25
Views
0
CrossRef citations to date
0
Altmetric
Review

Recent progress in adverse events of carboxylic acid non-steroidal anti-inflammatory drugs (CBA-NSAIDs) and their association with the metabolism: the consequences on mitochondrial dysfunction and oxidative stress, and prevention with natural plant extracts

, , , , , , , , , & show all
Received 09 Feb 2024, Accepted 08 Jul 2024, Published online: 12 Jul 2024

References

  • Díaz-González F, Sánchez-Madrid F. NSAIDs: learning new tricks from old drugs. Eur J Immunol. 2015;45(3):679–686. doi: 10.1002/eji.201445222
  • Melnikova I. Pain market. Nat Rev Drug Discov. 2010;9(8):589–590. doi: 10.1038/nrd3226
  • Pereira-Leite C, Nunes C, Jamal SK, et al. Nonsteroidal anti-inflammatory therapy: a journey toward safety. Med Res Rev. 2017;37(4):802–859. doi: 10.1002/med.21424
  • Bindu S, Mazumder S, Bandyopadhyay U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: a current perspective. Biochem Pharmacol. 2020;180:114147. doi: 10.1016/j.bcp.2020.114147
  • Bruno A, Tacconelli S, Patrignani P. Variability in the response to non-steroidal anti-inflammatory drugs: mechanisms and perspectives. Basic Clin Pharmacol Toxicol. 2014;114(1):56–63. doi: 10.1111/bcpt.12117
  • Hersh EV, Moore PA, Ross GL. Over-the-counter analgesics and antipyretics: a critical assessment. Clin Ther. 2000;22(5):500–548. doi: 10.1016/S0149-2918(00)80043-0
  • Cashman JN. The mechanisms of action of NSAIDs in analgesia. Drugs. 1996;52(Supplement 5):13–23. doi: 10.2165/00003495-199600525-00004
  • Luan YH, Wang D, Yu Q, et al. Action of β-endorphin and nonsteroidal anti-inflammatory drugs, and the possible effects of nonsteroidal anti-inflammatory drugs on β-endorphin. J Clin Anesth. 2017;37:123–128. doi: 10.1016/j.jclinane.2016.12.016
  • Davenport K, Waine E. The role of non-steroidal anti-inflammatory drugs in renal colic. Pharmaceuticals. 2010;3(5):1304–1310. doi: 10.3390/ph3051304
  • Leng XY, Liu CN, Wang SC, et al. Comparison of the efficacy of nonsteroidal anti-inflammatory drugs and opioids in the treatment of acute renal colic: a systematic review and meta-analysis. Front Pharmacol. 2022;12:728908. doi: 10.3389/fphar.2021.728908
  • Hirate K, Uchida A, Ogawa Y, et al. Zaltoprofen, a non-steroidal anti-inflammatory drug, inhibits bradykinin-induced pain responses without blocking bradykinin receptors. Neurosci Res. 2006;54(4):288–294. doi: 10.1016/j.neures.2005.12.016
  • Theken KN, Lee CR, Gong L, et al. Clinical pharmacogenetics implementation consortium guideline (CPIC) for CYP2C9 and nonsteroidal anti-inflammatory drugs. Clin Pharmacol Ther. 2020;108(2):191–200. doi: 10.1002/cpt.1830
  • Hersh EV, Moore PA, Grosser T, et al. Nonsteroidal anti-inflammatory drugs and opioids in postsurgical dental pain. J Dent Res. 2020;99(7):777–786. doi: 10.1177/0022034520914254
  • Piazuelo E, Lanas A. NSAIDS and gastrointestinal cancer. Prostaglandins Other Lipid Mediat. 2015;120:91–96. doi: 10.1016/j.prostaglandins.2015.06.001
  • Wong RSY. Role of nonsteroidal anti-inflammatory drugs (NSAIDs) in cancer prevention and cancer promotion. Adv Pharmacol Sci. 2019;2019:3418975. doi: 10.1155/2019/3418975
  • Dierssen-Sotos T, Gómez-Acebo I, de Pedro M, et al. Use of non-steroidal anti-inflammatory drugs and risk of breast cancer: the Spanish multi-case-control (MCC) study. BMC Cancer. 2016;16(1):660. doi: 10.1186/s12885-016-2692-4
  • Ma Y, Brusselaers N. Maintenance use of aspirin or other non-steroidal anti-inflammatory drugs (NSAIDs) and prostate cancer risk. Prostate Cancer Prostatic Dis. 2018;21(1):147–152. doi: 10.1038/s41391-017-0021-x
  • Maitra A, Bates S, Shaik M, et al. Repurposing drugs for treatment of tuberculosis: a role for non-steroidal anti-inflammatory drugs. Br Med Bull. 2016;118(1):138–148. doi: 10.1093/bmb/ldw019
  • Yu C, Li WB, Liu JB, et al. Autophagy: novel applications of nonsteroidal anti-inflammatory drugs for primary cancer. Cancer Med. 2018;7(2):471–484. doi: 10.1002/cam4.1287
  • Vallée A, Lecarpentier Y, Vallée JN. Targeting the canonical WNT/β-catenin pathway in cancer treatment using non-steroidal anti-inflammatory drugs. Cells. 2019;8(7):726. doi: 10.3390/cells8070726
  • Magee DJ, Jhanji S, Poulogiannis G, et al. Nonsteroidal anti-inflammatory drugs and pain in cancer patients: a systematic review and reappraisal of the evidence. Br J Anaesth. 2019;123(2):e412–e423. doi: 10.1016/j.bja.2019.02.028
  • Chen X, Guo F, Hoffmeister M, et al. Non-steroidal anti-inflammatory drugs, polygenic risk score and colorectal cancer risk. Aliment Pharmacol Ther. 2021;54(2):167–175. doi: 10.1111/apt.16438
  • Hawk E, Maresso KC, Brown P. NSAIDs to prevent breast cancer recurrence? An unanswered question. J Natl Cancer Inst. 2018;110(9):927–928. doi: 10.1093/jnci/djy049
  • Bay-Richter C, Wegener G. Antidepressant effects of NSAIDs in rodent models of depression-a systematic review. Front Pharmacol. 2022;13:909981. doi: 10.3389/fphar.2022.909981
  • Lago EM, Silva MP, Queiroz TG, et al. Phenotypic screening of nonsteroidal anti-inflammatory drugs identified mefenamic acid as a drug for the treatment of schistosomiasis. EBioMedicine. 2019;43:370–379. doi: 10.1016/j.ebiom.2019.04.029
  • Robb CT, Goepp M, Rossi AG, et al. Non-steroidal anti-inflammatory drugs, prostaglandins and COVID-19. Br J Pharmacol. 2020;177(21):4899–4920. doi: 10.1111/bph.15206
  • Babaei F, Mirzababaei M, Nassiri-Asl M, et al. Review of registered clinical trials for the treatment of COVID-19. Drug Dev Res. 2021;82(4):474–493. doi: 10.1002/ddr.21762
  • Pirlamarla P, Bond RM. FDA labeling of NSAIDs: review of nonsteroidal anti-inflammatory drugs in cardiovascular disease. Trends Cardiovasc Med. 2016;26(8):675–680. doi: 10.1016/j.tcm.2016.04.011
  • Schwartz JI, Dallob AL, Larson PJ, et al. Comparative inhibitory activity of etoricoxib, celecoxib, and diclofenac on COX-2 versus COX-1 in healthy subjects. J Clin Pharmacol. 2008;48(6):745–754. doi: 10.1177/0091270008317590
  • Arfè A, Scotti L, Varas-Lorenzo C, et al. Non-steroidal anti-inflammatory drugs and risk of heart failure in four European countries: nested case-control study. BMJ. 2016;354:i4857. doi: 10.1136/bmj.i4857
  • Stehlik P, Rosella L, Henry D. Commentary: renewed controversy over cardiovascular risk with non-steroidal anti-inflammatory drugs. Int J Epidemiol. 2018;47(2):362–367. doi: 10.1093/ije/dyx284
  • Schjerning AM, McGettigan P, Gislason G. Cardiovascular effects and safety of (non-aspirin) NSAIDs. Nat Rev Cardiol. 2020;17(9):574–584. doi: 10.1038/s41569-020-0366-z
  • Tso J, Hollowed C, Liu C, et al. Nonsteroidal anti-inflammatory drugs and cardiovascular risk in American football. Med Sci Sports Exerc. 2020;52(12):2522–2528. doi: 10.1249/MSS.0000000000002404
  • Maseda D, Zackular JP, Trindade B, et al. Nonsteroidal anti-inflammatory drugs alter the microbiota and exacerbate Clostridium difficile colitis while dysregulating the inflammatory response. MBio. 2019;10(1):e02282–18. doi: 10.1128/mbio.02282-18
  • Allegaert K, De Hoon J, Debeer A, et al. Renal side effects of non-steroidal anti-inflammatory drugs in neonates. Pharmaceuticals. 2010;3(2):393–405. doi: 10.3390/ph3020393
  • Meek IL, de Laar Mafj V, Vonkeman HE. Non-steroidal anti-inflammatory drugs: an overview of cardiovascular risks. Pharmaceuticals. 2010;3(7):2146–2162. doi: 10.3390/ph3072146
  • Klein A, Eliakim R. Non steroidal anti-inflammatory drugs and inflammatory bowel disease. Pharmaceuticals. 2010;3(4):1084–1092. doi: 10.3390/ph3041084
  • Cardile S, Martinelli M, Barabino A, et al. Italian survey on non-steroidal anti-inflammatory drugs and gastrointestinal bleeding in children. World J Gastroenterol. 2016;22(5):1877–1883. doi: 10.3748/wjg.v22.i5.1877
  • Bjarnason I, Scarpignato C, Holmgren E, et al. Mechanisms of damage to the gastrointestinal tract from nonsteroidal anti-inflammatory drugs. Gastroenterology. 2018;154(3):500–514. doi: 10.1053/j.gastro.2017.10.049
  • Watanabe T, Fujiwara Y, Chan FKL. Current knowledge on non-steroidal anti-inflammatory drug-induced small-bowel damage: a comprehensive review. J Gastroenterol. 2020;55(5):481–495. doi: 10.1007/s00535-019-01657-8
  • Ribeiro H, Rodrigues I, Napoleão L, et al. Non-steroidal anti-inflammatory drugs (NSAIDs), pain and aging: adjusting prescription to patient features. Biomed Pharmacother. 2022;150:112958. doi: 10.1016/j.biopha.2022.112958
  • Panchal NK, Prince SE. Non-steroidal anti-inflammatory drugs (NSAIDs): a current insight into its molecular mechanism eliciting organ toxicities. Food Chem Toxicol. 2023;172:113598. doi: 10.1016/j.fct.2022.113598
  • Kaidbey KH, Mitchell FN. Photosensitizing potential of certain nonsteroidal anti-inflammatory agents. Arch Dermatol. 1989;125(6):783–786. doi: 10.1001/archderm.1989.01670180055005
  • Das D, Bandyopadhyay D, Bhattacharjee M, et al. Hydroxyl radical is the major causative factor in stress-induced gastric ulceration. Free Radic Biol Med. 1997;23(1):8–18. doi: 10.1016/S0891-5849(96)00547-3
  • Nagano Y, Matsui H, Muramatsu M, et al. Rebamipide significantly inhibits indomethacin-induced mitochondrial damage, lipid peroxidation, and apoptosis in gastric epithelial RGM-1 cells. Dig Dis Sci. 2005;50(1):S76–S83. doi: 10.1007/s10620-005-2810-7
  • Knockaert L, Descatoire V, Vadrot N, et al. Mitochondrial CYP2E1 is sufficient to mediate oxidative stress and cytotoxicity induced by ethanol and acetaminophen. Toxicol In Vitro. 2011;25(2):475–484. doi: 10.1016/j.tiv.2010.11.019
  • Yang L, Wu D, Wang X, et al. Depletion of cytosolic or mitochondrial thioredoxin increases CYP2E1-induced oxidative stress via an ASK-1–JNK1 pathway in HepG2 cells. Free Radic Biol Med. 2011;51(1):185–196. doi: 10.1016/j.freeradbiomed.2011.04.030
  • Hua H, Zhang Z, Qian Y, et al. Inhibition of the mitochondrial complex-1 protects against carbon tetrachloride-induced acute liver injury. Biomed Pharmacother. 2019;115:108948. doi: 10.1016/j.biopha.2019.108948
  • Dornas W, Schuppan D. Mitochondrial oxidative injury: a key player in nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol. 2020;319(3):G400–G411. doi: 10.1152/ajpgi.00121.2020
  • Aithal GP, Ramsay L, Daly AK, et al. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity. Hepatology. 2004;39(5):1430–1440. doi: 10.1002/hep.20205
  • Shirato T, Homma T, Lee J, et al. Oxidative stress caused by a SOD1 deficiency ameliorates thioacetamide-triggered cell death via CYP2E1 inhibition but stimulates liver steatosis. Arch Toxicol. 2017;91(3):1319–1333. doi: 10.1007/s00204-016-1785-9
  • Świacka K, Michnowska A, Maculewicz J, et al. Toxic effects of NSAIDs in non-target species: a review from the perspective of the aquatic environment. Environ Pollut. 2021;273:115891. doi: 10.1016/j.envpol.2020.115891
  • Du J, Mei CF, Ying GG, et al. Toxicity thresholds for diclofenac, acetaminophen and ibuprofen in the water flea daphnia magna. Bull Environ Contam Toxicol. 2016;97(1):84–90. doi: 10.1007/s00128-016-1806-7
  • Huynh NC, Nguyen TTT, Nguyen DTC, et al. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): a review. Sci Total Environ. 2023;898:165317. doi: 10.1016/j.scitotenv.2023.165317
  • Distefano GG, Zangrando R, Basso M, et al. Assessing the exposure to human and veterinary pharmaceuticals in waterbirds: the use of feathers for monitoring antidepressants and nonsteroidal anti-inflammatory drugs. Sci Total Environ. 2022;821:153473. doi: 10.1016/j.scitotenv.2022.153473
  • Galligan TH, Green RE, Wolter K, et al. The non-steroidal anti-inflammatory drug nimesulide kills gyps vultures at concentrations found in the muscle of treated cattle. Sci Total Environ. 2022;807(2):150788. doi: 10.1016/j.scitotenv.2021.150788
  • Fatima S, Asif N, Ahmad R, et al. Toxicity of NSAID drug (paracetamol) to nontarget organism-nostoc Muscorum. Environ Sci Pollut Res Int. 2020;27:35208–35216. doi: 10.1007/s11356-020-09802-0
  • Park WJ, Kim SY, Kim YR, et al. Bortezomib alleviates drug-induced liver injury by regulating CYP2E1 gene transcription. Int J Mol Med. 2016;37(3):613–622. doi: 10.3892/ijmm.2016.2461
  • Ghosh R, Alajbegovic A, Gomes AV. NSAIDs and cardiovascular diseases: role of reactive oxygen species. Oxid Med Cell Longev. 2015;2015:536962. doi: 10.1155/2015/536962
  • Wallace JL, Vergnolle N, Muscará MN, et al. Enhanced anti-inflammatory effects of a nitric oxide-releasing derivative of mesalamine in rats. Gastroenterology. 1999;117(3):557–566. doi: 10.1016/S0016-5085(99)70448-8
  • Fiorucci S, Antonelli E. NO-NSAIDs: from inflammatory mediators to clinical readouts. Inflamm Allergy Drug Targets. 2006;5(2):121–131. doi: 10.2174/187152806776383161
  • Keeble JE, Moore PK. Pharmacology and potential therapeutic applications of nitric oxide-releasing non-steroidal anti-inflammatory and related nitric oxide-donating drugs. Br J Pharmacol. 2002;137(3):295–310. doi: 10.1038/sj.bjp.0704876
  • Thatcher GRJ, Nicolescu AC, Bennett BM, et al. Nitrates and NO release: contemporary aspects in biological and medicinal chemistry. Free Radic Biol Med. 2004;37(8):1122–1143. doi: 10.1016/j.freeradbiomed.2004.06.013
  • Kim YM, de Vera ME, Watkins SC, et al. Nitric oxide protects cultured rat hepatocytes from tumor necrosis factor-α-induced apoptosis by inducing heat shock protein 70 expression. J Biol Chem. 1997;272(2):1402–1411. doi: 10.1074/jbc.272.2.1402
  • Scolletta S, Biagioli B. Energetic myocardial metabolism and oxidative stress: let’s make them our friends in the fight against heart failure. Biomed Pharmacother. 2010;64(3):203–207. doi: 10.1016/j.biopha.2009.10.002
  • Hofmann J, Otarashvili G, Meszaros A, et al. Restoring mitochondrial function while avoiding redox stress: the key to preventing ischemia/reperfusion injury in machine perfused liver grafts? Int J Mol Sci. 2020;21(9):3132. doi: 10.3390/ijms21093132
  • Lichtenberger LM, Wang ZM, Romero JJ, et al. Non-steroidal anti-inflammatory drugs (NSAIDs) associate with zwitterionic phospholipids: insight into the mechanism and reversal of NSAID-induced gastrointestinal injury. Nat Med. 1995;1(2):154–158. doi: 10.1038/nm0295-154
  • Mezzelani M, Gorbi S, Fattorini D, et al. Transcriptional and cellular effects of non-steroidal anti-inflammatory drugs (NSAIDs) in experimentally exposed mussels, Mytilus galloprovincialis. Aquat Toxicol. 2016;180:306–319. doi: 10.1016/j.aquatox.2016.10.006
  • Rangasamy B, Hemalatha D, Shobana C, et al. Developmental toxicity and biological responses of zebrafish (Danio rerio) exposed to anti-inflammatory drug ketoprofen. Chemosphere. 2018;213:423–433. doi: 10.1016/j.chemosphere.2018.09.013
  • Dibra HK, Brown JE, Hooley P, et al. Aspirin and alterations in DNA repair proteins in the SW480 colorectal cancer cell line. Oncol Rep. 2010;24(1):37–46. doi: 10.3892/or_00000826
  • Jeong JB, Choi J, Baek SJ, et al. Reactive oxygen species mediate tolfenamic acid-induced apoptosis in human colorectal cancer cells. Arch Biochem Biophys. 2013;537(2):168–175. doi: 10.1016/j.abb.2013.07.016
  • Thiéfin G, Beaugerie L. Toxic effects of nonsteroidal antiinflammatory drugs on the small bowel, colon, and rectum. Joint Bone Spine. 2005;72(4):286–294. doi: 10.1016/j.jbspin.2004.10.004
  • Brunelli C, Amici C, Angelini M, et al. The non-steroidal anti-inflammatory drug indomethacin activates the eIf2α kinase PKR, causing a translational block in human colorectal cancer cells. Biochem J. 2012;443(2):379–386. doi: 10.1042/BJ20111236
  • Tinsley HN, Gary BD, Thaiparambil J, et al. Colon tumor cell growth-inhibitory activity of sulindac sulfide and other nonsteroidal anti-inflammatory drugs is associated with phosphodiesterase 5 inhibition. Cancer Prev Res (Phila). 2010;3(10):1303–1313. doi: 10.1158/1940-6207.CAPR-10-0030
  • Yang HY, Lee TH. Antioxidant enzymes as redox-based biomarkers: a brief review. BMB Rep. 2015;48(4):200–208. doi: 10.5483/BMBRep.2015.48.4.274
  • Shi J, Sun B, Shi W, et al. Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumor Biol. 2015;36(2):655–662. doi: 10.1007/s13277-014-2644-z
  • Rej R. Aminotransferases in disease. Clin Lab Med. 1989;9(4):667–687. doi: 10.1016/S0272-2712(18)30598-5
  • Chen C, Liu X, Qi S, et al. Hepatoprotective effect of Phellinus linteus mycelia polysaccharide (PL-N1) against acetaminophen-induced liver injury in mouse. Int J Biol Macromol. 2020;154:1276–1284. doi: 10.1016/j.ijbiomac.2019.11.002
  • Mohamed HRH, Hamad SR. Nullification of aspirin induced gastrotoxicity and hepatotoxicity by prior administration of wheat germ oil in Mus musculus: histopathological, ultrastructural and molecular studies. Cell Mol Biol (Noisy-le-Grand). 2017;63(8):120–130. doi: 10.14715/cmb/2017.63.8.25
  • George MY, Esmat A, Tadros MG, et al. In vivo cellular and molecular gastroprotective mechanisms of chrysin; emphasis on oxidative stress, inflammation and angiogenesis. Eur J Pharmacol. 2018;818:486–498. doi: 10.1016/j.ejphar.2017.11.008
  • Izzo AA, Sautebin L, Borrelli F, et al. The role of nitric oxide in aloe-induced diarrhoea in the rat. Eur J Pharmacol. 1999;368(1):43–48. doi: 10.1016/S0014-2999(99)00007-2
  • Zhao LP, Mei Q, Hu YM, et al. Role of nitric oxide in rats with acute liver injury induced by diclofenac. Chin J Pharmacol Toxicol. 2013;27(5):836–842. doi: 10.3867/j.issn.1000-3002.2013.05.012
  • Song Y, Chai T, Yin Z, et al. Stereoselective effects of ibuprofen in adult zebrafish (Danio rerio) using UPLC-TOF/MS-based metabolomics. Environ Pollut. 2018;241:730–739. doi: 10.1016/j.envpol.2018.06.009
  • Yuan N, Ding J, Wu J, et al. A multibiomarker approach to assess the ecotoxicological effects of diclofenac on Asian clam Corbicula fluminea (O. F. Müller, 1774). Environ Sci Pollut Res. 2023;30:88598–88611. doi: 10.1007/s11356-023-28702-7
  • Slomiany BL, Piotrowski J, Slomiany A. Induction of tumor necrosis factor-α and apoptosis in gastric mucosal injury by indomethacin: effect of omeprazole and ebrotidine. Scand J Gastroenterol. 1997;32(7):638–642. doi: 10.3109/00365529708996511
  • Fiorucci S, Antonelli E, Santucci L, et al. Gastrointestinal safety of nitric oxide-derived aspirin is related to inhibition of ICE-like cysteine proteases in rats. Gastroenterology. 1999;116(5):1089–1106. doi: 10.1016/S0016-5085(99)70012-0
  • Hao CM, Kömhoff M, Guan Y, et al. Selective targeting of cyclooxygenase-2 reveals its role in renal medullary interstitial cell survival. Am J Physiol. 1999;277(3):F352–F359. doi: 10.1152/ajprenal.1999.277.3.F352
  • Yin H, Xu H, Zhao Y, et al. Cyclooxygenase-independent effects of aspirin on HT-29 human colon cancer cells, revealed by oligonucleotide microarrays. Biotechnol Lett. 2006;28(16):1263–1270. doi: 10.1007/s10529-006-9084-9
  • Bhatt AP, Gunasekara DB, Speer J, et al. Nonsteroidal anti-inflammatory drug-induced leaky gut modeled using polarized monolayers of primary human intestinal epithelial cells. ACS Infect Dis. 2018;4(1):46–52. doi: 10.1021/acsinfecdis.7b00139
  • Higuchi Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem Pharmacol. 2003;66(8):1527–1535. doi: 10.1016/S0006-2952(03)00508-2
  • Katsumata K, Sumi T, Tomioka H, et al. Induction of apoptosis by p53, bax, bcl-2, and p21 expressed in colorectal cancer. Int J Clin Oncol. 2003;8(6):352–356. doi: 10.1007/s10147-003-0352-6
  • Godefroy N, Bouleau S, Gruel G, et al. Transcriptional repression by p53 promotes a bcl-2-insensitive and mitochondria-independent pathway of apoptosis. Nucleic Acids Res. 2004;32(15):4480–4490. doi: 10.1093/nar/gkh773
  • Tomisato W, Tsutsumi S, Rokutan K, et al. NSAIDs induce both necrosis and apoptosis in guinea pig gastric mucosal cells in primary culture. Am J Physiol Gastrointest Liver Physiol. 2001;281(4):G1092–G1100. doi: 10.1152/ajpgi.2001.281.4.G1092
  • Kusuhara H, Matsuyuki H, Matsuura M, et al. Induction of apoptotic DNA fragmentation by nonsteroidal anti-inflammatory drugs in cultured rat gastric mucosal cells. Eur J Pharmacol. 1998;360(2–3):273–280. doi: 10.1016/S0014-2999(98)00679-7
  • Menzel JE, Kolarz G. Modulation of nitric oxide synthase activity by ibuprofen. Inflammation. 1997;21(4):451–461. doi: 10.1023/A:1027374605731
  • Kim YM, Bombeck CA, Billiar TR. Nitric oxide as a bifunctional regulator of apoptosis. Circ Res. 1999;84(3):253–256. doi: 10.1161/01.RES.84.3.253
  • Martín MJ, Jiménez MD, Motilva V. New issues about nitric oxide and its effects on the gastrointestinal tract. Curr Pharm Des. 2001;7(10):881–908. doi: 10.2174/1381612013397645
  • Albina JE, Cui S, Mateo RB, et al. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol. 1993;150(11):5080–5085. doi: 10.4049/jimmunol.150.11.5080
  • Jung B, Barbier V, Brickner H, et al. Mechanisms of sulindac-induced apoptosis and cell cycle arrest. Cancer Lett. 2005;219(1):15–25. doi: 10.1016/j.canlet.2004.06.015
  • McDaniel ML, Corbett JA, Kwon G, et al. A role for nitric oxide and other inflammatory mediators in cytokine-induced pancreatic β-cell dysfunction and destruction. In: Soria B, editor. Physiology and pathophysiology of the islets of Langerhans. Advances in experimental medicine and biology. Vol. 426. Boston (MA): Springer Nature; 1997. p. 313–319. doi: 10.1007/978-1-4899-1819-2_41
  • Weaver JR, Holman TR, Imai Y, et al. Integration of pro-inflammatory cytokines, 12-lipoxygenase and NOX-1 in pancreatic islet beta cell dysfunction. Mol Cell Endocrinol. 2012;358(1):88–95. doi: 10.1016/j.mce.2012.03.004
  • Ramesh G, Meisner OC, Philipp MT. Anti-inflammatory effects of dexamethasone and meloxicam on Borrelia burgdorferi-induced inflammation in neuronal cultures of dorsal root ganglia and myelinating cells of the peripheral nervous system. J Neuroinflammation. 2015;12(1):240. doi: 10.1186/s12974-015-0461-y
  • Westerink RHS. Modulation of cell viability, oxidative stress, calcium homeostasis, and voltage-and ligand-gated ion channels as common mechanisms of action of (mixtures of) non-dioxin-like polychlorinated biphenyls and polybrominated diphenyl ethers. Environ Sci Pollut Res. 2014;21(10):6373–6383. doi: 10.1007/s11356-013-1759-x
  • Villalobos C, Sobradillo D, Hernández-Morales M, et al. Remodeling of calcium entry pathways in cancer. In: Rosado J, editor. Calcium entry pathways in non-excitable cells. Advances in experimental medicine and biology. Vol. 898. Cham: Springer Nature; 2016. p. 449–466. doi: 10.1007/978-3-319-26974-0_19
  • Çiğ B, Nazıroğlu M. Investigation of the effects of distance from sources on apoptosis, oxidative stress and cytosolic calcium accumulation via TRPV1 channels induced by mobile phones and wi-fi in breast cancer cells. Biochim Biophys Acta. 2015;1848(10):2756–2765. doi: 10.1016/j.bbamem.2015.02.013
  • Al-Nasser IA. Ibuprofen-induced liver mitochondrial permeability transition. Toxicol Lett. 2000;111(3):213–218. doi: 10.1016/S0378-4274(99)00180-0
  • Gupta RK, Patel AK, Shah N, et al. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev. 2014;15(11):4405–4409. doi: 10.7314/apjcp.2014.15.11.4405
  • Hermann A, Sitdikova GF, Weiger TM. Oxidative stress and maxi calcium-activated potassium (BK) channels. Biomolecules. 2015;5(3):1870–1911. doi: 10.3390/biom5031870
  • Muñoz E, Valero RA, Quintana A, et al. Nonsteroidal anti-inflammatory drugs inhibit vascular smooth muscle cell proliferation by enabling the Ca2+-dependent inactivation of calcium release-activated calcium/orai channels normally prevented by mitochondria. J Biol Chem. 2011;286(18):16186–16196. doi: 10.1074/jbc.M110.198952
  • Dvořáková Březinová T, Vymazal J, Koželuh M, et al. Occurrence and removal of ibuprofen and its metabolites in full-scale constructed wetlands treating municipal wastewater. Ecol Eng. 2018;120:1–5. doi: 10.1016/j.ecoleng.2018.05.020
  • Patel BK, Valentova J, Hutt AJ. Chromatographic separation and enantiomeric resolution of flurbiprofen and its major metabolites. Chromatographia. 2002;55(3–4):135–142. doi: 10.1007/BF02492133
  • Zaugg S, Zhang X, Sweedler J, et al. Determination of salicylate, gentisic acid and salicyluric acid in human urine by capillary electrophoresis with laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl. 2001;752(1):17–31. doi: 10.1016/S0378-4347(00)00507-7
  • Herrgesell JD. Aspirin poisoning in the cat. J Am Vet Med Assoc. 1967;151(4):452–455. PMID: 6052583.
  • Wong KP. Bilirubin glucosyl- and glucuronyltransferases: a comparative study and the effects of drugs. Biochem Pharmacol. 1972;21(10):1485–1491. doi: 10.1016/0006-2952(72)90373-5
  • Aracagök YD, Göker H, Cihangir N. Biodegradation of micropollutant naproxen with a selected fungal strain and identification of metabolites. Z Naturforsch C J Biosci. 2017;72(5–6):173–179. doi: 10.1515/znc-2016-0162
  • Čakrt M, Hercegová A, Leško J, et al. Isotachophoretic determination of naproxen in the presence of its metabolite in human serum. J Chromatogr A. 2001;916(1–2):207–214. doi: 10.1016/S0021-9673(00)01071-2
  • Aresta A, Carbonara T, Palmisano F, et al. Profiling urinary metabolites of naproxen by liquid chromatography-electrospray mass spectrometry. J Pharm Biomed Anal. 2006;41(4):1312–1316. doi: 10.1016/j.jpba.2006.02.041
  • Zhang X, Xie Z, Chen X, et al. Herb-drug interaction in the protective effect of Alpinia officinarum against gastric injury induced by indomethacin based on pharmacokinetic, tissue distribution and excretion studies in rats. J Pharm Anal. 2021;11(2):200–209. doi: 10.1016/j.jpha.2020.05.009
  • Mancy A, Antignac M, Minoletti C, et al. Diclofenac and its derivatives as tools for studying human cytochromes P450 active sites: particular efficiency and regioselectivity of P450 2Cs. Biochemistry. 1999;38(43):14264–14270. doi: 10.1021/bi991195u
  • Murshid S, Dhakshinamoorthy GP. Biodegradation of sodium diclofenac and mefenamic acid: kinetic studies, identification of metabolites and analysis of enzyme activity. Int Biodeterior Biodegrad. 2019;144:104756. doi: 10.1016/j.ibiod.2019.104756
  • Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol. 1998;45(6):525–538. doi: 10.1046/j.1365-2125.1998.00721.x
  • Shrestha R, Cho PJ, Paudel S, et al. Exploring the metabolism of loxoprofen in liver microsomes: the role of cytochrome P450 and UDP-glucuronosyltransferase in its biotransformation. Pharmaceutics. 2018;10(3):112. doi: 10.3390/pharmaceutics10030112
  • Ogiso T, Fukami T, Zhongzhe C, et al. Human superoxide dismutase 1 attenuates quinoneimine metabolite formation from mefenamic acid. Toxicology. 2021;448:152648. doi: 10.1016/j.tox.2020.152648
  • Schwarz UI. Clinical relevance of genetic polymorphisms in the human CYP2C9 gene. Eur J Clin Invest. 2003;33(2):23–30. doi: 10.1046/j.1365-2362.33.s2.6.x
  • Zi J, Liu D, Ma P, et al. Effects of CYP2C9*3 and CYP2C9*13 on diclofenac metabolism and inhibition-based drug-drug interactions. Drug Metab Pharmacokinet. 2010;25(4):343–350. doi: 10.2133/dmpk.DMPK-10-RG-009
  • Neunzig I, Göhring A, Drăgan CA, et al. Production and NMR analysis of the human ibuprofen metabolite 3-hydroxyibuprofen. J Biotechnol. 2012;157(3):417–420. doi: 10.1016/j.jbiotec.2011.12.016
  • López-Rodríguez R, Novalbos J, Gallego-Sandín S, et al. Influence of CYP2C8 and CYP2C9 polymorphisms on pharmacokinetic and pharmacodynamic parameters of racemic and enantiomeric forms of ibuprofen in healthy volunteers. Pharmacol Res. 2008;58(1):77–84. doi: 10.1016/j.phrs.2008.07.004
  • Lee CR, Pieper JA, Frye RF, et al. Differences in flurbiprofen pharmacokinetics between CYP2C9*1/*1, *1/*2, and *1/*3 genotypes. Eur J Clin Pharmacol. 2003;58(12):791–794. doi: 10.1007/s00228-003-0574-6
  • Selvaraj S, Oh JH, Borlak J. An adverse outcome pathway for immune-mediated and allergic hepatitis: a case study with the NSAID diclofenac. Arch Toxicol. 2020;94(8):2733–2748. doi: 10.1007/s00204-020-02767-6
  • Morgan AGM, Babu D, Michail K, et al. An evaluation of myeloperoxidase-mediated bio-activation of NSAIDs in promyelocytic leukemia (HL-60) cells for potential cytotoxic selectivity. Toxicol Lett. 2017;280:48–56. doi: 10.1016/j.toxlet.2017.07.894
  • Oikawa S, Kobayashi H, Tada-Oikawa S, et al. Damage to cellular and isolated DNA induced by a metabolite of aspirin. Mutat Res. 2009;661(1–2):93–100. doi: 10.1016/j.mrfmmm.2008.11.016
  • Ehlhardt WJ. Metabolism and disposition of the anticancer agent sulofenur in mouse, rat, monkey, and human. Drug Metab Dispos. 1991;19(2):370–375. PMID: 1676639.
  • Huttunen KM. Identification of human, rat and mouse hydrolyzing enzymes bioconverting amino acid ester prodrug of ketoprofen. Bioorg Chem. 2018;81:494–503. doi: 10.1016/j.bioorg.2018.09.018
  • Risdall PC, Adams SS, Crampton EL, et al. The disposition and metabolism of flurbiprofen in several species including man. Xenobiotica. 1978;8(11):691–703. doi: 10.3109/00498257809069581
  • Harada S, Nakagawa T, Yokoe S, et al. Autophagy deficiency diminishes indomethacin-induced intestinal epithelial cell damage through activation of the ERK/Nrf2/HO-1 pathway. J Pharmacol Exp Ther. 2015;355(3):353–361. doi: 10.1124/jpet.115.226431
  • Xu Y, Duan C, Kuang Z, et al. Pseudomonas aeruginosa pyocyanin activates NRF2-ARE-mediated transcriptional response via the ROS-EGFR-PI3K-AKT/MEK-ERK MAP kinase signaling in pulmonary epithelial cells. PLOS ONE. 2013;8(8):e72528. doi: 10.1371/journal.pone.0072528
  • Cullen D, Bardhan KD, Eisner M, et al. Primary gastroduodenal prophylaxis with omeprazole for non-steroidal anti-inflammatory drug users. Aliment Pharmacol Ther. 1998;12(2):135–140. doi: 10.1046/j.1365-2036.1998.00288.x
  • Gigante A, Tagarro I. Non-steroidal anti-inflammatory drugs and gastroprotection with proton pump inhibitors: a focus on ketoprofen/omeprazole. Clin Drug Investig. 2012;32(4):221–233. doi: 10.2165/11596670-000000000-00000
  • Goldstein JL, Pb M Jr, Schlesinger PK, et al. Intragastric acid control in non-steroidal anti-inflammatory drug users: comparison of esomeprazole, lansoprazole and pantoprazole. Aliment Pharmacol Ther. 2006;23(8):1189–1196. doi: 10.1111/j.1365-2036.2006.02867.x
  • Jankowski JAZ, de Caestecker J, Love SB, et al. Esomeprazole and aspirin in Barrett’s oesophagus (AspECT): a randomised factorial trial. Lancet. 2018;392(10145):400–408. doi: 10.1016/S0140-6736(18)31388-6
  • Peng H, Zhang S, Zhang Z, et al. Nitric oxide inhibits endothelial cell apoptosis by inhibiting cysteine-dependent SOD1 monomerization. FEBS Open Bio. 2022;12(2):538–548. doi: 10.1002/2211-5463.13362
  • Katusic ZS, d’Uscio Lv, He T. Emerging roles of endothelial nitric oxide in preservation of cognitive health. Stroke. 2023;54(3):686–696. doi: 10.1161/STROKEAHA.122.041444
  • Saavedra JE, Billiar TR, Williams DL, et al. Targeting nitric oxide (NO) delivery in vivo. Design of a liver-selective NO donor prodrug that blocks tumor necrosis factor-α-induced apoptosis and toxicity in the liver. J Med Chem. 1997;40(13):1947–1954. doi: 10.1021/jm9701031
  • Massoumi H, Kumar R, Chug MK, et al. Nitric oxide release and antibacterial efficacy analyses of S-nitroso-N-acetyl-penicillamine conjugated to titanium dioxide nanoparticles. ACS Appl Bio Mater. 2022;5(5):2285–2295. doi: 10.1021/acsabm.2c00131
  • Jeon YA, Chung SW, Kim SC, et al. Comprehensive assessment of antioxidant and anti-inflammatory properties of papaya extracts. Foods. 2022;11(20):3211. doi: 10.3390/foods11203211
  • Abouzed TK, Sadek KM, Ayoub MM, et al. Papaya extract upregulates the immune and antioxidants-related genes, and proteins expression in milk somatic cells of Friesian dairy cows. J Anim Physiol Anim Nutr. 2019;103(2):407–415. doi: 10.1111/jpn.13032
  • Nafiu AB, Rahman MT. Anti-inflammatory and antioxidant properties of unripe papaya extract in an excision wound model. Pharm Biol. 2015;53(5):662–671. doi: 10.3109/13880209.2014.936470
  • Oloyede HOB, Adaja MC, Ajiboye TO, et al. Anti-ulcerogenic activity of aqueous extract of Carica papaya seed on indomethacin-induced peptic ulcer in male albino rats. J Integr Med. 2015;13(2):105–114. doi: 10.1016/S2095-4964(15)60160-1
  • Arain MA, Mei Z, Hassan FU, et al. Lycopene: a natural antioxidant for prevention of heat-induced oxidative stress in poultry. Worlds Poult Sci J. 2018;74(1):89–100. doi: 10.1017/S0043933917001040
  • Qiao Y, Xu L, Tao X, et al. Protective effects of dioscin against fructose-induced renal damage via adjusting Sirt3-mediated oxidative stress, fibrosis, lipid metabolism and inflammation. Toxicol Lett. 2018;284:37–45. doi: 10.1016/j.toxlet.2017.11.031
  • Pérez-Torres I, Castrejón-Téllez V, Soto ME, et al. Oxidative stress, plant natural antioxidants, and obesity. Int J Mol Sci. 2021;22(4):1786. doi: 10.3390/ijms22041786
  • Wang Y, Zheng W, Shan Y, et al. Flurbiprofen inhibits androgen productions in rat immature leydig cells. Chem Res Toxicol. 2019;32(8):1504–1514. doi: 10.1021/acs.chemrestox.8b00404

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.