40
Views
0
CrossRef citations to date
0
Altmetric
Special Report

New approach methods on the bench side to accelerate clinical trials during pregnancy

, &
Pages 555-560 | Received 08 Feb 2024, Accepted 07 May 2024, Published online: 13 May 2024

References

  • Lawn JE, Kinney MV, Belizan JM, et al. Born too soon: accelerating actions for prevention and care of 15 million newborns born too soon. Reprod Health. 2013;10(Suppl 1):S6. doi: 10.1186/1742-4755-10-S1-S6
  • Beck S, Wojdyla D, Say L, et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull World Health Organ. 2010 Jan;88(1):31–38. doi: 10.2471/BLT.08.062554
  • Qiao C, Menon R, Ahn KH, et al. Preterm birth update in Australasia: a report of the international symposium of preterm birth international Collaborative-Australasia branch. Front Pediatr. 2022;10:903546. doi: 10.3389/fped.2022.903546
  • Menon R. Spontaneous preterm birth, a clinical dilemma: etiologic, pathophysiologic and genetic heterogeneities and racial disparity. Acta Obstet Gynecol Scand. 2008;87(6):590–600. doi: 10.1080/00016340802005126
  • Vidal MS Jr., Lintao RCV, Severino MEL, et al. Spontaneous preterm birth: involvement of multiple feto-maternal tissues and organ systems, differing mechanisms, and pathways. Front Endocrinol. 2022;13:1015622. doi: 10.3389/fendo.2022.1015622
  • Berezowska M, Sharma P, Pilla Reddy V, et al. Physiologically based pharmacokinetic modelling of drugs in pregnancy: a mini-review on availability and limitations. Fundam Clin Pharmacol. 2023 Nov 15:e12967. doi: 10.1111/fcp.12967
  • Kammala A, Benson M, Ganguly E, et al. Fetal membranes contribute to drug transport across the feto-maternal interface utilizing the breast cancer resistance protein (BCRP). Life (Basel). 2022 Jan 23;12(2):166. doi: 10.3390/life12020166
  • Lintao RCV, Kammala AK, Vora N, et al. Fetal membranes exhibit similar nutrient transporter expression profiles to the placenta. Placenta. 2023 Apr;135:33–42. doi: 10.1016/j.placenta.2023.03.001
  • Kammala AK, Lintao RCV, Vora N, et al. Expression of CYP450 enzymes in human fetal membranes and its implications in xenobiotic metabolism during pregnancy. Life Sci. 2022 Aug;5:120867. doi: 10.1016/j.lfs.2022.120867
  • Dorey RB, Theodosiou AA, Read RC, et al. Qualitative interview study exploring the perspectives of pregnant women on participating in controlled human infection research in the UK. BMJ Open. 2023 Dec 27;13(12):e073992. doi: 10.1136/bmjopen-2023-073992
  • Bank TC, Stika CS, Venkataramanan R, et al. Challenges in conducting therapeutic trials in pregnancy: emphasizing recent lessons learned. J Clin Pharmacol. 2023 Jun;63(Suppl 1):S117–S125. doi: 10.1002/jcph.2226
  • Adams Waldorf KM, Rubens CE, Gravett MG. Use of nonhuman primate models to investigate mechanisms of infection-associated preterm birth. BJOG. 2011 Jan;118(2):136–144. doi: 10.1111/j.1471-0528.2010.02728.x
  • Menon R, Muglia LJ, Levin LH. Review on new approach methods to gain insight into the feto-maternal interface physiology. Front Med. 2023;10:1304002. doi: 10.3389/fmed.2023.1304002
  • Pu Y, Gingrich J, Veiga-Lopez A. A 3-dimensional microfluidic platform for modeling human extravillous trophoblast invasion and toxicological screening. Lab Chip. 2021 Feb 9;21(3):546–557. doi: 10.1039/D0LC01013H
  • Yin F, Zhu Y, Zhang M, et al. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicol Vitro. 2019 Feb;54:105–113. doi: 10.1016/j.tiv.2018.08.014
  • Mosavati B, Oleinikov A, Du E. 3D microfluidics-assisted modeling of glucose transport in placental malaria. Sci Rep. 2022 Sep 10;12(1):15278. doi: 10.1038/s41598-022-19422-y
  • Zubizarreta ME, Xiao S. Bioengineering models of female reproduction. Biodes Manuf. 2020 Sep;3(3):237–251. doi: 10.1007/s42242-020-00082-8
  • Mosavati B, Oleinikov AV, Du E. Development of an organ-on-a-chip-device for study of placental pathologies. Int J Mol Sci. 2020 Nov 19;21(22):8755. doi: 10.3390/ijms21228755
  • Rabussier G, Bunter I, Bouwhuis J, et al. Healthy and diseased placental barrier on-a-chip models suitable for standardized studies. Acta Biomater. 2023 Jul 1;164:363–376. doi: 10.1016/j.actbio.2023.04.033
  • Cui Y, Zhao H, Wu S, et al. Human female reproductive system organoids: applications in developmental biology, disease modelling, and drug discovery. Stem Cell Rev And Rep. 2020 Dec;16(6):1173–1184. doi: 10.1007/s12015-020-10039-0
  • Zarrintaj P, Saeb MR, Stadler FJ, et al. Human organs-on-chips: a review of the state-of-the-art, Current prospects, and future challenges. Adv Biol (Weinh). 2022 Jan;6(1):e2000526. doi: 10.1002/adbi.202000526
  • Kammala AK, Richardson LS, Radnaa E, et al. Microfluidic technology and simulation models in studying pharmacokinetics during pregnancy. Front Pharmacol. 2023;14:1241815. doi: 10.3389/fphar.2023.1241815
  • Horii M, Touma O, Bui T, et al. Modeling human trophoblast, the placental epithelium at the maternal fetal interface. Reproduction. 2020 Jul;160(1):R1–R11. doi: 10.1530/REP-19-0428
  • Tutar R, Celebi-Saltik B. Modeling of artificial 3D human placenta. Cells Tissues Organs. 2022;211(4):527–536. doi: 10.1159/000511571
  • Mittal R, Woo FW, Castro CS, et al. Organ-on-chip models: implications in drug discovery and clinical applications. J Cell Physiol. 2019 Jun;234(6):8352–8380. doi: 10.1002/jcp.27729
  • Richardson L, Kim S, Menon R, et al. Organ-on-chip technology: The future of feto-maternal interface research? Front Physiol. 2020;11:715. doi: 10.3389/fphys.2020.00715
  • Menon R, Richardson L. Organ-on-a-chip for perinatal biology experiments. Placenta Reprod Med. 2022 Jul;6:1. doi: 10.54844/prm.2022.0098
  • Richardson L, Jeong S, Kim S, et al. Amnion membrane organ-on-chip: an innovative approach to study cellular interactions. FASEB J. 2019 Aug;33(8):8945–8960. doi: 10.1096/fj.201900020RR
  • Richardson LS, Kammala AK, Kim S, et al. Development of oxidative stress-associated disease models using feto-maternal interface organ-on-a-chip. FASEB J. 2023 Jul;37(7):e23000. doi: 10.1096/fj.202300531R
  • Tantengco OAG, Richardson LS, Radnaa E, et al. Exosomes from Ureaplasma parvum-infected ectocervical epithelial cells promote feto-maternal interface inflammation but are insufficient to cause preterm delivery. Front Cell Dev Biol. 2022;10:931609. doi: 10.3389/fcell.2022.931609
  • Radnaa E, Richardson LS, Sheller-Miller S, et al. Extracellular vesicle mediated feto-maternal HMGB1 signaling induces preterm birth. Lab Chip. 2021 May 18;21(10):1956–1973. doi: 10.1039/D0LC01323D
  • Richardson L, Gnecco J, Ding T, et al. Fetal membrane organ-on-chip: an innovative approach to study cellular interactions. Reprod Sci. 2019 Feb;21:1933719119828084. doi: 10.1177/1933719119828084
  • Richardson LS, Kim S, Han A, et al. Modeling ascending infection with a feto-maternal interface organ-on-chip. Lab Chip. 2020 Oct 28;20(23):4486–4501. doi: 10.1039/D0LC00875C
  • Tantengco OAG, Richardson LS, Radnaa E, et al. Modeling ascending ureaplasma parvum infection through the female reproductive tract using vagina-cervix-decidua-organ-on-a-chip and feto-maternal interface-organ-on-a-chip. FASEB J. 2022 Oct;36(10):e22551. doi: 10.1096/fj.202200872R
  • Kim S, Richardson L, Radnaa E, et al. Molecular mechanisms of environmental toxin cadmium at the feto-maternal interface investigated using an organ-on-chip (FMi-OOC) model. J Hazard Mater. [2022 Jan 15];422:126759. doi: 10.1016/j.jhazmat.2021.126759
  • Tantengco OAG, Richardson LS, Medina PMB, et al. Organ-on-chip of the cervical epithelial layer: a platform to study normal and pathological cellular remodeling of the cervix. FASEB J. 2021 Apr;35(4):e21463. doi: 10.1096/fj.202002590RRR
  • Yang L, Semmes EC, Ovies C, et al. Innate immune signaling in trophoblast and decidua organoids defines differential antiviral defenses at the maternal-fetal interface. Elife. 2022 Aug 17; 11;11. doi: 10.7554/eLife.79794
  • Yang L, Liang P, Yang H, et al. Trophoblast organoids with physiological polarity model placental structure and function. J Cell Sci. 2024 Mar 1;137(5). doi: 10.1242/jcs.261528
  • McKiever M, Frey H, Costantine MM. Challenges in conducting clinical research studies in pregnant women. J Pharmacokinet Pharmacodyn. 2020 Aug;47(4):287–293. doi: 10.1007/s10928-020-09687-z
  • Tabatabaei Rezaei N, Kumar H, Liu H, et al. Recent advances in organ-on-chips integrated with bioprinting technologies for drug screening. Adv Healthc Mater. 2023 Aug;12(20):e2203172. doi: 10.1002/adhm.202203172
  • Gholizadeh H, Cheng S, Kourmatzis A, et al. Application of micro-engineered kidney, liver, and respiratory system models to accelerate preclinical drug testing and development. Bioeng (Basel). 2022 Apr 2;9(4):150. doi: 10.3390/bioengineering9040150
  • Lacombe J, Soldevila M, Zenhausern F. From organ-on-chip to body-on-chip: the next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing. Prog Mol Biol Transl Sci. 2022;187(1):41–91.
  • Haderspeck JC, Chuchuy J, Kustermann S, et al. Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling. Expert Opin Drug Discov. 2019 Jan;14(1):47–57. doi: 10.1080/17460441.2019.1551873
  • Richardson LS, KK A, Costantine MM, et al. Testing of drugs using human feto-maternal interface organ-on-chips provide insights into pharmacokinetics and efficacy. Lab Chip. 2022 Nov 22;22(23):4574–4592. doi: 10.1039/D2LC00691J
  • Arumugasaamy N, Rock KD, Kuo CY, et al. Microphysiological systems of the placental barrier. Adv Drug Deliv Rev. 2020;161-162:161–175. doi: 10.1016/j.addr.2020.08.010
  • Lee JS, Romero R, Han YM, et al. Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J Matern Fetal Neonatal Med. 2016;29(7):1046–1054. doi: 10.3109/14767058.2015.1038518
  • Melody Safarzadeh LR, Han A, Menon R. Development of a multi-organ-on-chip to study maternal-to-fetal transmission of infection and inflammation during pregnancy. Society of Reproductive Investigation. Abstract Book. 20232023. Available from: https://www.myendnoteweb.com/EndNoteWeb.html?func=downloadInstallers&cat=download&
  • Zhang F, Bartels M, Clark A, et al. Performance evaluation of the GastroPlus. SAR QSAR Environ Res. 2018 Nov;29(11):875–893. doi: 10.1080/1062936X.2018.1518928
  • Varma MV, Lai Y, Feng B, et al. Physiologically based modeling of pravastatin transporter-mediated hepatobiliary disposition and drug-drug interactions. Pharm Res. 2012 Oct;29(10):2860–2873. doi: 10.1007/s11095-012-0792-7
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020 Feb 7;367(6478). doi: 10.1126/science.aau6977
  • Sheller-Miller S, Lei J, Saade G, et al. Feto-maternal trafficking of exosomes in murine pregnancy models. Front Pharmacol. 2016;7:432. doi: 10.3389/fphar.2016.00432
  • Sheller-Miller S, Radnaa E, Yoo JK, et al. Exosomal delivery of NF-kappaB inhibitor delays LPS-induced preterm birth and modulates fetal immune cell profile in mouse models. Sci Adv. 2021 Jan;7(4). doi: 10.1126/sciadv.abd3865
  • Kammala AK, Mosebarger A, Radnaa E, et al. Extracellular Vesicles-mediated recombinant IL-10 protects against ascending infection-associated preterm birth by reducing fetal inflammatory response. Front Immunol. 2023;14:1196453. doi: 10.3389/fimmu.2023.1196453

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.