxicity by inhibiting breast cancer resistance protein. Sci Rep. 2019;9(1):20359. doi: 10.1038/s41598-019-56900-2
  • Garattini E, Fratelli M, Terao M. The mammalian aldehyde oxidase gene family. Hum Genomics. 2009;4(2):119–130. doi: 10.1186/1479-7364-4-2-119
  • Fu C, Di L, Han X, et al. Aldehyde oxidase 1 (AOX1) in human liver cytosols: quantitative characterization of AOX1 expression level and activity relationship. Drug Metab Dispos. 2013;41(10):1797–1804. doi: 10.1124/dmd.113.053082
  • Obach RS, Huynh P, Allen MC, et al. Human liver aldehyde oxidase: inhibition by 239 drugs. J Clin Pharmacol. 2004;44(1):7–19. doi: 10.1177/0091270003260336
  • Demir E, Sütcüoğlu O, Demir B, et al. A possible interaction between favipiravir and methotrexate: drug-induced hepatotoxicity in a patient with osteosarcoma. J Oncol Pharm Pract. 2022;28(2):445–448. doi: 10.1177/10781552211031304
  • Morgan SL, Baggott JE. The importance of inhibition of a catabolic pathway of methotrexate metabolism in its efficacy for rheumatoid arthritis. Med Hypotheses. 2019;122:10–15. doi: 10.1016/j.mehy.2018.10.002
  • Ueda H, Narumi K, Furugen A, et al. The rs35217482 (T755I) single-nucleotide polymorphism in aldehyde oxidase-1 attenuates protein dimer formation and reduces the rates of phthalazine metabolism. Drug Metab Dispos. 2022;50(9):1126–1131. doi: 10.1124/dmd.122.000902
  • Ueda H, Narumi K, Sato Y, et al. Evaluation of possible pharmacokinetic interaction between methotrexate and proton pump inhibitors in rats. Pharmacol Rep. 2020;72(5):1426–1432. doi: 10.1007/s43440-020-00130-1
  • Mei S, Cui Y, Zhang D, et al. Simultaneous determination of urine methotrexate, 7-hydroxy methotrexate, deoxyaminopteroic acid, and 7-hydroxy deoxyaminopteroic acid by UHPLC-MS/MS in patients receiving high-dose methotrexate therapy. Anal Sci. 2020;36(12):1479–1483. doi: 10.2116/analsci.19P481
  • U.S. Food and Drug Administration. In vitro drug interaction studies – cytochrome P450 enzyme- and transporter-mediated drug interactions. Guidance for industry [Internet]. 2020. [cited 2023 Apr 15]. Available from: https://www.fda.gov/media/134582/download
  • Vieira ML, Kirby B, Ragueneau-Majlessi I, et al. Evaluation of various static in vitro–in vivo extrapolation models for risk assessment of the CYP3A inhibition potential of an investigational drug. Clin Pharmacol Ther. 2014;95(2):189–198. doi: 10.1038/clpt.2013.187
  • Bate A, Evans SJW. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009;18:427–436. doi: 10.1002/pds.1742
  • Almenoff JS, DuMouchel W, Kindman LA, et al. Disproportionality analysis using empirical Bayes data mining: a tool for the evaluation of drug interactions in the post-marketing setting. Pharmacoepidemiol Drug Saf. 2003;12:517–521. doi: 10.1002/pds.885
  • Noguchi Y, Yoshizawa S, Aoyama K, et al. Verification of the “upward variation in the reporting odds ratio scores” to detect the signals of drug–drug interactions. Pharmaceutics. 2021;13(10):1531. doi: 10.3390/pharmaceutics13101531
  • Noguchi Y, Takaoka M, Hayashi T, et al. Antiepileptic combination therapy with Stevens-Johnson syndrome and toxic epidermal necrolysis: analysis of a Japanese pharmacovigilance database. Epilepsia. 2020;61(9):1979–1989. doi: 10.1111/epi.16626
  • Zhong G, Seaman CJ, Paragas EM, et al. Aldehyde oxidase contributes to all-trans-retinoic acid biosynthesis in human liver. Drug Metab Dispos. 2021;49(3):202–211. doi: 10.1124/dmd.120.000296
  • Sigruener A, Buechler C, Orsó E, et al. Human aldehyde oxidase 1 interacts with ATP-binding cassette transporter-1 and modulates its activity in hepatocytes. Horm Metab Res. 2007;39(11):781–789. doi: 10.1055/s-2007-992129
  • Dalvie D, Di L. Aldehyde oxidase and its role as a drug metabolizing enzyme. Pharmacol Ther. 2019;201:137–180. doi: 10.1016/j.pharmthera.2019.05.011
  • Farquhar D, Loo TL, Vadlamudi S. Synthesis and biologic evaluation of 7-hydroxymethotrexate, 7-methylaminopterin, and 7-methylmethotrexate. J Med Chem. 1972;15(5):567–569. doi: 10.1021/jm00275a038
  • Kochanek SJ, Close DA, Wang AX, et al. Confirmation of selected synergistic cancer drug combinations identified in an HTS campaign and exploration of drug efflux transporter contributions to the mode of synergy. SLAS Discov. 2019;24(6):653–668. doi: 10.1177/2472555219844566
  • Xiong L, Feng Y, Hu W, et al. Expression of AOX1 predicts prognosis of clear cell renal cell carcinoma. Front Genet. 2021;12:683173. doi: 10.3389/fgene.2021.683173
  • Tan WK, Tan ARY, Sivanandam P, et al. In vitro inhibition of human aldehyde oxidase activity by clinically relevant concentrations of gefitinib and erlotinib: comparison with select metabolites, molecular docking analysis, and impact on hepatic metabolism of zaleplon and methotrexate. J Pharmacol Exp Ther. 2020;374(2):295–307. doi: 10.1124/jpet.120.265249
  • Plasencia-García BO, Rodríguez-Menéndez G, Rico-Rangel MI, et al. Drug-drug interactions between COVID-19 treatments and antipsychotics drugs: integrated evidence from 4 databases and a systematic review. Psychopharmacol (Berl). 2021;238(2):329–340. doi: 10.1007/s00213-020-05716-4
  • Ueda H, Narumi K, Asano S, et al. Comparative study on the occurrence of adverse effects in the concomitant use of azathioprine and aldehyde oxidase inhibitors. Expert Opin Drug Saf. 2023;23(1):89–97. doi: 10.1080/14740338.2023.2295976
  • Galiano Rus S, Ortiz García de la Foz V, Arias-Loste MT, et al. Elevated risk of liver steatosis in first-episode psychosis patients: results from a 3-year prospective study. Schizophr Res. 2022;246:30–38. doi: 10.1016/j.schres.2022.06.001
  • Di Martino V, Verhoeven DW, Verhoeven F, et al. Busting the myth of methotrexate chronic hepatotoxicity. Nat Rev Rheumatol. 2023;19(2):96–110. doi: 10.1038/s41584-022-00883-4
  • Winograd B, Lippens RJ, Oosterbaan MJ, et al. Renal excretion and pharmacokinetics of methotrexate and 7-hydroxy-methotrexate following a 24-h high dose infusion of methotrexate in children. Eur J Clin Pharmacol. 1986;30(2):231–238. doi: 10.1007/BF00614310
  • Erttmann R, Bielack S, Landbeck G. 7-hydroxy-methotrexate and clinical toxicity following high-dose methotrexate therapy. J Cancer Res Clin Oncol. 1985;109(1):86–88. doi: 10.1007/BF01884261
  • Foti A, Hartmann T, Coelho C, et al. Optimization of the expression of human aldehyde oxidase for investigations of single-nucleotide polymorphisms. Drug Metab Dispos. 2016;44(8):1277–1285. doi: 10.1124/dmd.115.068395
  • Danan G, Teschke R. RUCAM in drug and herb induced liver injury: the update. Int J Mol Sci. 2015;17(1):14. doi: 10.3390/ijms17010014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.