108
Views
0
CrossRef citations to date
0
Altmetric
Review

The role of the circadian timing system on drug metabolism and detoxification: an update

, , , , &
Pages 503-517 | Received 17 Nov 2023, Accepted 13 May 2024, Published online: 20 May 2024

References

  • Pittendrigh CS. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol. 1993;55(1):17–54. doi: 10.1146/annurev.ph.55.030193.000313
  • Kavakli IH, Sancar A Circadian photoreception in humans and mice. Mol Interv. 2002;2:484–492. 8 10.1124/mi.2.8.484
  • Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72(1):517–549. doi: 10.1146/annurev-physiol-021909-135821
  • Ralph MR, Foster RG, Davis FC, et al. Transplanted suprachiasmatic nucleus determines circadian period. Science. 1990;247(4945):975–978. doi: 10.1126/science.2305266
  • Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35(1):445–462. doi: 10.1146/annurev-neuro-060909-153128
  • Hara R, Wan K, Wakamatsu H, et al. Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells. 2001;6(3):269–278. doi: 10.1046/j.1365-2443.2001.00419.x
  • Kohsaka A, Laposky AD, Ramsey KM, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6(5):414–421. doi: 10.1016/j.cmet.2007.09.006
  • Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134(2):317–328. doi: 10.1016/j.cell.2008.06.050
  • López-Otín C, Galluzzi L, Freije JMP, et al. Metabolic control of longevity. Cell. 2016;166(4):802–821. doi: 10.1016/j.cell.2016.07.031
  • Astiz M, Heyde I, Oster H. Mechanisms of communication in the Mammalian Circadian Timing System. Int J Mol Sci. 2019;20(2):343. doi: 10.3390/ijms20020343
  • Nedeltcheva AV, Scheer FAJL. Metabolic effects of sleep disruption, links to obesity and diabetes. Curr Opin Endocrinol Diabetes Obes. 2014;21:293–298.10.1097/MED.0000000000000082
  • Parsons MJ, Moffitt TE, Gregory AM, et al. Social jetlag, obesity and metabolic disorder: investigation in a cohort study. Int J Obes (Lond). 2015;39(5):842–848. doi: 10.1038/ijo.2014.201
  • Baris I, Ozcan O, Kavakli IH Single nucleotide polymorphisms (SNPs) in circadian genes: Impact on gene function and phenotype. Adv Protein Chem Struct Biol. 2023;137:17–37.
  • Clench J, Reinberg A, Dziewanowska Z, et al. Circadian changes in the bioavailability and effects of indomethacin in healthy subjects. Eur J Clin Pharmacol. 1981;20(5):359–369. doi: 10.1007/BF00615406
  • Reinberg A. New aspects of human chronopharmacology. Arch Toxicol. 1976;36(3–4):327–339. doi: 10.1007/BF00340538
  • Reinberg A, Halberg F. Circadian chronopharmacology. Ann Rev Pharmacol. 1971;11(1):455–492. doi: 10.1146/annurev.pa.11.040171.002323
  • Levi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol. 2007;47(1):593–628. doi: 10.1146/annurev.pharmtox.47.120505.105208
  • Nahmias Y, Androulakis IP Circadian Effects of Drug Responses. Annu Rev Biomed Eng. 2021;23:203–224. 1 10.1146/annurev-bioeng-082120-034725
  • Lévi FA, Okyar A, Hadadi E, et al. Circadian Regulation of Drug Responses: Toward Sex-Specific and Personalized Chronotherapy. Annu Rev Pharmacol Toxicol. 2024;64:89–114. 1 10.1146/annurev-pharmtox-051920-095416
  • Kavakli IH, Baris I, Tardu M, et al. The Photolyase/Cryptochrome Family of Proteins as DNA Repair Enzymes and Transcriptional Repressors. Photochem Photobio. 2017;93(1):93–103. doi: 10.1111/php.12669
  • Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–179. doi: 10.1038/nrg.2016.150
  • Allada R, Bass J, Longo DL Circadian Mechanisms in Medicine. Longo DL, editor. N Engl J Med. 2021;384:550–561. 6 10.1056/NEJMra1802337
  • Kavakli IH, Gul S, Turkay M. Identification of novel small molecules targeting core clock proteins to regulate circadian rhythm. Curr Opin Chem Eng. 2022;35:100730.
  • Sancar A. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Annu Rev Biochem. 2000;69:31–67. 1 10.1146/annurev.biochem.69.1.31
  • Cox KH, Takahashi JS. Circadian clock genes and the transcriptional architecture of the clock mechanism. J Mol Endocrinol. 2019;63(4):R93–R102. doi: 10.1530/JME-19-0153
  • Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol. 2007;8(2):139–148. doi: 10.1038/nrm2106
  • Meng Q-J, Logunova L, Maywood ES, et al. Setting Clock Speed in Mammals: The CK1ɛ tau Mutation in Mice Accelerates Circadian Pacemakers by Selectively Destabilizing PERIOD Proteins. Neuron. 2008;58:78–88. 1 10.1016/j.neuron.2008.01.019
  • Lee Y. Roles of circadian clocks in cancer pathogenesis and treatment. Exp Mol Med. 2021;53(10):1529–1538. doi: 10.1038/s12276-021-00681-0
  • Ueda HR, Hayashi S, Chen W, et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet. 2005;37(2):187–192. doi: 10.1038/ng1504
  • Yamaguchi S, Mitsui S, Yan L, et al. Role of DBP in the circadian oscillatory mechanism. Mol Cell Biol. 2000;20(13):4773–4781. doi: 10.1128/MCB.20.13.4773-4781.2000
  • Mitsui S, Yamaguchi S, Matsuo T, et al. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 2001;15(8):995–1006. doi: 10.1101/gad.873501
  • Gachon F, Fonjallaz P, Damiola F, et al. The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev. 2004;18(12):1397–1412. doi: 10.1101/gad.301404
  • Weger BD, Gobet C, David FPA, et al. Systematic analysis of differential rhythmic liver gene expression mediated by the circadian clock and feeding rhythms. Proc Natl Acad Sci U S A. 2021;118(3):e2015803118. doi: 10.1073/pnas.2015803118
  • Yoshitane H, Asano Y, Sagami A, et al. Functional D-box sequences reset the circadian clock and drive mRNA rhythms. Commun Biol. 2019;2(1):300. doi: 10.1038/s42003-019-0522-3
  • Cowell IG. E4BP4/NFIL3, a PAR-related bZIP factor with many roles. BioEssays. 2002;24(11):1023–1029. doi: 10.1002/bies.10176
  • Junghans D, Chauvet S, Buhler E, et al. The CES-2-related transcription factor E4BP4 is an intrinsic regulator of motoneuron growth and survival. Development. 2004;131(18):4425–4434. doi: 10.1242/dev.01313
  • Silvestris F, Cafforio P, De Matteo M, et al. Negative regulation of the osteoblast function in multiple myeloma through the repressor gene E4BP4 activated by malignant plasma cells. Clin Cancer Res. 2008;14(19):6081–6091. doi: 10.1158/1078-0432.CCR-08-0219
  • Zhao M, Wang Y, Chen M, et al. Introduction to Pharmacokinetics. In: Wu B, Lu D Dong D, editors Circadian Pharmacokinetics [Internet]. Singapore: Springer Singapore; 2020 [cited 2023 Oct 31]. p. 23–40. Available from: https://doi.org/10.1007/978-981-15-8807-5_2
  • Akyel YK, Ozturk Civelek D, Ozturk Seyhan N, et al. Diurnal Changes in Capecitabine Clock-Controlled Metabolism Enzymes Are Responsible for Its Pharmacokinetics in Male Mice. J Biol Rhythms. 2023;38(2):171–184. doi: 10.1177/07487304221148779
  • Zhang Y-K, Yeager RL, Klaassen CD Circadian Expression Profiles of Drug-Processing Genes and Transcription Factors in Mouse Liver. Drug Metab Dispos. 2009;37:106–115. 1 10.1124/dmd.108.024174
  • Chen X, Yu F, Guo X, et al. Clock gene Bmal1 controls diurnal rhythms in expression and activity of intestinal carboxylesterase 1. J Pharm Pharmacol. 2021;73(1):52–59. doi: 10.1093/jpp/rgaa035
  • Lee Y, Shen Y, Francey LJ, et al. The NRON complex controls circadian clock function through regulated per and CRY nuclear translocation. Sci Rep. 2019;9(1):11883. doi: 10.1038/s41598-019-48341-8
  • Anafi RC, Lee Y, Sato TK, et al. Machine Learning Helps Identify CHRONO as a Circadian Clock Component. PLoS Biol. 2014;12(4):e1001840. doi: 10.1371/journal.pbio.1001840
  • Cal-Kayitmazbatir S, Kulkoyluoglu-Cotul E, Growe J, et al. CRY1-CBS binding regulates circadian clock function and metabolism. FEBS J. 2021;288(2):614–639. doi: 10.1111/febs.15360
  • Ozturk N, Ozturk D, Kavakli IH, et al. Molecular Aspects of Circadian Pharmacology and Relevance for Cancer Chronotherapy. IJMS. 2017;18(10):2168. doi: 10.3390/ijms18102168
  • Zhang T, Yu F, Guo L, et al. Circadian Clock and CYP Metabolism. In: Wu B, Lu D Dong D, editors Circadian Pharmacokinetics [Internet]. Singapore: Springer Singapore; 2020 [cited 2023 Oct 31]. p. 65–87. Available from: https://doi.org/10.1007/978-981-15-8807-5_4
  • Lu Y-F, Jin T, Xu Y, et al. Sex Differences in the Circadian Variation of Cytochrome P450 Genes and Corresponding Nuclear Receptors in Mouse Liver. Chronobiol Int. 2013;30(9):1135–1143. doi: 10.3109/07420528.2013.805762
  • Weger M, Weger BD, Gachon F. Understanding circadian dynamics: current progress and future directions for chronobiology in drug discovery. Expert Opin Drug Discov. 2023;18(8):893–901. doi: 10.1080/17460441.2023.2224554
  • Gachon F, Olela FF, Schaad O, et al. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab. 2006;4(1):25–36. doi: 10.1016/j.cmet.2006.04.015
  • Chen M, Zhou C, Zhang T, et al. Identification of rhythmic human CYPs and their circadian regulators using synchronized hepatoma cells. Xenobiotica. 2020;50(9):1052–1063. doi: 10.1080/00498254.2020.1737890
  • Li H, Zhang S, Zhang W, et al. Endogenous circadian time genes expressions in the liver of mice under constant darkness. BMC Genomics. 2020;21(1):224. doi: 10.1186/s12864-020-6639-4
  • Zhao M, Zhao H, Deng J, et al. Role of the CLOCK protein in liver detoxification. Br J Pharmacol. 2019;176(24):4639. doi: 10.1111/bph.14828
  • He Y, Cen H, Guo L, et al. Circadian oscillator NPAS2 regulates diurnal expression and activity of CYP1A2 in mouse liver. Biochem Pharmacol. 2022;206:115345.10.1016/j.bcp.2022.115345
  • Lin Y, Wang S, Zhou Z, et al. Bmal1 regulates circadian expression of cytochrome P450 3a11 and drug metabolism in mice. Commun Biol. 2019;2(1):378. doi: 10.1038/s42003-019-0607-z
  • Tong Y, Zeng P, Zhang T, et al. The transcription factor E4bp4 regulates the expression and activity of Cyp3a11 in mice. Biochem Pharmacol. 2019;163:215–224.10.1016/j.bcp.2019.02.026
  • Lin L, Huang Y, Wang J, et al. CRY1/2 regulate rhythmic CYP2A5 in mouse liver through repression of E4BP4. Biochem Pharmacol. 2023;217:115843.10.1016/j.bcp.2023.115843
  • Deng J, Guo L, Wu B. Circadian Regulation of Hepatic Cytochrome P450 2a5 by peroxisome proliferator-activated receptor γ. Drug Metab Dispos. 2018;46(11):1538–1545. doi: 10.1124/dmd.118.083071
  • Sundekilde UK, Kristensen CM, Olsen MA, et al. Time-dependent regulation of hepatic cytochrome P450 mRNA in male liver-specific PGC-1α knockout mice. Toxicology. 2022;469:153121.10.1016/j.tox.2022.153121
  • Poliandri AHB, Gamsby JJ, Christian M, et al. Modulation of Clock Gene Expression by the Transcriptional Coregulator Receptor Interacting Protein 140 (RIP140). J Biol Rhythms. 2011;26(3):187–199. doi: 10.1177/0748730411401579
  • Zhao M, Zhao H, Lin L, et al. Nuclear receptor co-repressor RIP140 regulates diurnal expression of cytochrome P450 2b10 in mouse liver. Xenobiotica. 2020;50(10):1139–1148. doi: 10.1080/00498254.2020.1751342
  • Wu N, Kim KH, Zhou Y, et al. Small heterodimer partner (NR0B2) coordinates nutrient signaling and the circadian clock in mice. Mol Endocrinol. 2016;30(9):988–995. doi: 10.1210/me.2015-1295
  • Zhang T, Yu F, Guo L, et al. Small Heterodimer Partner Regulates Circadian Cytochromes p450 and Drug-Induced Hepatotoxicity. Theranostics. 2018;8(19):5246–5258. doi: 10.7150/thno.28676
  • Hwang D-B, Won D-H, Shin Y-S, et al. Ccrn4l as a pre-dose marker for prediction of cisplatin-induced hepatotoxicity susceptibility. Free Radic Biol Med. 2020;148:128–139.10.1016/j.freeradbiomed.2020.01.003
  • Lu J, Wang H, Zhang R, et al. Effects of photoperiod on acetaminophen-induced hepatotoxicity in mice. Dig Dis Sci. 2020;65(1):178–188. doi: 10.1007/s10620-019-05749-6
  • Ge W, Wang T, Zhao Y, et al. Period1 mediates rhythmic metabolism of toxins by interacting with CYP2E1. Cell Death Dis. 2021;12(1):76. doi: 10.1038/s41419-020-03343-7
  • Wang L, Liu Y, Gao H, et al. Chronotoxicity of Acrylamide in Mice Fed a High-Fat Diet: The Involvement of Liver CYP2E1 Upregulation and Gut Leakage. Molecules. 2023;28(13):5132. doi: 10.3390/molecules28135132
  • Gängler S, Charisiadis P, Seth R, et al. Time of the day dictates the variability of biomarkers of exposure to disinfection byproducts. Environ Int. 2018;112:33–40. 10.1016/j.envint.2017.12.013
  • Guo L, Zhang L, Xu H, et al. Diurnal hepatic CYP3A11 contributes to chronotoxicity of the pyrrolizidine alkaloid retrorsine in mice. Xenobiotica. 2021;51(9):1019–1028. doi: 10.1080/00498254.2021.1950867
  • Zhao H, Tong Y, Lu D, et al. Circadian clock regulates hepatotoxicity of tripterygium wilfordii through modulation of metabolism. J Pharm Pharmacol. 2020;72(12):1854–1864. doi: 10.1111/jphp.13299
  • Zhou Z, Lin Y, Gao L, et al. Cyp3a11 metabolism-based chronotoxicity of brucine in mice. Toxicol Lett. 2019;313:188–195. 10.1016/j.toxlet.2019.07.007
  • Lin Y, Zhou Z, Yang Z, et al. Circadian Cyp3a11 metabolism contributes to chronotoxicity of hypaconitine in mice. Chem Biol Interact. 2019;308:288–293.10.1016/j.cbi.2019.05.049
  • Zhao M, Zhang T, Yu F, et al. E4bp4 regulates carboxylesterase 2 enzymes through repression of the nuclear receptor Rev-erbα in mice. Biochem Pharmacol. 2018;152:293–301.10.1016/j.bcp.2018.04.005
  • Zhu H-J, Wang X, Gawronski BE, et al. Carboxylesterase 1 as a determinant of clopidogrel metabolism and activation. J Pharmacol Exp Ther. 2013;344(3):665–672. doi: 10.1124/jpet.112.201640
  • Ma L, Yu F, He D, et al. Role of circadian clock in the chronoefficacy and chronotoxicity of clopidogrel. Br J Pharmacol.2023;180. 23 2973–2988 10.1111/bph.16188
  • Yu F, Liu Y, Zhang R, et al. Recent advances in circadian-regulated pharmacokinetics and its implications for chronotherapy. Biochem Pharmacol. 2022;203:115185. 10.1016/j.bcp.2022.115185
  • Zhang T, Guo L, Yu F, et al. The nuclear receptor Rev-erbα participates in circadian regulation of Ugt2b enzymes in mice. Biochem Pharmacol. 2019 [cited 2023 Oct 31];161:89–97. doi: 10.1016/j.bcp.2019.01.010
  • Xu H, Chen M, Yu F, et al. Circadian Clock Component Rev-erbα Regulates Diurnal Rhythm of UDP-Glucuronosyltransferase 1a9 and drug glucuronidation in mice. Drug Metab Dispos. 2020;48(8):681–689. doi: 10.1124/dmd.120.000030
  • Guo L, Yu F, Zhang T, et al. The Clock Protein Bmal1 Regulates Circadian Expression and activity of sulfotransferase 1a1 in mice. Drug Metab Dispos. 2018;46(10):1403–1410. doi: 10.1124/dmd.118.082503
  • Lévi F, Okyar A, Dulong S, et al. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol. 2010;50(1):377–421. doi: 10.1146/annurev.pharmtox.48.113006.094626
  • Houghton SG, Zarroug AE, Duenes JA, et al. The diurnal periodicity of hexose transporter mRNA and protein levels in the rat jejunum: role of vagal innervation. Surgery. 2006;139(4):542–549. doi: 10.1016/j.surg.2005.09.002
  • Iwashina I, Mochizuki K, Inamochi Y, et al. Clock genes regulate the feeding schedule-dependent diurnal rhythm changes in hexose transporter gene expressions through the binding of BMAL1 to the promoter/enhancer and transcribed regions. J Nutr Biochem. 2011;22(4):334–343. doi: 10.1016/j.jnutbio.2010.02.012
  • Stearns AT, Balakrishnan A, Rhoads DB, et al. Diurnal rhythmicity in the transcription of jejunal drug transporters. J Pharmacol Sci. 2008;108(1):144–148. doi: 10.1254/jphs.08100SC
  • Vagnerová K, Ergang P, Soták M, et al. Diurnal expression of ABC and SLC transporters in jejunum is modulated by adrenalectomy. Comp Biochem Physiol C Toxicol Pharmacol. 2019;226:108607. 10.1016/j.cbpc.2019.108607
  • Tsurudome Y, Koyanagi S, Kanemitsu T, et al. Circadian clock component PERIOD2 regulates diurnal expression of Na+/H+ exchanger regulatory factor-1 and its scaffolding function. Sci Rep. 2018;8(1):9072. doi: 10.1038/s41598-018-27280-w
  • Miyagawa A, Tatsumi S, Takahama W, et al. The sodium phosphate cotransporter family and nicotinamide phosphoribosyltransferase contribute to the daily oscillation of plasma inorganic phosphate concentration. Kidney Int. 2018;93(5):1073–1085. doi: 10.1016/j.kint.2017.11.022
  • Nikolaeva S, Ansermet C, Centeno G, et al. Nephron-specific deletion of circadian clock gene Bmal1 alters the plasma and renal metabolome and impairs drug disposition. J Am Soc Nephrol. 2016;27(10):2997–3004. doi: 10.1681/ASN.2015091055
  • Oh J-H, Lee JH, Han D-H, et al. Circadian Clock Is Involved in Regulation of hepatobiliary transport mediated by multidrug resistance-associated protein 2. J Pharm Sci. 2017;106(9):2491–2498. doi: 10.1016/j.xphs.2017.04.071
  • Wada E, Koyanagi S, Kusunose N, et al. Modulation of peroxisome proliferator-activated receptor-α activity by bile acids causes circadian changes in the intestinal expression of Octn1/Slc22a4 in mice. Mol Pharmacol. 2015;87(2):314–322. doi: 10.1124/mol.114.094979
  • Okamura A, Koyanagi S, Dilxiat A, et al. Bile acid-regulated peroxisome proliferator-activated receptor-α (PPARα) activity underlies circadian expression of intestinal peptide absorption transporter PepT1/Slc15a1. J Biol Chem. 2014;289(36):25296–25305. doi: 10.1074/jbc.M114.577023
  • Pan X, Terada T, Irie M, et al. Diurnal rhythm of H + -peptide cotransporter in rat small intestine. Am J Physiol Gastrointest Liver Physiol. 2002;283:G57–64. 1 10.1152/ajpgi.00545.2001
  • Balakrishnan A, Stearns A, Rounds J, et al. Diurnal rhythmicity in glucose uptake is mediated by temporal periodicity in the expression of the sodium-glucose co-transporter (SGLT1). Surgery. 2008;143:813–818. 6 10.1016/j.surg.2008.03.018
  • Henriksson E, Huber A-L, Soto EK, et al. The Liver Circadian Clock Modulates Biochemical and Physiological Responses to Metformin. J Biol Rhythms. 2017;32(4):345–358. doi: 10.1177/0748730417710348
  • Oda M, Koyanagi S, Tsurudome Y, et al. Renal circadian clock regulates the dosing-time dependency of cisplatin-induced nephrotoxicity in mice. Mol Pharmacol. 2014;85(5):715–722. doi: 10.1124/mol.113.089805
  • Weger BD, Gobet C, Yeung J, et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 2019;29(2):362–382.e8. doi: 10.1016/j.cmet.2018.09.023
  • Wang S, Lin Y, Zhou Z, et al. Circadian Clock Gene Bmal1 Regulates Bilirubin Detoxification: A Potential Mechanism of Feedback Control of Hyperbilirubinemia. Theranostics. 2019;9(18):5122–5133. doi: 10.7150/thno.35773
  • Pácha J, Balounová K, Soták M. Circadian regulation of transporter expression and implications for drug disposition. Expert Opin Drug Metab Toxicol. 2021;17(4):425–439. doi: 10.1080/17425255.2021.1868438
  • Dakup PP, Porter KI, Little AA, et al. The circadian clock regulates cisplatin-induced toxicity and tumor regression in melanoma mouse and human models. Oncotarget. 2018;9(18):14524–14538. doi: 10.18632/oncotarget.24539
  • Omata Y, Yamauchi T, Tsuruta A, et al. RNA editing enzyme ADAR1 governs the circadian expression of P-glycoprotein in human renal cells by regulating alternative splicing of the ABCB1 gene. J Biol Chem. 2021;296:100601. 10.1016/j.jbc.2021.100601
  • Ando H, Yanagihara H, Sugimoto K, et al. Daily rhythms of P-glycoprotein expression in mice. Chronobiol Int. 2005;22(4):655–665. doi: 10.1080/07420520500180231
  • Yu F, Zhang T, Zhou C, et al. The Circadian Clock Gene Bmal1 Controls Intestinal Exporter MRP2 and Drug Disposition. Theranostics. 2019;9(10):2754–2767. doi: 10.7150/thno.33395
  • Kotaka M, Onishi Y, Ohno T, et al. Identification of negative transcriptional factor E4BP4-binding site in the mouse circadian-regulated gene Mdr2. Neurosci Res. 2008;60(3):307–313. doi: 10.1016/j.neures.2007.11.014
  • Kato M, Tsurudome Y, Kanemitsu T, et al. Diurnal expression of MRP4 in bone marrow cells underlies the dosing-time dependent changes in the oxaliplatin-induced myelotoxicity. Sci Rep. 2020;10(1):13484. doi: 10.1038/s41598-020-70321-6
  • Soták M, Polidarová L, Musílková J, et al. Circadian regulation of electrolyte absorption in the rat colon. Am J Physiol Gastrointest Liver Physiol. 2011;301:G1066–G1074. 6 10.1152/ajpgi.00256.2011
  • Hibma JE, Zur AA, Castro RA, et al. The effect of Famotidine, a MATE1-selective inhibitor, on the pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacokinet. 2016;55(6):711–721. doi: 10.1007/s40262-015-0346-3
  • Koike N, Yoo S-H, Huang H-C, et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012;338(6105):349–354. doi: 10.1126/science.1226339
  • Zhang Y, Guo G, Klaassen CD, et al. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PLoS One. 2011;6(2):e16683. doi: 10.1371/journal.pone.0016683
  • Ma K, Xiao R, Tseng H-T, et al. Circadian dysregulation disrupts bile acid homeostasis. PLoS One. 2009;4(8):e6843. doi: 10.1371/journal.pone.0006843
  • Zhang T, Zhao M, Lu D, et al. REV-ERBα regulates CYP7A1 through repression of liver receptor homolog-1. Drug Metab Dispos. 2018;46(3):248–258. doi: 10.1124/dmd.117.078105
  • Okyar A, Kumar SA, Filipski E, et al. Sex-, feeding-, and circadian time-dependency of P-glycoprotein expression and activity - implications for mechanistic pharmacokinetics modeling. Sci Rep. 2019;9(1):10505. doi: 10.1038/s41598-019-46977-0
  • Murakami Y, Higashi Y, Matsunaga N, et al. Circadian clock-controlled intestinal expression of the multidrug-resistance gene mdr1a in mice. Gastroenterology. 2008;135:1636–1644.e3. 5 10.1053/j.gastro.2008.07.073
  • Okyar A, Piccolo E, Ahowesso C, et al. Strain- and sex-dependent circadian changes in abcc2 transporter expression: implications for irinotecan chronotolerance in mouse ileum. PLoS One. 2011;6(6):e20393. doi: 10.1371/journal.pone.0020393
  • Hamdan AM, Koyanagi S, Wada E, et al. Intestinal expression of mouse Abcg2/breast cancer resistance protein (BCRP) gene is under control of circadian clock-activating transcription factor-4 pathway. J Biol Chem. 2012;287(21):17224–17231. doi: 10.1074/jbc.M111.333377
  • Zhou C, Yu F, Zeng P, et al. Circadian sensitivity to the cardiac glycoside oleandrin is associated with diurnal intestinal P-glycoprotein expression. Biochem Pharmacol. 2019;169:113622. 10.1016/j.bcp.2019.08.024
  • Pan X, Hussain MM. Clock is important for food and circadian regulation of macronutrient absorption in mice. J Lipid Res. 2009;50(9):1800–1813. doi: 10.1194/jlr.M900085-JLR200
  • Saito H, Terada T, Shimakura J, et al. Regulatory mechanism governing the diurnal rhythm of intestinal H+/peptide cotransporter 1 (PEPT1). Am J Physiol Gastrointest Liver Physiol. 2008;295(2):G395–402. doi: 10.1152/ajpgi.90317.2008
  • Ogata S, Ito S, Masuda T, et al. Diurnal Changes in Protein Expression at the Blood–Brain Barrier in Mice. Biol Pharm Bull. 2022;45:751–756. 6 10.1248/bpb.b22-00016
  • Cuddapah VA, Zhang SL, Sehgal A Regulation of the Blood-Brain Barrier by Circadian Rhythms and Sleep. Trends Neurosci. 2019;42:500–510. 10.1016/j.tins.2019.05.001
  • Savolainen H, Meerlo P, Elsinga PH, et al. P-glycoprotein function in the rodent brain displays a daily rhythm, a quantitative in vivo PET study. Aaps J. 2016;18(6):1524–1531. doi: 10.1208/s12248-016-9973-3
  • Kervezee L, Hartman R, van den Berg D-J, et al. Diurnal variation in P-glycoprotein-mediated transport and cerebrospinal fluid turnover in the brain. Aaps J. 2014;16(5):1029–1037. doi: 10.1208/s12248-014-9625-4
  • Zhang SL, Yue Z, Arnold DM, et al. A Circadian Clock in the blood-brain barrier regulates Xenobiotic Efflux. Cell. 2018;173(1):130–139.e10. doi: 10.1016/j.cell.2018.02.017
  • Zhang SL, Lahens NF, Yue Z, et al. A circadian clock regulates efflux by the blood-brain barrier in mice and human cells. Nat Commun. 2021;12(1):617. doi: 10.1038/s41467-020-20795-9
  • Furtado A, Mineiro R, Duarte AC, et al. The daily expression of ABCC4 at the BCSFB affects the transport of its substrate methotrexate. Int J Mol Sci. 2022;23(5):2443. doi: 10.3390/ijms23052443
  • Dulong S, Ballesta A, Okyar A, et al.Identification of Circadian Determinants of Cancer Chronotherapy through in vitro Chronopharmacology and Mathematical Modeling. Mol Cancer Ther. 2015;14:2154–2164. 9 10.1158/1535-7163.MCT-15-0129
  • Ruben MD, Smith DF, FitzGerald GA, et al. Dosing time matters. Science. 2019;365(6453):547–549. doi: 10.1126/science.aax7621
  • Dulong S, de Souza LEB, Machowiak J, et al. Sex and Circadian Timing Modulate Oxaliplatin Hematological and Hematopoietic Toxicities. Pharmaceutics. 2022;14(11):2465. doi: 10.3390/pharmaceutics14112465
  • Talamanca L, Gobet C, Naef F Sex-dimorphic and age-dependent organization of 24-hour gene expression rhythms in humans. Science. 2023;379:478–483. 10.1126/science.add0846 6631

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.