509
Views
0
CrossRef citations to date
0
Altmetric
Review

An update on microfluidic multi-organ-on-a-chip systems for reproducing drug pharmacokinetics: the current state-of-the-art

, &
Pages 459-471 | Received 08 Jan 2024, Accepted 28 May 2024, Published online: 04 Jun 2024

References

  • Ingber DE. Is it time for reviewer 3 to request human organ chip experiments instead of animal validation studies? Adv Sci. 2020;7(22). doi: 10.1002/advs.202002030
  • Leenaars CHC, Kouwenaar C, Stafleu FR, et al. Animal to human translation: a systematic scoping review of reported concordance rates. J Transl Med. 2019;17(1):223. doi: 10.1186/s12967-019-1976-2
  • McGonigle P, Ruggeri B. Animal models of human disease: challenges in enabling translation. Biochem Pharmacol. 2014;87(1):162–171. doi: 10.1016/j.bcp.2013.08.006
  • Jensen C, Teng Y. Is it time to start transitioning from 2D to 3D cell culture? Front Mol Biosci. 2020;7. doi: 10.3389/fmolb.2020.00033
  • Wang T, Wang X, Zhuang Y, et al. A systematic evaluation of quenching and extraction procedures for quantitative metabolome profiling of HeLa carcinoma cell under 2D and 3D cell culture conditions. Biotechnol J. 2023;18(5):18. doi: 10.1002/biot.202200444
  • Fontoura JC, Viezzer C, dos Santos FG, et al. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater Sci Eng C. 2020;107:110264. doi: 10.1016/j.msec.2019.110264
  • Ponmozhi J, Dhinakaran S, Varga-Medveczky Z, et al. Development of skin-on-A-Chip platforms for different utilizations: factors to Be considered. Micromachines (Basel). 2021;12(3):294. doi: 10.3390/mi12030294
  • Ponmozhi J, Dhinakaran S, Kocsis D, et al. Models for barrier understanding in health and disease in lab-on-a-chips. Tissue Barr. 2023;12(2). doi: 10.1080/21688370.2023.2221632
  • Zhou D, Chen L, Ding J, et al. A 3D engineered scaffold for hematopoietic progenitor/stem cell co-culture in vitro. Sci Rep. 2020;10(1):11485. doi: 10.1038/s41598-020-68250-5
  • Vis MAM, Ito K, Hofmann S. Impact of culture medium on cellular interactions in in vitro co-culture systems. Front Bioeng Biotechnol. 2020:8. doi: 10.3389/fbioe.2020.00911
  • Paschos NK, Brown WE, Eswaramoorthy R, et al. Advances in tissue engineering through stem cell-based co-culture. J Tissue Eng Regen Med. 2015;9:488–503. doi: 10.1002/term.1870
  • Ghanem A, Shuler ML. Characterization of a perfusion reactor utilizing mammalian cells on microcarrier beads. Biotechnol Prog. 2000;16(3):471–479. doi: 10.1021/bp000047o
  • Driver R, Mishra S. Organ-on-a-chip technology: an in-depth review of recent advancements and future of whole body-on-chip. BioChip J. 2023;17:1–23. doi: 10.1007/s13206-022-00087-8
  • Dehne E-M, Marx U. Human body-on-a-chip systems. Organ-on-a-chip. Elsevier; 2020. p. 429–439. doi: 10.1016/B978-0-12-817202-5.00013-9
  • Xia Y, Whitesides GM. Soft lithography. Ann Rev Mater Sci. 1998;28:153–184. doi: 10.1146/annurev.matsci.28.1.153
  • Battat S, Weitz DA, Whitesides GM. An outlook on microfluidics: the promise and the challenge. Lab Chip. 2022;22:530–536. doi: 10.1039/D1LC00731A
  • Zhang Y, Duan H, Li G, et al. Construction of liquid metal-based soft microfluidic sensors via soft lithography. J Nanobiotechnology. 2022;20:246. doi: 10.1186/s12951-022-01471-0
  • Ferrari E, Nebuloni F, Rasponi M, et al. Photo and soft lithography for organ-on-chip applications. Organ-on-a-Chip: Methods and Protocols. 2022:1–19. doi: 10.1007/978-1-0716-1693-2_1
  • Huh D, Matthews BD, Mammoto A, et al. Reconstituting organ-level lung functions on a chip. Sci (1979). 2010;328:1662–1668. doi: 10.1126/science.1188302
  • Skardal A, Aleman J, Forsythe S, et al. Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication. 2020;12(2):025017. doi: 10.1088/1758-5090/ab6d36
  • Jia X, Yang X, Luo G, et al. Recent progress of microfluidic technology for pharmaceutical analysis. J Pharm Biomed Anal. 2022;209:114534. doi: 10.1016/j.jpba.2021.114534
  • Azizipour N, Avazpour R, Rosenzweig DH, et al. Evolution of biochip technology: a review from lab-on-a-chip to organ-on-a-chip. Micromachines (Basel). 2020;11:599. doi: 10.3390/mi11060599
  • O’Neill AT, Monteiro-Riviere NA, Walker GM. Characterization of microfluidic human epidermal keratinocyte culture. Cytotechnology. 2008;56:197–207. doi: 10.1007/s10616-008-9149-9
  • Chang R, Nam J, Sun W. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods. 2008;14:157–166. doi: 10.1089/ten.tec.2007.0392
  • Kimura H, Yamamoto T, Sakai H, et al. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip. 2008;8:741. doi: 10.1039/b717091b
  • Jain A, Barrile R, van der Meer A, et al. Primary human lung alveolus‐on‐a‐chip model of intravascular thrombosis for assessment of therapeutics. Clin Pharmacol Ther. 2018;103:332–340. doi: 10.1002/cpt.742
  • Huang D, Liu T, Liao J, et al. Reversed-engineered human alveolar lung-on-a-chip model. Proc Natl Acad Sci, USA. 2021;118(19):118. doi: 10.1073/pnas.2016146118
  • Faley SL, Boghdeh NA, Schaffer DK, et al. Gravity-perfused airway-on-a-chip optimized for quantitative BSL-3 studies of SARS-CoV-2 infection: barrier permeability, cytokine production, immunohistochemistry, and viral load assays. Lab Chip. 2024;24(6):1794–1807. doi: 10.1039/D3LC00894K
  • Lai BFL, Huyer LD, Lu RXZ, et al. InVADE: integrated vasculature for assessing dynamic events. Adv Funct Mater. 2017;27(46):27. doi: 10.1002/adfm.201703524
  • Oleaga C, Riu A, Rothemund S, et al. Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system. Biomaterials. 2018;182:176–190. doi: 10.1016/j.biomaterials.2018.07.062
  • Skardal A, Murphy SV, Devarasetty M, et al. Multi-tissue interactions in an integrated three-tissue organ-on-a-chip platform. Sci Rep [Internet]. 2017 [cited 2023 Nov 13];7(1):1–16. Available from: https://www.nature.com/articles/s41598-017-08879-x
  • Oleaga C, Bernabini C, Smith AS, et al. Multi-organ toxicity demonstration in a functional human in vitro system composed of four organs. Sci Rep [Internet]. 2016 [cited 2023 Nov 13];6(1):1–17. Available from: https://www.nature.com/articles/srep20030
  • Novak R, Ingram M, Marquez S, et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat Biomed Eng. 2020;4:407–420. doi: 10.1038/s41551-019-0497-x
  • Jang K-J, Otieno MA, Ronxhi J, et al. Reproducing human and cross-species drug toxicities using a liver-chip. Sci Transl Med. 2019;11(517):11. doi: 10.1126/scitranslmed.aax5516
  • Rothbauer M, Ertl P. Emerging biosensor trends in organ-on-a-chip. In: Bahnemann J Grünberger A, editors. Microfluidics in biotechnology. Cham: Springer; 2020. p. 343–354.
  • Rothbauer M, Rosser JM, Zirath H, et al. Tomorrow today: organ-on-a-chip advances towards clinically relevant pharmaceutical and medical in vitro models. Curr Opin Biotechnol. 2019;55:81–86. doi: 10.1016/j.copbio.2018.08.009
  • Rothbauer M, Eilenberger C, Spitz S, et al. Recent advances in additive manufacturing and 3D bioprinting for organs-on-a-chip and microphysiological systems. Front Bioeng Biotechnol [Internet]. 2022 [cited 2023 Apr 3];10. Available from:/pmc/articles/PMC8891807/
  • Adam Kratz SR, Höll G, Schuller P, et al. Latest trends in biosensing for microphysiological organs-on-a-chip and body-on-a-chip systems. Biosensors (Basel) [Internet]. 2019 [cited 2023 Apr 3];9:110. Available from: https://www.mdpi.com/2079-6374/9/3/110/htm
  • Vunjak-Novakovic G, Ronaldson-Bouchard K, Radisic M. Organs-on-a-chip models for biological research. Cell. 2021;184:4597–4611. doi: 10.1016/j.cell.2021.08.005
  • Yin F, Zhang X, Wang L, et al. HiPSC-derived multi-organoids-on-chip system for safety assessment of antidepressant drugs. Lab Chip [Internet]. 2021 [cited 2023 Nov 13];21:571–581. Available from: https://pubs.rsc.org/en/content/articlehtml/2021/lc/d0lc00921k
  • Zandi Shafagh R, Youhanna S, Keulen J, et al. Bioengineered pancreas–liver crosstalk in a microfluidic coculture chip identifies human metabolic response signatures in prediabetic hyperglycemia. Adv Sci. 2022;9. doi: 10.1002/advs.202203368
  • Rupar MJ, Sasserath T, Smith E, et al. Development of a human malaria-on-a-chip disease model for drug efficacy and off-target toxicity evaluation. Sci Rep [Internet]. 2023 [cited 2023 Nov 15];13(1):1–14. Available from: https://www.nature.com/articles/s41598-023-35694-4
  • Rajan SAP, Aleman J, Wan M, et al. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Acta Biomaterialia. 2020;106:124–135. doi: 10.1016/j.actbio.2020.02.015
  • Ronaldson-Bouchard K, Teles D, Yeager K, et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat Biomed Eng. 2022;6:351–371. doi: 10.1038/s41551-022-00882-6
  • Sung JH, Esch MB, Shuler ML. Integration of in silico and in vitro platforms for pharmacokinetic–pharmacodynamic modeling. Expert Opin Drug Metab Toxicol. 2010;6:1063–1081. doi: 10.1517/17425255.2010.496251
  • McAleer CW, Long CJ, Elbrecht D, et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Sci Transl Med [Internet]. 2019 [cited 2023 Nov 15];11. Available from: https://www.science.org
  • Si L, Bai H, Rodas M, et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat Biomed Eng. 2021;5:815–829. doi: 10.1038/s41551-021-00718-9
  • Spandana T, Beeraka NM, Hemanth Vikram PR, et al. Technical advances in the chiral separation of anti-diabetic drugs using analytical and bio-analytical methods: a comprehensive review. Curr Anal Chem. 2022;18:1057–1069. doi: 10.2174/1573411018666220820101237
  • Myers KR, Tham WY, Yin Y, et al. Unequal effects of the COVID-19 pandemic on scientists. Nat Human Behav [Internet]. 2020 [cited 2024 Apr 19];4(9):880–883. Available from: https://www.nature.com/articles/s41562-020-0921-y
  • Shan J, Ballard D, Vinson DR. Publication non grata: the challenge of publishing non-COVID-19 research in the COVID era. Cureus [Internet]. 2020 [cited 2024 Apr 19];12. Available from: https://pubmed.ncbi.nlm.nih.gov/33312801/
  • Riccaboni M, Verginer L, Naudet F. The impact of the COVID-19 pandemic on scientific research in the life sciences. PLOS ONE [Internet]. 2022 [cited 2024 Apr 19];17(2):e0263001. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0263001
  • Natu R, Herbertson L, Sena G, et al. A systematic analysis of recent technology trends of microfluidic medical devices in the United States. Micromachines (Basel). 2023;14:1293. doi: 10.3390/mi14071293
  • Nothdurfter D, Ploner C, Coraça-Huber DC, et al. 3D bioprinted, vascularized neuroblastoma tumor environment in fluidic chip devices for precision medicine drug testing. Biofabrication. 2022;14:035002. doi: 10.1088/1758-5090/ac5fb7
  • Ghasemi N, Bandehpour M, Ranjbari J. Optimization of key factors in serum free medium for production of human recombinant GM-CSF using response surface methodology. Iran J Pharm Res. 2019;18:146–156. doi: 10.22037/ijpr.2020.112322.13681
  • Aldoss A, Lambarte R, Alsalleeh F. High-glucose media reduced the viability and induced differential pro-inflammatory cytokines in human periodontal ligament fibroblasts. Biomolecules. 2023;13:690. doi: 10.3390/biom13040690
  • Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83:835–870. doi: 10.1152/physrev.2003.83.3.835
  • Güemes M, Rahman SA, Hussain K. What is a normal blood glucose? Arch Dis Child. 2016;101:569–574. doi: 10.1136/archdischild-2015-308336
  • Iyer VV, Yang H, Ierapetritou MG, et al. Effects of glucose and insulin on HepG2‐C3A cell metabolism. Biotechnol Bioeng. 2010;107(2):347–356. doi: 10.1002/bit.22799
  • Heinonen T. Better science with human cell-based organ and tissue models. Altern Lab Animals. 2015;43(1):29–38. doi: 10.1177/026119291504300107
  • Zhai J, Li C, Li H, et al. Cancer drug screening with an on-chip multi-drug dispenser in digital microfluidics. Lab Chip [Internet]. 2021 [cited 2023 Nov 20];21:4749–4759. Available from: https://pubs.rsc.org/en/content/articlehtml/2021/lc/d1lc00895a
  • Nicholson MW, Ting C-Y, Chan DZH, et al. Utility of iPSC-derived cells for disease modeling, drug development, and cell therapy. Cells. 2022;11:1853. doi: 10.3390/cells11111853
  • Park S, Gwon Y, Khan SA, et al. Engineering considerations of iPSC-based personalized medicine. Biomater Res. 2023;27:67. doi: 10.1186/s40824-023-00382-x
  • Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007;448:313–317. doi: 10.1038/nature05934
  • Wang H, Yang Y, Liu J, et al. Direct cell reprogramming: approaches, mechanisms and progress. Nat Rev Mol Cell Biol. 2021;22:410–424. doi: 10.1038/s41580-021-00335-z
  • Suzuka J, Tsuda M, Wang L, et al. Rapid reprogramming of tumour cells into cancer stem cells on double-network hydrogels. Nat Biomed Eng. 2021;5:914–925. doi: 10.1038/s41551-021-00692-2
  • O’Shea O, Steeg R, Chapman C, et al. Development and implementation of large-scale quality control for the European bank for induced pluripotent stem cells. Stem Cell Res. 2020;45:101773. doi: 10.1016/j.scr.2020.101773
  • Vala M, Robelek R, Bocková M, et al. Real-time label-free monitoring of the cellular response to osmotic stress using conventional and long-range surface plasmons. Biosens Bioelectron. 2013;40:417–421. doi: 10.1016/j.bios.2012.07.020
  • Modena MM, Chawla K, Misun PM, et al. Smart cell culture systems: integration of sensors and actuators into microphysiological systems. ACS Chem Biol. 2018;13:1767–1784. doi: 10.1021/acschembio.7b01029
  • Ungerböck B, Charwat V, Ertl P, et al. Microfluidic oxygen imaging using integrated optical sensor layers and a color camera. Lab Chip. 2013;13:1593. doi: 10.1039/c3lc41315b
  • Szunerits S, Pagneux Q, M’Barek YB, et al. Do not let electrode fouling be the enemy of bioanalysis. Bioelectrochemistry. 2023;153:108479. doi: 10.1016/j.bioelechem.2023.108479
  • Esmaeilzadeh AA, Yaseen MM, Khudaynazarov U, et al. Recent advances on the electrochemical and optical biosensing strategies for monitoring microRNA-21: a review. Anal Methods. 2022;14:4449–4459. doi: 10.1039/D2AY01384C
  • Iakovlev AP, Erofeev AS, Gorelkin PV. Novel pumping methods for microfluidic devices: a comprehensive review. Biosensors (Basel). 2022;12:956. doi: 10.3390/bios12110956
  • Rothbauer M, Charwat V, Bachmann B, et al. Monitoring transient cell-to-cell interactions in a multi-layered and multi-functional allergy-on-a-chip system. Lab Chip. 2019;19:1916–1921. doi: 10.1039/C9LC00108E