58
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent progress in machine learning approaches for predicting carcinogenicity in drug development

, , , &
Pages 621-628 | Received 03 Feb 2024, Accepted 13 May 2024, Published online: 27 May 2024

References

  • Bourcier T, McGovern T, Stavitskaya L, et al. Improving prediction of carcinogenicity to reduce, refine, and replace the use of experimental animals. J Am Assoc Lab Anim Sci. 2015;54(2):163–169.
  • van der Laan JW, Buitenhuis WHW, Wagenaar L, et al. Prediction of the carcinogenic potential of human pharmaceuticals using repeated dose toxicity data and their pharmacological properties. Front Med. 2016;3. doi: 10.3389/fmed.2016.00045
  • Li T, Tong W, Roberts R, et al. DeepCarc: Deep learning-powered carcinogenicity prediction using model-level representation. Front Artif Intell. 2021;4. doi: 10.3389/frai.2021.757780
  • Tice RR, Bassan A, Amberg A, et al. In silico approaches in carcinogenicity hazard assessment: current status and future needs. Comput Toxicol. 2021;20:100191. doi: 10.1016/j.comtox.2021.100191
  • Felter SP, Bhat VS, Botham PA, et al. Assessing chemical carcinogenicity: hazard identification, classification, and risk assessment. Insight from a toxicology forum state-of-the-science workshop. Crit Rev Toxicol. 2021;51(8):653–694. doi: 10.1080/10408444.2021.2003295
  • David L, Thakkar A, Mercado R, et al. Molecular representations in AI-driven drug discovery: a review and practical guide. J Cheminform. 2020;12(1):56. doi: 10.1186/s13321-020-00460-5
  • Choudhary N, Bharti R, Sharma R. Role of artificial intelligence in chemistry. Mater Today Proc. 2022;48:1527–1533. doi: 10.1016/j.matpr.2021.09.428
  • Baum ZJ, Yu X, Ayala PY, et al. Artificial intelligence in chemistry: current trends and future directions. J Chem Inf Model. 2021;61(7):3197–3212. doi: 10.1021/acs.jcim.1c00619
  • Dong S, Wang P, Abbas K. A survey on deep learning and its applications. Comput Sci Rev. 2021;40:100379. doi: 10.1016/j.cosrev.2021.100379
  • Le NQK. Potential of deep representative learning features to interpret the sequence information in proteomics. Proteomics. 2022;22(1–2):2100232. doi: 10.1002/pmic.202100232
  • Farhana A, et al. Cancer bioenergetics and tumor microenvironments—enhancing chemotherapeutics and targeting resistant niches through nanosystems. Cancers (Basel). 2023;15(15):3836. doi: 10.3390/cancers15153836
  • Doll R, Hill AB. Smoking and carcinoma of the lung. Br Med J. 1950;2(4682):739. doi: 10.1136/bmj.2.4682.739
  • Keller DA, Bassan A, Amberg A, et al. In silico approaches in carcinogenicity hazard assessment: case study of pregabalin, a nongenotoxic mouse carcinogen. Front Toxicol. 2023;5:5. doi: 10.3389/ftox.2023.1234498
  • Downes N, Foster J. Regulatory forum opinion piece: carcinogen risk assessment: the move from screens to science*. Toxicol Pathol. 2015;43(8):1064–1073. doi: 10.1177/0192623315598578
  • Krska SW, DiRocco DA, Dreher SD, et al. The evolution of chemical high-throughput experimentation to address challenging problems in pharmaceutical synthesis. Acc Chem Res. 2017;50(12):2976–2985. doi: 10.1021/acs.accounts.7b00428
  • Gini G, Lorenzini M, Benfenati E, et al. Predictive carcinogenicity: a model for aromatic compounds, with nitrogen-containing substituents, based on molecular descriptors using an artificial neural network. J Chem Inf Comput Sci. 1999;39(6):1076–1080. doi: 10.1021/ci9903096
  • Moorthy NSHN, Kumar S, Poongavanam V. Classification of carcinogenic and mutagenic properties using machine learning method. Comput Toxicol. 2017;3:33–43. doi: 10.1016/j.comtox.2017.07.002
  • Benigni R. Alternatives to the carcinogenicity bioassay for toxicity prediction: are we there yet? Expert Opin Drug Metab Toxicol. 2012;8(4):407–417. doi: 10.1517/17425255.2012.666238
  • Bulitta Jürgen B, Hope WW, Eakin AE, et al. Generating robust and informative nonclinical in vitro and in vivo bacterial infection model efficacy data to support translation to humans. Antimicrob Agents Chemother. 2019;63(5): doi: 10.1128/AAC.02307-18
  • Chatterjee N, Alfaro-Moreno E. In vitro cell transformation assays: a valuable approach for carcinogenic potentiality assessment of nanomaterials. Int J Mol Sci. 2023;24(9):8219. doi: 10.3390/ijms24098219
  • Sun H, Xia M, Austin CP, et al. Paradigm shift in toxicity testing and modeling. Aaps J. 2012;14(3):473–480. doi: 10.1208/s12248-012-9358-1
  • Guyton KZ, Kyle AD, Aubrecht J, et al. Improving prediction of chemical carcinogenicity by considering multiple mechanisms and applying toxicogenomic approaches. Mutat Res/Rev Mutat Res. 2009;681(2–3):230–240. doi: 10.1016/j.mrrev.2008.10.001
  • Helma C. Lazy structure-activity relationships (lazar) for the prediction of rodent carcinogenicity and Salmonella mutagenicity. Mol Divers. 2006;10(2):147–158. doi: 10.1007/s11030-005-9001-5
  • Contrera JF, Kruhlak NL, Matthews EJ, et al. Comparison of MC4PC and MDL-QSAR rodent carcinogenicity predictions and the enhancement of predictive performance by combining QSAR models. Regul Toxicol Pharmacol. 2007;49(3):172–182. doi: 10.1016/j.yrtph.2007.07.001
  • Ruiz P, Faroon O, Moudgal CJ, et al. Prediction of the health effects of polychlorinated biphenyls (PCBs) and their metabolites using quantitative structure–activity relationship (QSAR). toxicology letters. Toxicol Lett. 2008;181(1):53–65. doi: 10.1016/j.toxlet.2008.06.870
  • Fjodorova N, Vračko M, Novič M, et al. New public QSAR model for carcinogenicity. Chem Cent J. 2010;4(S1):S3. doi: 10.1186/1752-153X-4-S1-S3
  • Toropova AP, Toropov AA. CORAL software: prediction of carcinogenicity of drugs by means of the Monte Carlo method. Eur J Pharmaceut Sci. 2014;52:21–25. doi: 10.1016/j.ejps.2013.10.005
  • Wu X, Zhang Q, Wang H, et al. Predicting carcinogenicity of organic compounds based on CPDB. Chemosphere. 2015;139:81–90. doi: 10.1016/j.chemosphere.2015.05.056
  • Abou Hajal A, Al Meslamani AZ. Overcoming barriers to machine learning applications in toxicity prediction. Expert Opin Drug Metab Toxicol. 2023;1–5. doi: 10.1080/17425255.2023.2294939
  • Vatansever S, Schlessinger A, Wacker D, et al. Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: state-of-the-arts and future directions. Med Res Rev. 2021;41(3):1427–1473. doi: 10.1002/med.21764
  • Vijayan RSK, Kihlberg J, Cross JB, et al. Enhancing preclinical drug discovery with artificial intelligence. Drug Discovery Today. 2022;27(4):967–984. doi: 10.1016/j.drudis.2021.11.023
  • Chen Z, Zhang L, Sun J, et al. DCAMCP: a deep learning model based on capsule network and attention mechanism for molecular carcinogenicity prediction. J Cellular Mol Medi. 2023;27(20):3117–3126. doi: 10.1111/jcmm.17889
  • Fradkin P, Young A, Atanackovic L, et al. A graph neural network approach for molecule carcinogenicity prediction. Bioinformatics. 2022;38(Supplement_1):i84–i91. doi: 10.1093/bioinformatics/btac266
  • Luan F, Zhang R, Zhao C, et al. Classification of the carcinogenicity of N-Nitroso compounds based on support vector machines and linear discriminant analysis. Chem Res Toxicol. 2005;18(2):198–203. doi: 10.1021/tx049782q
  • Tan NX, Rao HB, Li ZR, et al. Prediction of chemical carcinogenicity by machine learning approaches. SAR and QSAR in Environmental Research. SAR QSAR Environ Res. 2009;20(1–2):27–75. doi: 10.1080/10629360902724085
  • Tanabe K, Lučić B, Amić D, et al. Prediction of carcinogenicity for diverse chemicals based on substructure grouping and SVM modeling. Mol Divers. 2010;14(4):789–802. doi: 10.1007/s11030-010-9232-y
  • Fjodorova N, Vračko M, Tušar M, et al. Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses. Mol Divers. 2010;14(3):581–594. doi: 10.1007/s11030-009-9190-4
  • Tanabe K, Kurita T, Nishida K, et al. Improvement of carcinogenicity prediction performances based on sensitivity analysis in variable selection of SVM models. SAR QSAR Environ Res. 2013;24(7):565–580. doi: 10.1080/1062936X.2012.762425
  • Zhong M, Nie X, Yan A, et al. Carcinogenicity prediction of noncongeneric chemicals by a support vector machine. Chem Res Toxicol. 2013;26(5):741–749. doi: 10.1021/tx4000182
  • Singh KP, Gupta S, Rai P. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches. Toxicol Appl Pharmacol. 2013;272(2):465–475. doi: 10.1016/j.taap.2013.06.029
  • Li X, Du Z, Wang J, et al. In silico estimation of chemical carcinogenicity with binary and ternary classification methods. Mol Inform. 2015;34(4):228–235. doi: 10.1002/minf.201400127
  • Zhang H, Cao Z-X, Li M, et al. Novel naïve Bayes classification models for predicting the carcinogenicity of chemicals. Food Chem Toxicol. 2016;97:141–149. doi: 10.1016/j.fct.2016.09.005
  • Zhang L, Ai H, Chen W, et al. CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Sci Rep. 2017;7(1):2118. doi: 10.1038/s41598-017-02365-0
  • Wang Y-W, Huang L, Jiang S-W, et al. CapsCarcino: a novel sparse data deep learning tool for predicting carcinogens. Food Chem Toxicol. 2020;135:110921. doi: 10.1016/j.fct.2019.110921
  • Limbu S, Dakshanamurthy S. Predicting chemical carcinogens using a hybrid neural network deep learning method. Sensors. 2022;22(21):8185. doi: 10.3390/s22218185
  • Hao N, Sun P, Zhao W, et al. Application of a developed triple-classification machine learning model for carcinogenic prediction of hazardous organic chemicals to the US, EU, and WHO based on Chinese database. Ecotoxicol Environ Saf. 2023;255:114806. doi: 10.1016/j.ecoenv.2023.114806
  • Zhang H, Yi H, Hao Y, et al. Deciphering exogenous chemical carcinogenicity through interpretable deep learning: a novel approach for evaluating atmospheric pollutant hazards. J Hazard Mater. 2024;465:133092. doi: 10.1016/j.jhazmat.2023.133092
  • Liu Z, Roberts RA, Lal-Nag M, et al. AI-based language models powering drug discovery and development. Drug Discovery Today. 2021;26(11):2593–2607. doi: 10.1016/j.drudis.2021.06.009
  • Waters MD. Introduction to predictive toxicogenomics for carcinogenicity. In: Thomas RS, and Waters MD, editors. Toxicogenomics in Predictive Carcinogenicity. United Kingdom: The Royal Society of Chemistry; 2016. p. 0.
  • Singh AV, Chandrasekar V, Paudel N, et al. Integrative toxicogenomics: advancing precision medicine and toxicology through artificial intelligence and OMICs technology. Biomed Pharmacother. 2023;163:114784. doi: 10.1016/j.biopha.2023.114784
  • Qin C, Tanis KQ, Podtelezhnikov AA, et al. Toxicogenomics in drug development: a match made in heaven? Expert Opin Drug Metab Toxicol. 2016;12(8):847–849. doi: 10.1080/17425255.2016.1175437
  • Yang S, Kar S. Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity. Artif Intell Che. 2023;1(2):100011. doi: 10.1016/j.aichem.2023.100011
  • Vo TH, Nguyen NTK, Kha QH, et al. On the road to explainable AI in drug-drug interactions prediction: a systematic review. Computat Struct Biotechnol J. 2022;20:2112–2123. doi: 10.1016/j.csbj.2022.04.021
  • Vittoria Togo M, Mastrolorito F, Orfino A, et al. Where developmental toxicity meets explainable artificial intelligence: state-of-the-art and perspectives. Expert Opin Drug Metab Toxicol. 2023:1–17. doi: 10.1080/17425255.2023.2298827
  • Marzi SJ, Schilder BM, Nott A, et al. Artificial intelligence for neurodegenerative experimental models. Alzheimer’s Dementia. 2023;19(12):5970–5987. doi: 10.1002/alz.13479
  • Ahmed SF, Alam MSB, Hassan M, et al. Deep learning modelling techniques: current progress, applications, advantages, and challenges. Artif Intell Rev. 2023;56(11):13521–13617. doi: 10.1007/s10462-023-10466-8
  • Siala H, Wang Y. SHIFTing artificial intelligence to be responsible in healthcare: a systematic review. Soc Sci Med. 2022;296:114782. doi: 10.1016/j.socscimed.2022.114782
  • Jia Z, Chen J, Xu X, et al. The importance of resource awareness in artificial intelligence for healthcare. Nature Mach Intell. 2023;5(7):687–698. doi: 10.1038/s42256-023-00670-0
  • Xu Y, Liu X, Cao X, et al. Artificial intelligence: a powerful paradigm for scientific research. Innovation. 2021;2(4):100179. doi: 10.1016/j.xinn.2021.100179
  • Lu M, Yin J, Lin G, et al. Artificial intelligence in pharmaceutical sciences. Engineering. 2023;27:37–69. doi: 10.1016/j.eng.2023.01.014
  • Tran T-O, Vo TH, Le NQK. Omics-based deep learning approaches for lung cancer decision-making and therapeutics development. Brief Funct Genomics. 2023:elad031. doi: 10.1093/bfgp/elad031

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.