85
Views
0
CrossRef citations to date
0
Altmetric
Review

Investigative analysis of blood–brain barrier penetrating potential of electronic nicotine delivery systems (e-cigarettes) chemicals using predictive computational models

, , , &
Pages 647-663 | Received 12 Dec 2023, Accepted 06 Jun 2024, Published online: 21 Jun 2024

References

  • Gentzke AS, Wang TW, Cornelius M, et al. Tobacco product use and associated factors among middle and high school students — national youth tobacco survey, United States, 2021. MMWR Surveill Summ. 2022 Mar 11;71(5):1–29. doi: 10.15585/mmwr.ss7105a1
  • Birdsey J, Cornelius M, Jamal A. Tobacco product use among US Middle and high school students — national youth tobacco survey, 2023. MMWR Morb Mortal Wkly Rep. 2023;72(44):1173–1182. doi: 10.15585/mmwr.mm7244a1
  • Faulcon LM, Rudy S, Limpert J, et al. Adverse experience reports of seizures in youth and young adult electronic nicotine delivery systems users. J Adolesc Health. 2020 Jan;66(1):15–17. doi: 10.1016/j.jadohealth.2019.10.002
  • Weidner A-S, Rudy SF, Faulcon LM. Comment on “Does vaping cause seizures? The need for comprehensive drug testing”. Clin Toxicol. 2020 May 03;58:435–436. doi: 10.1080/15563650.2019.1650940
  • Weidner AS, Imoisili O, Rudy S. E-Cigarette–associated seizure reports to food and drug administration lack medical information. Annals Of Emergency Medicine. 2021 Dec;78(6):802–803. doi: 10.1016/j.annemergmed.2021.08.001
  • National Academies of Sciences E, Medicine, Health. Public health consequences of E-Cigarettes. In: Eaton D, Kwan L, Stratton K, editors. Public health consequences of E-Cigarettes. Washington (DC): National Academies Press (US) Copyright 2018 by the National Academy of Sciences. All rights reserved.; 2018. p. 157–160.
  • Mayer B. How much nicotine kills a human? Tracing back the generally accepted lethal dose to dubious self-experiments in the nineteenth century. Arch Toxicol. 2014 Jan 01;88(1):5–7. doi: 10.1007/s00204-013-1127-0
  • Armendariz-Castillo I, Guerrero S, Vera-Guapi A, et al. Genotoxic and carcinogenic potential of compounds associated with electronic cigarettes: a systematic review. Biomed Res Int. 2019;2019:1–8. doi: 10.1155/2019/1386710
  • Hua M, Omaiye EE, Luo W, et al. Identification of cytotoxic flavor chemicals in top-selling electronic cigarette refill fluids. Sci Rep. 2019 Feb 26;9(1):2782. doi: 10.1038/s41598-019-38978-w
  • Marescotti D, Mathis C, Belcastro V, et al. Systems toxicology assessment of a representative e-liquid formulation using human primary bronchial epithelial cells. Toxicol Rep. 2020 Jan 01;7:67–80. doi: 10.1016/j.toxrep.2019.11.016
  • Flori Sassano Esd M, Keating JE, Zorn BT, et al. Welcome to the E-liquid database. 2018 [cited 2020 Jan 18]. Available from: https://eliquidinfo.org/
  • Muthumalage T, Lamb T, Friedman MR, et al. E-cigarette flavored pods induce inflammation, epithelial barrier dysfunction, and DNA damage in lung epithelial cells and monocytes. Sci Rep. 2019 Dec 13;9(1):19035. doi: 10.1038/s41598-019-51643-6
  • Omaiye EE, McWhirter KJ, Luo W, et al. High concentrations of flavor chemicals are present in electronic cigarette refill fluids. Sci Rep. 2019 Feb 21;9(1):2468. doi: 10.1038/s41598-019-39550-2
  • Rowell TR, Reeber SL, Lee SL, et al. Flavored e-cigarette liquids reduce proliferation and viability in the CALU3 airway epithelial cell line. Am J Physiol Lung Cell Mol Physiol. 2017 Jul 1;313:L52–66. doi: 10.1152/ajplung.00392.2016
  • Sassano MF, Davis ES, Keating JE, et al. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay. PLOS Biol. 2018 Mar;16(3):e2003904. doi: 10.1371/journal.pbio.2003904
  • Cheng T. Chemical evaluation of electronic cigarettes. Tob Control. 2014;23 Suppl 2(suppl 2):ii11–7. doi: 10.1136/tobaccocontrol-2013-051482
  • de Boer AG, van der Sandt ICJ, Gaillard PJ. The role of drug transporters at the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2003 Apr 1;43(1):629–656. doi: 10.1146/annurev.pharmtox.43.100901.140204
  • Ghose AK, Herbertz T, Hudkins RL, et al. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci. 2012;3(1):50–68. doi: 10.1021/cn200100h
  • Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. 2015 Jan 5;7(1):a020412. doi: 10.1101/cshperspect.a020412
  • de Vries HE, Kooij G, Frenkel D, et al. Inflammatory events at blood–brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia. 2012;53(Suppl 6):45–52. doi: 10.1111/j.1528-1167.2012.03702.x
  • Norinder U, Haeberlein M. Computational approaches to the prediction of the blood–brain distribution. Adv Drug Deliv Rev. 2002 Mar 31;54(3):291–313. doi: 10.1016/S0169-409X(02)00005-4
  • Singh M, Divakaran R, Konda LSK, et al. A classification model for blood brain barrier penetration. J Mol Graphics Modell. 2020 May 1;96:107516. doi: 10.1016/j.jmgm.2019.107516
  • Ajay BG, Murcko MA, Murcko MA. Designing libraries with CNS activity. J Med Chem. 1999 Dec 2;42(24):4942–4951. doi: 10.1021/jm990017w
  • Luco JM. Prediction of the brain−blood distribution of a large set of drugs from structurally derived descriptors using partial least-squares (PLS) modeling. J Chem Inf Comput Sci. 1999 Mar 22;39(2):396–404. doi: 10.1021/ci980411n
  • Easter A, Bell ME, Damewood JR, et al. Approaches to seizure risk assessment in preclinical drug discovery. Drug Discov Today. 2009 Sep 1;14(17–18):876–884. doi: 10.1016/j.drudis.2009.06.003
  • Galanopoulou AS. GABA(A) receptors in normal development and seizures: friends or foes? Curr Neuropharmacol. 2008;6(1):1–20. doi: 10.2174/157015908783769653
  • Kokate TG, Cohen AL, Karp E, et al. Neuroactive steroids protect against pilocarpine- and kainic acid-induced limbic seizures and status epilepticus in mice. Neuropharmacology. 1996;35(8):1049–1056. doi: 10.1016/S0028-3908(96)00021-4
  • Kumlien E, Lundberg PO. Seizure risk associated with neuroactive drugs: data from the WHO adverse drug reactions database. Seizure. 2010 Mar;19(2):69–73. doi: 10.1016/j.seizure.2009.11.005
  • Shih JJ, Whitlock JB, Chimato N, et al. Epilepsy treatment in adults and adolescents: expert opinion, 2016. Epilepsy Behav. 2017 Apr;69:186–222. doi: 10.1016/j.yebeh.2016.11.018
  • Snead OC. The γ-hydroxybutyrate model of absence seizures: correlation of regional brain levels of γ-hydroxybutyric acid and γ-butyrolactone with spike wave discharges. Neuropharmacology. 1991 Feb 1;30:161–167. doi: 10.1016/0028-3908(91)90199-L
  • Winter MJ, Redfern WS, Hayfield AJ, et al. Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. J Pharmacol Toxicol Methods. 2008 May 1;57:176–187. doi: 10.1016/j.vascn.2008.01.004
  • Zhang H, Li W, Xie Y, et al. Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method. Toxicol Vitro. 2011 Dec;25(8):1848–1854. doi: 10.1016/j.tiv.2011.05.015
  • Zolkowska D, Banks CN, Dhir A, et al. Characterization of seizures induced by acute and repeated exposure to tetramethylenedisulfotetramine. J Pharmacol Exp Ther. 2012 May;341(2):435–446. doi: 10.1124/jpet.111.190579
  • Dearden JC. In silico prediction of ADMET properties: how far have we come? Expert Opin Drug Metab Toxicol. 2007 Oct 1;3(5):635–639. doi: 10.1517/17425255.3.5.635
  • Fraczkiewicz R, Lobell M, Göller AH, et al. Best of both worlds: combining pharma data and state of the art modeling technology to improve in silico pka prediction. J Chem Inf Model. 2015;55(2):389–397. doi: 10.1021/ci500585w
  • Ghosh J, Lawless MS, Waldman M, et al. Modeling ADMET. Methods Mol Biol. 2016;1425:63–83.
  • Lawless MS, Waldman M, Fraczkiewicz R, et al. Using cheminformatics in drug discovery. Handb Exp Pharmacol. 2016;232:139–168.
  • de Souza AS, Ferreira LLG, de Oliveira AS, et al. Quantitative structure–activity relationships for structurally diverse chemotypes having anti-trypanosoma cruzi activity. Int J Mol Sci. 2019;20(11):2801. doi: 10.3390/ijms20112801
  • Sastry M, Lowrie JF, Dixon SL, et al. Large-scale systematic analysis of 2d fingerprint methods and parameters to improve virtual screening enrichments. J Chem Inf Model. 2010;50(5):771–784. doi: 10.1021/ci100062n
  • Easter A, Sharp TH, Valentin JP, et al. Pharmacological validation of a semi-automated in vitro hippocampal brain slice assay for assessment of seizure liability. J Pharmacol Toxicol Methods. 2007 Sep 01;56:223–233. doi: 10.1016/j.vascn.2007.04.008
  • Sgaravatti AM, Magnusson AS, Oliveira AS, et al. Effects of 1,4-butanediol administration on oxidative stress in rat brain: study of the neurotoxicity of γ-hydroxybutyric acid in vivo. Metab Brain Dis. 2009 Mar 19;24(2):271. doi: 10.1007/s11011-009-9136-7
  • Hansch C, Bjorkroth JP, Leo A. Hydrophobicity and central nervous system agents: on the principle of minimal hydrophobicity in drug design. J Pharm Sci. 1987 Sep;76(9):663–687. doi: 10.1002/jps.2600760902
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in advanced drug delivery reviews 23 (1997) 3–25. 1. Adv Drug Deliv Rev. 2001 Mar 1;46(1–3):3–26. doi: 10.1016/S0169-409X(00)00129-0
  • Veber DF, Johnson SR, Cheng HY, et al. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002 Jun 6;45(12):2615–2623. doi: 10.1021/jm020017n
  • Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303(5665):1813. doi: 10.1126/science.1096361
  • Irvine JD, Takahashi L, Lockhart K, et al. MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci. 1999 Jan;88(1):28–33. doi: 10.1021/js9803205
  • Leung SSF, Mijalkovic J, Borrelli K, et al. Testing physical models of passive membrane permeation. J Chem Inf Model. 2012;52(6):1621–1636. doi: 10.1021/ci200583t
  • Kelder J, Grootenhuis PDJ, Bayada DM, et al. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res. 1999 Oct 1;16:1514–1519. doi: 10.1023/A:1015040217741
  • Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86–98. doi: 10.1602/neurorx.2.1.86
  • Penzotti JE, Lamb ML, Evensen E, et al. A computational ensemble pharmacophore model for identifying substrates of P-Glycoprotein. J Med Chem. 2002 Apr 1;45(9):1737–1740. doi: 10.1021/jm0255062
  • Seelig A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem. 1998 Jan 15;251(1–2):252–261. doi: 10.1046/j.1432-1327.1998.2510252.x
  • Osterberg T, Norinder U. Theoretical calculation and prediction of P-glycoprotein-interacting drugs using MolSurf parametrization and PLS statistics. Eur J Pharm Sci. 2000;10(4):295–303. doi: 10.1016/S0928-0987(00)00077-4
  • Perriere N, Yousif S, Cazaubon S, et al. A functional in vitro model of rat blood–brain barrier for molecular analysis of efflux transporters. Brain Res. 2007 May 30;1150:1–13. doi: 10.1016/j.brainres.2007.02.091
  • Scarborough GA. Drug-stimulated ATPase activity of the human P-glycoprotein. J Bioenerg Biomembr. 1995 Feb;27(1):37–41. doi: 10.1007/BF02110329
  • Amin ML. P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights. 2013;7:27–34. doi: 10.4137/DTI.S12519
  • Urquhart BL, Kim RB. Blood−brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol. 2009 Nov;65(11):1063–1070. doi: 10.1007/s00228-009-0714-8
  • Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005;2(4):541–553. doi: 10.1602/neurorx.2.4.541
  • Mahar Doan KM, Humphreys JE, Webster LO, et al. Passive permeability and P-glycoprotein-mediated efflux differentiate central nervous system (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther. 2002 Dec;303(3):1029–1037. doi: 10.1124/jpet.102.039255
  • Clark DE. In silico prediction of blood–brain barrier permeation. Drug Discov Today. 2003 Oct 15;8:927–933. doi: 10.1016/S1359-6446(03)02827-7
  • Platts JA, Abraham MH, Zhao YH, et al. Correlation and prediction of a large blood–brain distribution data set—an LFER study. Eur J Med Chem. 2001 Sep 1;36(9):719–730. doi: 10.1016/S0223-5234(01)01269-7
  • Majumdar S, Basak SC, Lungu CN, et al. Finding needles in a haystack: determining key molecular descriptors associated with the blood‐brain barrier entry of chemical compounds using machine learning. Mol Inform. 2019;38(8–9):1800164. doi: 10.1002/minf.201800164
  • Xing S, Chen Y, Xiong B, et al. Synthesis and bio-evaluation of a novel selective butyrylcholinesterase inhibitor discovered through structure-based virtual screening. J Biol Macromol. 2021;166:1352–1364. doi: 10.1016/j.ijbiomac.2020.11.015
  • Crivori P, Cruciani G, Carrupt P-A, et al. Predicting blood−brain barrier permeation from three-dimensional molecular structure. J Med Chem. 2000 Jun 01;43:2204–2216.
  • Koppel BS. Toxins and drugs reported to induce seizures 2004. [cited 2004 Mar 1]. Available from: https://www.epilepsy.com/learn/professionals/resource-library/tables/toxins-and-drugs-reported-induce-seizures
  • Breedveld P, Beijnen JH, Schellens JHM. Use of P-glycoprotein and BCRP inhibitors to improve oral bioavailability and CNS penetration of anticancer drugs. Trends Pharmacol Sci. 2006 Jan 01;27:17–24. doi: 10.1016/j.tips.2005.11.009
  • Garg P, Dhakne R, Belekar V. Role of breast cancer resistance protein (BCRP) as active efflux transporter on blood-brain barrier (BBB) permeability. Mol Divers. 2015 Feb 1;19(1):163–172. doi: 10.1007/s11030-014-9562-2
  • Tega Y, Yamazaki Y, S-I A, et al. Impact of nicotine transport across the blood–brain barrier: carrier-mediated transport of nicotine and interaction with central nervous system drugs. Biol Pharm Bull. 2018;41(9):1330–1336. doi: 10.1248/bpb.b18-00134
  • Chen JL, Wei L, Bereczki D, et al. Nicotine raises the influx of permeable solutes across the rat blood—brain barrier with little or no capillary recruitment. J Cereb Blood Flow Metab. 1995 Jul 01;15(4):687–698. doi: 10.1038/jcbfm.1995.85
  • Lockman PR, Van der Schyf CJ, Abbruscato TJ, et al. Chronic nicotine exposure alters blood–brain barrier permeability and diminishes brain uptake of methyllycaconitine. J Neurochem. 2005 Jul 1;94(1):37–44. doi: 10.1111/j.1471-4159.2005.03162.x
  • Hawkins BT, Abbruscato TJ, Egleton RD, et al. Nicotine increases in vivo blood–brain barrier permeability and alters cerebral microvascular tight junction protein distribution. Brain Res. 2004 Nov 19;1027(1–2):48–58. doi: 10.1016/j.brainres.2004.08.043
  • Kaisar MA, Villalba H, Prasad S, et al. Offsetting the impact of smoking and e-cigarette vaping on the cerebrovascular system and stroke injury: is metformin a viable countermeasure? Redox Biol. 2017 Oct;13:353–362. doi: 10.1016/j.redox.2017.06.006
  • Esteban-Lopez M, Perry MD, Garbinski LD, et al. Health effects and known pathology associated with the use of E-cigarettes. Toxicol Rep. 2022 Jan 1;9:1357–1368. doi: 10.1016/j.toxrep.2022.06.006
  • Kaisar MA, Prasad S, Cucullo L. Protecting the BBB endothelium against cigarette smoke-induced oxidative stress using popular antioxidants: are they really beneficial? Brain Res. 2015;1627:90–100. doi: 10.1016/j.brainres.2015.09.018
  • Marchi N, Tierney W, Alexopoulos AV, et al. The etiological role of blood-brain barrier dysfunction in seizure disorders. Cardiovasc Psychiatry Neurol. 2011;2011:1–9. doi: 10.1155/2011/482415
  • Oby E, Janigro D. The blood–brain barrier and epilepsy. Epilepsia. 2006 Nov 1;47:1761–1774. doi: 10.1111/j.1528-1167.2006.00817.x
  • Marchi N, Granata T, Ghosh C, et al. Blood–brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches. Epilepsia. 2012;53(11):1877–1886. doi: 10.1111/j.1528-1167.2012.03637.x
  • Liu-Zarzuela JA, Sun R. Three seizures provoked by e-cigarette use in a five-year period: a case report. Cureus. 2022 Aug;14:e27616. doi: 10.7759/cureus.27616
  • Narrett JA, Khan W, Funaro MC, et al. How do smoking, vaping, and nicotine affect people with epilepsy and seizures? A scoping review protocol. PLOS ONE. 2023;18(7):e0288120. doi: 10.1371/journal.pone.0288120
  • Nichols WA, Henderson BJ, Marotta CB, et al. Mutation linked to autosomal dominant nocturnal frontal lobe epilepsy reduces low-sensitivity α4β2, and increases α5α4β2, nicotinic receptor surface expression. PLOS ONE. 2016;11(6):e0158032. doi: 10.1371/journal.pone.0158032
  • Gorter JA, van Vliet EA, Aronica E. Status epilepticus, blood–brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav. 2015 Aug 1;49:13–16. doi: 10.1016/j.yebeh.2015.04.047
  • Marchi N, Granata T, Janigro D. Inflammatory pathways of seizure disorders. Trends Neurosci 2014 Feb 1;37(2):55–65. doi: 10.1016/j.tins.2013.11.002
  • Bagchi S, Chhibber T, Lahooti B, et al. In-vitro blood-brain barrier models for drug screening and permeation studies: an overview. Drug Des Devel Ther. 2019;13:3591–3605. doi: 10.2147/DDDT.S218708
  • Sun H, Hu H, Liu C, et al. Methods used for the measurement of blood-brain barrier integrity. Metab Brain Dis. 2021 Jun;36(5):723–735. doi: 10.1007/s11011-021-00694-8
  • Helms HC, Hersom M, Kuhlmann LB, et al. An electrically tight in vitro blood–brain barrier model displays net brain-to-blood efflux of substrates for the ABC transporters, P-gp, Bcrp and Mrp-1. Aaps J. 2014 Sep 1;16:1046–1055. doi: 10.1208/s12248-014-9628-1
  • Greene C, Connolly R, Brennan D, et al. Blood–brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment. Nat Neurosci. 2024 Mar 1;27(3):421–432. doi: 10.1038/s41593-024-01576-9
  • Ruszkiewicz JA, Zhang Z, Gonçalves FM, et al. Neurotoxicity of e-cigarettes. Food Chem Toxicol. 2020 Apr;138:111245. doi: 10.1016/j.fct.2020.111245

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.