447
Views
0
CrossRef citations to date
0
Altmetric
Review

Screening tools to evaluate the neurotoxic potential of botanicals: building a strategy to assess safety

, , , , , , , , , , & show all
Pages 629-646 | Received 18 Apr 2024, Accepted 08 Jul 2024, Published online: 22 Jul 2024

References

  • Smith T, Resetar H, Morton C. US sales of herbal supplements increase by 9.7% in 2021. J Am Bot Counc. 2022:42–69. https://openurl.ebsco.com/EPDB%3Agcd%3A3%3A10824531/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A161226031&crl=c
  • Sorkin BC, Kuszak AJ, Bloss G, et al. Improving natural product research translation: from source to clinical trial. Faseb J. 2020;34(1):41–65. doi: 10.1096/fj.201902143R
  • Houriet J, Vidar WS, Manwill PK, et al. How low can you go? Selecting intensity thresholds for untargeted metabolomics data preprocessing. Anal Chem. 2022;94(51):17964–17971. doi: 10.1021/acs.analchem.2c04088
  • Klaassen CD, Casarett LJ, Doull J, editors. Casarett and Doull’s toxicology: the basic science of poisons. 8th ed. NY: McGraw-Hill Education; 2013.
  • Programme international sur la sécurité des substances chimiques, editor. Neurotoxicity risk assessment for human health: principles and approaches. Geneva: World health organization; 2001.
  • Giampreti A, Lonati D, Locatelli C, et al. Acute neurotoxicity after yohimbine ingestion by a body builder. Clin Toxicol. 2009;47(8):827–829. doi: 10.1080/15563650903081601
  • Guo J, Zhang J, Liu Q, et al. Research progress on components and mechanisms of neurotoxicity induced by traditional Chinese medicine. J Appl Toxicol. 2023;43(3):338–349. doi: 10.1002/jat.4396
  • Höllerhage M, Rösler TW, Berjas M, et al. Neurotoxicity of dietary supplements from annonaceae species. Int J Toxicol. 2015;34(6):543–550. doi: 10.1177/1091581815602252
  • Lüde S, Vecchio S, Sinno-Tellier S, et al. Adverse effects of plant food supplements and plants consumed as food: results from the poisons centres-based PlantLIBRA study. Phytother Res. 2016;30(6):988–996. doi: 10.1002/ptr.5604
  • Palmer VS, Tshala-Katumbay DD, Spencer PS. Plants with neurotoxic potential in undernourished subjects. Rev Neurol (Paris). 2019;175(10):631–640. doi: 10.1016/j.neurol.2019.07.015
  • Mitchell CA, Dever JT, Gafner S, et al. The botanical safety consortium: a public-private partnership to enhance the botanical safety toolkit. Regul Toxicol Pharmacol. 2022;128:105090. doi: 10.1016/j.yrtph.2021.105090
  • Botanical safety consortium – a public-private partnership to improve botanical safety [Internet]. [cited 2024 May 30]. Available from: https://botanicalsafetyconsortium.org/
  • Behl M, Ryan K, Hsieh J-H, et al. Screening for developmental neurotoxicity at the national toxicology program: the future is here. Toxicological Sci. 2019;167(1):6–14. doi: 10.1093/toxsci/kfy278
  • Quiñonez-Silvero C, Hübner K, Herzog W. Development of the brain vasculature and the blood-brain barrier in zebrafish. Dev Biol. 2020;457(2):181–190. doi: 10.1016/j.ydbio.2019.03.005
  • Bauer B, Mally A, Liedtke D. Zebrafish embryos and larvae as alternative animal models for toxicity testing. IJMS. 2021;22(24):13417. doi: 10.3390/ijms222413417
  • Cabrita A, Medeiros AM, Pereira T, et al. Motor dysfunction in drosophila melanogaster as a biomarker for developmental neurotoxicity. iScience. 2022;25(7):104541. doi: 10.1016/j.isci.2022.104541
  • Rand MD. Drosophotoxicology: the growing potential for drosophila in neurotoxicology. Neurotoxicol Teratol. 2010;32:74–83. doi: 10.1016/j.ntt.2009.06.004
  • Wallace K, Strickland JD, Valdivia P, et al. A multiplexed assay for determination of neurotoxicant effects on spontaneous network activity and viability from microelectrode arrays. Neurotoxicology. 2015;49:79–85. doi: 10.1016/j.neuro.2015.05.007
  • Johnstone AFM, Gross GW, Weiss DG, et al. Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century. Neurotoxicology. 2010;31(4):331–350. doi: 10.1016/j.neuro.2010.04.001
  • Robinette BL, Harrill JA, Mundy WR, et al. In vitro assessment of developmental neurotoxicity: use of microelectrode arrays to measure functional changes in neuronal network ontogeny. Front Neuroeng. 2011;4:1. doi: 10.3389/fneng.2011.00001
  • McConnell ER, McClain MA, Ross J, et al. Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set. Neurotoxicology. 2012;33(5):1048–1057. doi: 10.1016/j.neuro.2012.05.001
  • Spira ME, Hai A. Multi-electrode array technologies for neuroscience and cardiology. Nat Nanotech. 2013;8(2):83–94. doi: 10.1038/nnano.2012.265
  • De Groot MWGDM, Westerink RHS, Dingemans MML. Don’t judge a neuron only by its cover: neuronal function in in vitro developmental neurotoxicity testing. Toxicological Sci. 2013;132:1–7. doi: 10.1093/toxsci/kfs269
  • Hogberg HT, Sobanski T, Novellino A, et al. Application of micro-electrode arrays (MEAs) as an emerging technology for developmental neurotoxicity: evaluation of domoic acid-induced effects in primary cultures of rat cortical neurons. Neurotoxicology. 2011;32(1):158–168. doi: 10.1016/j.neuro.2010.10.007
  • Valdivia P, Martin M, LeFew WR, et al. Multi-well microelectrode array recordings detect neuroactivity of ToxCast compounds. Neurotoxicology. 2014;44:204–217. doi: 10.1016/j.neuro.2014.06.012
  • Cotterill E, Hall D, Wallace K, et al. Characterization of early cortical neural network development in multi-well microelectrode array plates. SLAS Discov. 2016;21(5):510–519. doi: 10.1177/1087057116640520
  • Mack CM, Lin BJ, Turner JD, et al. Burst and principal components analyses of MEA data for 16 chemicals describe at least three effects classes. Neurotoxicology. 2014;40:75–85. doi: 10.1016/j.neuro.2013.11.008
  • Dingemans MML, Schütte MG, Wiersma DMM, et al. Chronic 14-day exposure to insecticides or methylmercury modulates neuronal activity in primary rat cortical cultures. Neurotoxicology. 2016;57:194–202. doi: 10.1016/j.neuro.2016.10.002
  • Richardson JR, Fitsanakis V, Westerink RHS, et al. Neurotoxicity of pesticides. Acta Neuropathol. 2019;138(3):343–362. doi: 10.1007/s00401-019-02033-9
  • Kasteel EEJ, Westerink RHS. Comparison of the acute inhibitory effects of tetrodotoxin (TTX) in rat and human neuronal networks for risk assessment purposes. Toxicol Lett. 2017;270:12–16. doi: 10.1016/j.toxlet.2017.02.014
  • Tukker AM, Wijnolts FMJ, de Groot A, et al. Applicability of hiPSC-derived neuronal cocultures and rodent primary cortical cultures for in vitro seizure liability assessment. Toxicological Sci. 2020;178(1):71–87. doi: 10.1093/toxsci/kfaa136
  • Zwartsen A, Hondebrink L, Westerink RH. Neurotoxicity screening of new psychoactive substances (NPS): effects on neuronal activity in rat cortical cultures using microelectrode arrays (MEA). Neurotoxicology. 2018;66:87–97. doi: 10.1016/j.neuro.2018.03.007
  • Westerfield M. The zebrafish book. A guide for the laboratory use of zebrafish (danio rerio). 4th ed. Eugene (OR): University of Oregon Press; 2000.
  • Kanungo J, Cuevas E, Ali S, et al. Zebrafish model in drug safety assessment. CPD. 2014;20(34):5416–5429. doi: 10.2174/1381612820666140205145658
  • Ablain J, Zon LI. Fish and men: using zebrafish to fight human diseases. Trends Cell Biol. 2013;23(12):584–586. doi: 10.1016/j.tcb.2013.09.009
  • Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498–503. doi: 10.1038/nature12111
  • Nawaji T, Yamashita N, Umeda H, et al. Cytochrome P450 expression and chemical metabolic activity before full liver development in zebrafish. Pharmaceuticals. 2020;13(12):456. doi: 10.3390/ph13120456
  • d’Amora M, Giordani S. The utility of zebrafish as a model for screening developmental neurotoxicity. Front Neurosci. 2018;12:976. doi: 10.3389/fnins.2018.00976
  • Horzmann KA, Freeman JL. Making waves: new developments in toxicology with the zebrafish. Toxicological Sci. 2018;163(1):5–12. doi: 10.1093/toxsci/kfy044
  • Kalueff AV, editor. The rights and wrongs of zebrafish: behavioral phenotyping of zebrafish [internet]. Cham: Springer International Publishing; 2017 [cited 2023 Oct 19]. doi: 10.1007/978-3-319-33774-6
  • Reif DM, Truong L, Mandrell D, et al. High-throughput characterization of chemical-associated embryonic behavioral changes predicts teratogenic outcomes. Arch Toxicol. 2016;90(6):1459–1470. doi: 10.1007/s00204-015-1554-1
  • Kalueff AV, Gebhardt M, Stewart AM, et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish. 2013;10(1):70–86. doi: 10.1089/zeb.2012.0861
  • MacPhail RC, Brooks J, Hunter DL, et al. Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology. 2009;30(1):52–58. doi: 10.1016/j.neuro.2008.09.011
  • López-Schier H. Neuroplasticity in the acoustic startle reflex in larval zebrafish. Curr Opin Neurobiol. 2019;54:134–139. doi: 10.1016/j.conb.2018.10.004
  • Burgess HA, Granato M. Sensorimotor gating in larval zebrafish. J Neurosci. 2007;27(18):4984–4994. doi: 10.1523/JNEUROSCI.0615-07.2007
  • Zhang S, Li F, Zhou T, et al. Caenorhabditis elegans as a useful model for studying aging mutations. Front Endocrinol. 2020;11:554994. doi: 10.3389/fendo.2020.554994
  • Leung MCK, Williams PL, Benedetto A, et al. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sci. 2008;106(1):5–28. doi: 10.1093/toxsci/kfn121
  • Sammi SR, Jameson LE, Conrow KD, et al. Caenorhabditis elegans neurotoxicity testing: novel applications in the adverse outcome pathway framework. Front Toxicol. 2022;4:826488. doi: 10.3389/ftox.2022.826488
  • Martins AC, Gubert P, Li J, et al. Caenorhabditis elegans as a model to study manganese-induced neurotoxicity. Biomolecules. 2022;12(10):1396. doi: 10.3390/biom12101396
  • Hart AB. WormBook: the online review of C elegans biology [internet] [internet]. WormBook. 2006 [cited 2023 Oct 19]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK19734/
  • Ruszkiewicz JA, Pinkas A, Miah MR, et al. C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol. 2018;354:126–135. doi: 10.1016/j.taap.2018.03.016
  • White JG, Southgate E, Thomson JN, et al. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986;314:1–340.
  • Barclay JW, Morgan A, Burgoyne RD. Neurotransmitter release mechanisms studied in Caenorhabditis elegans. Cell Calcium. 2012;52(3–4):289–295. doi: 10.1016/j.ceca.2012.03.005
  • Brownlee DJA, Fairweather I. Exploring the neurotransmitter labyrinth in nematodes. Trends Neurosci. 1999;22(1):16–24. doi: 10.1016/S0166-2236(98)01281-8
  • Bargmann CI. Neurobiology of the Caenorhabditis elegans genome. Science. 1998;282(5396):2028–2033. doi: 10.1126/science.282.5396.2028
  • Goodman MB, Hall DH, Avery L, et al. Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron. 1998;20(4):763–772. doi: 10.1016/S0896-6273(00)81014-4
  • Waidyanatha S, Collins BJ, Cristy T, et al. Advancing botanical safety: a strategy for selecting, sourcing, and characterizing botanicals for developing toxicological tools. Food Chem Toxicol. 2024;186:114537. doi: 10.1016/j.fct.2024.114537
  • Li S, Yu L, Shi Q, et al. An insight into current advances on pharmacology, pharmacokinetics, toxicity and detoxification of aconitine. Biomed Pharmacother. 2022;151:113115. doi: 10.1016/j.biopha.2022.113115
  • Gao X, Hu J, Zhang X, et al. Research progress of aconitine toxicity and forensic analysis of aconitine poisoning. Forensic Sci Res. 2020;5(1):25–31. doi: 10.1080/20961790.2018.1452346
  • Pullela R, Young L, Gallagher B, et al. A case of fatal aconitine poisoning by monkshood ingestion. J Forensic Sci. 2008;53(2):491–494. doi: 10.1111/j.1556-4029.2007.00647.x
  • Strzelecki A, Pichon N, Gaulier JM, et al. Acute toxic herbal intake in a suicide attempt and fatal refractory ventricular arrhythmia. Basic Clin Pharmacol Toxicol. 2010;107(2):698–699. doi: 10.1111/j.1742-7843.2010.00566.x
  • Feldkamp A, Köster B, Weber HP. [Fatal poisoning caused by aconite monk’s hood (Aconitum napellus)]. Monatsschr Kinderheilkd. 1991;139(6):366–367.
  • Povšnar M, Koželj G, Kreft S, et al. Rare tradition of the folk medicinal use of Aconitum spp. is kept alive in Solčavsko, Slovenia. J Ethnobiol Ethnomed. 2017;13(1):45. doi: 10.1186/s13002-017-0171-x
  • Zhao X, Ni S, Liang N, et al. Clinical application of Aconitum carmichaelii Debx. (Fu Zi in Chinese) by traditional Chinese medicine physicians--A cross-sectional questionnaire survey in Beijing. J Tradit Chin Med Sci. 2021;8(4):302–308. doi: 10.1016/j.jtcms.2021.10.008
  • Sun W, Yan B, Wang R, et al. In vivo acute toxicity of detoxified Fuzi (lateral root of Aconitum carmichaeli) after a traditional detoxification process. EXCLI J. 2018 [cited 2024 Feb 7];17:Doc889. [Internet]. Available from: https://www.excli.de/vol17/Huang_31082018_proof.pdf
  • Chung JY, Lee SJ, Lee HJ, et al. Aconitine neurotoxicity according to administration methods. JCM. 2021;10(10):2149. doi: 10.3390/jcm10102149
  • Lin C-C, Chan TYK, Deng J-F. Clinical features and management of herb-induced aconitine poisoning. Ann Emerg Med. 2004;43(5):574–579. doi: 10.1016/j.annemergmed.2003.10.046
  • Li T-F, Fan H, Wang Y-X. Aconitum-derived bulleyaconitine a exhibits antihypersensitivity through direct stimulating dynorphin a expression in spinal microglia. The J Pain. 2016;17(5):530–548. doi: 10.1016/j.jpain.2015.12.015
  • Wang S. Voltage-gated sodium channels as primary targets of diverse lipid-soluble neurotoxins. Cell Signal. 2003;15(2):151–159. doi: 10.1016/S0898-6568(02)00085-2
  • Chan TYK. Aconite poisoning. Clin Toxicol. 2009;47(4):279–285. doi: 10.1080/15563650902904407
  • Nyirimigabo E, Xu Y, Li Y, et al. A review on phytochemistry, pharmacology and toxicology studies of Aconitum. J Pharm and Pharmacol. 2014;67(1):1–19. doi: 10.1111/jphp.12310
  • Chen H, Wang F, Ni X, et al. Aconitine disrupts serotonin neurotransmission via 5‐hydroxytryptamine receptor in zebrafish embryo. J Appl Toxicol. 2021;41(3):483–492. doi: 10.1002/jat.4059
  • Zhou J, Peng C, Li Q, et al. Dopamine homeostasis imbalance and dopamine receptors-mediated AC/cAMP/PKA pathway activation are involved in aconitine-induced neurological impairment in zebrafish and SH-SY5Y cells. Front Pharmacol. 2022;13:837810. doi: 10.3389/fphar.2022.837810
  • Zhang Y, Chen S, Fan F, et al. Neurotoxicity mechanism of aconitine in HT22 cells studied by microfluidic chip-mass spectrometry. J Pharm Anal. 2023;13(1):88–98. doi: 10.1016/j.jpha.2022.11.007
  • Ameri A. The effects of aconitum alkaloids on the central nervous system. Prog Neurobiol. 1998;56(2):211–235. doi: 10.1016/S0301-0082(98)00037-9
  • Debelle FD, Vanherweghem J-L, Nortier JL. Aristolochic acid nephropathy: a worldwide problem. Kidney Int. 2008;74(2):158–169. doi: 10.1038/ki.2008.129
  • Grady D. Chinese herb is suspected in cancer. The New York Times [Internet]. 2000 Jun 8 [cited 2023 Oct 19]. Available from: https://www.nytimes.com/2000/06/08/us/chinese-herb-is-suspected-in-cancer.html
  • Shang X, You C, Li X, et al. Involvement of 5-HT2 serotonin receptors in cognitive defects induced by aristolochic acid I in mice. Toxicology. 2021;447:152624. doi: 10.1016/j.tox.2020.152624
  • Chen J, Kong A, Shelton D, et al. Early life stage transient aristolochic acid exposure induces behavioral hyperactivity but not nephrotoxicity in larval zebrafish. Aquat Toxicol. 2021;238:105916. doi: 10.1016/j.aquatox.2021.105916
  • Speers AB, Cabey KA, Soumyanath A, et al. Effects of Withania somnifera (Ashwagandha) on stress and the stress- related neuropsychiatric disorders anxiety, depression, and insomnia. CN. 2021;19(9):1468–1495. doi: 10.2174/1570159X19666210712151556
  • Lubarska M, Hałasiński P, Hryhorowicz S, et al. Liver dangers of herbal products: a case report of Ashwagandha-induced liver injury. Int J Environ Res Public Health. 2023;20(5):3921. doi: 10.3390/ijerph20053921
  • Siddiqui S, Ahmed N, Goswami M, et al. DNA damage by Withanone as a potential cause of liver toxicity observed for herbal products of Withania somnifera (Ashwagandha). Curr Res Toxicol. 2021;2:72–81. doi: 10.1016/j.crtox.2021.02.002
  • Durg S, Dhadde SB, Vandal R, et al. Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: a systematic review and meta-analysis. J Pharm and Pharmacol. 2015;67(7):879–899. doi: 10.1111/jphp.12398
  • Zahiruddin S, Basist P, Parveen A, et al. Ashwagandha in brain disorders: A review of recent developments. J Ethnopharmacol. 2020;257:112876. doi: 10.1016/j.jep.2020.112876
  • Asian Ginseng. U.S. National Center for Complementary and Integrative Health. [Internet]. [cited 2023 Oct 19]. Available from: https://www.nccih.nih.gov/health/asian-ginseng
  • Jin T-Y, Rong P-Q, Liang H-Y, et al. Clinical and preclinical systematic review of Panax ginseng C. A. Mey and its compounds for fatigue. Front Pharmacol. 2020;11:1031. doi: 10.3389/fphar.2020.01031
  • Zheng Q-L, Zhu H-Y, Xu X, et al. Korean red ginseng alleviate depressive disorder by improving astrocyte gap junction function. J Ethnopharmacol. 2021;281:114466. doi: 10.1016/j.jep.2021.114466
  • Petkov VD, Belcheva S, Petkov VV. Behavioral effects of Ginkgo biloba L. Panax ginseng C.A. Mey. and Gincosan®. Am J Chin Med. 2003;31(6):841–855. doi: 10.1142/S0192415X03001533
  • National Toxicology Program. Toxicology and carcinogenesis studies of ginseng (CAS No. 50647-08-0) in F344/N rats and B6C3F1 mice (gavage studies). Natl Toxicol Program Tech Rep Ser. 2011:1–149.
  • Kuo Y-H, Ikegami F, Lambein F. Neuroactive and other free amino acids in seed and young plants of panax ginseng. Phytochemistry. 2003;62(7):1087–1091. doi: 10.1016/S0031-9422(02)00658-1
  • Long Y, Ye Y, Xing Q. Studies on the neuroexcitotoxin β‐ N ‐oxalo‐L‐α, β‐diaminopropionic acid and its isomer α‐ N ‐oxalo‐L‐α, βdiaminopropionic acid from the root of Panax species. Int J Peptide and Protein Res. 1996;47(1–2):42–46. doi: 10.1111/j.1399-3011.1996.tb00808.x
  • National Toxicology Program (NTP). Botanical Safety Consortium – Chemical Analysis [Internet]. 2023 [cited 2024 Feb 7]. p. 500–007–001–000–003. Available from: https://cebs.niehs.nih.gov/cebs/paper/15717
  • Datta S, Mahdi F, Ali Z, et al. Toxins in botanical dietary supplements: blue cohosh components disrupt cellular respiration and mitochondrial membrane potential. J Nat Prod. 2014;77(1):111–117. doi: 10.1021/np400758t
  • Schep LJ, Slaughter RJ, Beasley DMG. Nicotinic plant poisoning. Clin Toxicol. 2009;47(8):771–781. doi: 10.1080/15563650903252186
  • Slater Y. Halogenated cytisine derivatives as agonists at human neuronal nicotinic acetylcholine receptor subtypes. Neuropharmacology. 2003;44(4):503–515. doi: 10.1016/S0028-3908(03)00025-X
  • Green BT, Lee ST, Panter KE, et al. Actions of piperidine alkaloid teratogens at fetal nicotinic acetylcholine receptors. Neurotoxicol Teratol. 2010;32(3):383–390. doi: 10.1016/j.ntt.2010.01.011
  • Wei X, Ruan W, Vrieling K. Current knowledge and perspectives of pyrrolizidine alkaloids in pharmacological applications: a mini-review. Molecules. 2021;26(7):1970. doi: 10.3390/molecules26071970
  • Schramm S, Köhler N, Rozhon W. Pyrrolizidine alkaloids: Biosynthesis, biological activities and occurrence in crop plants. Molecules. 2019;24:498. doi: 10.3390/molecules24030498
  • Verma V, Singh N, Jaggi AS. Sodium-hydrogen exchanger inhibitory potential of Malus domestica , Musa × paradisiaca , Daucus carota , and Symphytum officinale. J Basic Clin Physiol Pharmacol [Internet]. 2014 [cited 2023 Oct 19];25(1):99–108. Available from: https://www.degruyter.com/document/doi/10.1515/jbcpp-2013-0088/html
  • Chesler M. Regulation and modulation of pH in the brain. Physiol Rev. 2003;83(4):1183–1221. doi: 10.1152/physrev.00010.2003
  • Hwang S-M, Koo N-Y, Jin M, et al. Intracellular acidification is associated with changes in free cytosolic calcium and inhibition of action potentials in rat trigeminal ganglion. J Biol Chem. 2011;286(3):1719–1729. doi: 10.1074/jbc.M109.090951
  • Pavlov I, Kaila K, Kullmann DM, et al. Cortical inhibition, pH and cell excitability in epilepsy: what are optimal targets for antiepileptic interventions?: cortical inhibition, pH and cell excitability in epilepsy. J Physiol. 2013;591(4):765–774. doi: 10.1113/jphysiol.2012.237958
  • Uria-Avellanal C, Robertson NJ. Na+/H+ exchangers and intracellular ph in perinatal brain injury. Transl Stroke Res. 2014;5(1):79–98. doi: 10.1007/s12975-013-0322-x
  • LiverTox: Clinical and research Information on drug-induced liver injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012 [cited 2023 Oct 19]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK547852/
  • Ephedra. NCCIH. [Internet]. [cited 2023 Oct 19]. Available from: https://www.nccih.nih.gov/health/ephedra
  • Food, Drug Administration HHS. Final rule declaring dietary supplements containing ephedrine alkaloids adulterated because they present an unreasonable risk. Final rule Fed Regist. 2004;69:6787–6854.
  • Shekelle PG, Hardy ML, Morton SC, et al. Efficacy and safety of ephedra and ephedrine for weight loss and athletic performance: a meta-analysis. JAMA. 2003;289(12):1537–1545. doi: 10.1001/jama.289.12.1537
  • Office of Dietary Supplements - Ephedra and Ephedrine Alkaloids for Weight Loss and Athletic Performance [Internet]. [cited 2023 Nov 30]. Available from: https://ods.od.nih.gov/factsheets/EphedraandEphedrine-HealthProfessional/
  • Moawad FJ, Hartzell JD, Biega TJ, et al. Transient blindness due to posterior reversible encephalopathy syndrome following ephedra overdose. South Med J. 2006;99(5):511–514. doi: 10.1097/01.smj.0000215739.90211.3b
  • Vukovich MD, Schoorman R, Heilman C, et al. Caffeine–herbal ephedra combination increases resting energy expenditure, heart rate and blood pressure. Clin Exp Pharmacol Physiol. 2005;32(1–2):47–53. doi: 10.1111/j.1440-1681.2005.04152.x
  • Zheng F, Wei P, Huo H, et al. Neuroprotective effect of gui zhi (Ramulus Cinnamomi) on ma huang- (Herb Ephedra-) Induced toxicity in rats treated with a ma huang-gui zhi herb pair. Evidence-Based Complementary and Alternative Med. 2015;2015:1–9. doi: 10.1155/2015/913461
  • Niu B, Zheng F, Xu J. Protective effect of gui zhi (Ramulus Cinnamomi) on abnormal levels of four amino acid neurotransmitters by chronically ma huang (Herb Ephedra) intoxicated prefrontal cortex in rats treated with a ma huang-gui zhi herb pair. J Ethnopharmacol. 2020;249:112408. doi: 10.1016/j.jep.2019.112408
  • Dawson P, Moffatt JD. Cardiovascular toxicity of novel psychoactive drugs: Lessons from the past. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;39(2):244–252. doi: 10.1016/j.pnpbp.2012.05.003
  • Bowyer JF. An evaluation of l-ephedrine neurotoxicity with respect to hyperthermia and caudate/putamen microdialysate levels of ephedrine, dopamine, serotonin, and glutamate. Toxicological Sci. 2000;55(1):133–142. doi: 10.1093/toxsci/55.1.133
  • Calvert R, Vohra S, Ferguson M, et al. A beating heart cell model to predict cardiotoxicity: Effects of the dietary supplement ingredients higenamine, phenylethylamine, ephedrine and caffeine. Food Chem Toxicol. 2015;78:207–213. doi: 10.1016/j.fct.2015.01.022
  • Zuo S, Li W, Li Q, et al. Protective effects of Ephedra sinica extract on blood–brain barrier integrity and neurological function correlate with complement C3 reduction after subarachnoid hemorrhage in rats. Neurosci Lett. 2015;609:216–222. doi: 10.1016/j.neulet.2015.10.056
  • Green Tea. U.S. National Center for Complementary and Integrative Health. [Internet]. [cited 2023 Oct 20]. Available from: https://www.nccih.nih.gov/health/green-tea
  • Prasanth M, Sivamaruthi B, Chaiyasut C, et al. A review of the role of green tea (camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients. 2019;11(2):474. doi: 10.3390/nu11020474
  • National Toxicology Program. Toxicology studies of green tea extract in F344/NTac rats and B6C3F1/N mice and toxicology and carcinogenesis studies of green tea extract in Wistar Han [Crl:WI(Han)] rats and B6C3F1/N mice (gavage studies). Natl Toxicol Program Tech Rep Ser. 2016:1–238.
  • Oketch-Rabah HA, Roe AL, Rider CV, et al. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicol Rep. 2020;7:386–402. doi: 10.1016/j.toxrep.2020.02.008
  • Lovera J, Ramos A, Devier D, et al. Polyphenon E, non-futile at neuroprotection in multiple sclerosis but unpredictably hepatotoxic: phase I single group and phase II randomized placebo-controlled studies. J Neurol Sci. 2015;358(1–2):46–52. doi: 10.1016/j.jns.2015.08.006
  • National Toxicology Program. Toxicology and carcinogenesis studies of goldenseal root powder (Hydrastis canadensis) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser. 2010:1–188.
  • Mandal SK, Maji AK, Mishra SK, et al. Goldenseal (Hydrastis canadensis L.) and its active constituents: A critical review of their efficacy and toxicological issues. Pharmacol Res. 2020;160:105085. doi: 10.1016/j.phrs.2020.105085
  • Yin SY, Lee JJ, Kim YM, et al. Effects of (1R,9S)-β-hydrastine on l-DOPA-induced cytotoxicity in PC12 cells. Eur J Pharmacol. 2004;488(1–3):71–77. doi: 10.1016/j.ejphar.2004.02.021
  • Kim SH, Shin JS, Lee JJ, et al. Effects of hydrastine derivatives on dopamine biosynthesis in PC12 cells. Planta Med. 2001;67(7):609–613. doi: 10.1055/s-2001-17356
  • Kysenius K, Brunello CA, Huttunen HJ, et al. Mitochondria and NMDA receptor-dependent toxicity of berberine sensitizes neurons to glutamate and rotenone injury. Tang S-J, editor. PLOS ONE. 2014;9(9):e107129. doi: 10.1371/journal.pone.0107129
  • Senol Deniz FS, Ekhteiari Salmas R, Emerce E, et al. Cholinesterase inhibitory and in silico toxicity assessment of thirty-four isoquinoline alkaloids - berberine as the lead compound. CNS Neurol Disord Drug Targets. 2023;23(6):773–783. doi: 10.2174/1871527322666230417083053
  • Kulkarni SK, Dhir A. Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res. 2010;24(3):317–324. doi: 10.1002/ptr.2968
  • Zhang R, Lei B, Wu G, et al. Protective effects of berberine against β-amyloid-induced neurotoxicity in HT22 cells via the Nrf2/HO‐1 pathway. Bioorg Chem. 2023;133:106210. doi: 10.1016/j.bioorg.2022.106210
  • Goldenseal. Drugs and Lactation Database (LactMed®). [Internet]. Bethesda (MD): National Institute of Child Health and Human Development; 2006 [cited 2023 Oct 20]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK501866/
  • Babu KM, McCurdy CR, Boyer EW. Opioid receptors and legal highs: Salvia divinorum and Kratom. Clin Toxicol (Phila). 2008;46:146–152. doi: 10.1080/15563650701241795
  • Garcia-Romeu A, Cox DJ, Smith KE, et al. Kratom (Mitragyna speciosa): User demographics, use patterns, and implications for the opioid epidemic. Drug Alcohol Depend. 2020;208:107849. doi: 10.1016/j.drugalcdep.2020.107849
  • Office of the Commissioner. FDA and Kratom [Internet]. FDA. 2023 [cited 2023 Nov 29]. Available from: https://www.fda.gov/news-events/public-health-focus/fda-and-kratom
  • Anand A, Hosanagar A. The addictive potential and challenges with use of the “herbal supplement” kratom: a case report and literature review. Pain Med. 2022;23(1):4–9. doi: 10.1093/pm/pnab126
  • Hossain R, Sultana A, Nuinoon M, et al. A critical review of the neuropharmacological effects of kratom: an insight from the functional array of identified natural compounds. Molecules. 2023;28(21):7372. doi: 10.3390/molecules28217372
  • Hassan Z, Singh D, Suhaimi FW, et al. Evaluation of toxicity profile of kratom (Mitragyna speciosa Korth) decoction in rats. Regul Toxicol Pharmacol. 2023;143:105466. doi: 10.1016/j.yrtph.2023.105466
  • Suhaimi FW, Zul Aznal AN, Mohamad nor Hazalin NA, et al. Kratom (M. speciosa) exposure during adolescence caused long-lasting cognitive behavioural deficits associated with perturbated brain metabolism pathways in adult rats. Behav Brain Res. 2023;446:114411. doi: 10.1016/j.bbr.2023.114411
  • Matsumoto K, Horie S, Takayama H, et al. Antinociception, tolerance and withdrawal symptoms induced by 7-hydroxymitragynine, an alkaloid from the Thai medicinal herb Mitragyna speciosa. Life Sci. 2005;78(1):2–7. doi: 10.1016/j.lfs.2004.10.086
  • Basheer M, Hassan Z, Gam L-H. Upregulation of brain’s calcium binding proteins in mitragynine dependence: a potential cellular mechanism to addiction. Int J Med Sci. 2023;20(1):102–113. doi: 10.7150/ijms.78861
  • Suhaimi FW, Yusoff NHM, Hassan R, et al. Neurobiology of Kratom and its main alkaloid mitragynine. Brain Res Bull. 2016;126:29–40. doi: 10.1016/j.brainresbull.2016.03.015
  • Karunakaran T, Ngew KZ, Zailan AAD, et al. The chemical and pharmacological properties of mitragynine and its diastereomers: An insight review. Front Pharmacol. 2022;13:805986. doi: 10.3389/fphar.2022.805986
  • Viwatpinyo K, Mukda S, Warinhomhoun S. Effects of mitragynine on viability, proliferation, and migration of C6 rat glioma, SH-SY5Y human neuroblastoma, and HT22 immortalized mouse hippocampal neuron cell lines. Biomed Pharmacother. 2023;166:115364. doi: 10.1016/j.biopha.2023.115364
  • Effendy MA, Yunusa S, Mat NH, et al. The role of AMPA and NMDA receptors in mitragynine effects on hippocampal synaptic plasticity. Behav Brain Res. 2023;438:114169. doi: 10.1016/j.bbr.2022.114169
  • Moragrega I, Ríos JL. Medicinal plants in the treatment of depression. II: evidence from clinical trials. Planta Med. 2022;88(12):1092–1110. doi: 10.1055/a-1517-6882
  • National Toxicology Program. Toxicology and carcinogenesis studies of kava kava extract (CAS No. 9000-38-8) in F344/N rats and B6C3F1 mice (Gavage Studies). Natl Toxicol Program Tech Rep Ser. 2012:1–186.
  • Wang Y, Su C, Zhang B, et al. Biological activity, hepatotoxicity, and structure-activity relationship of kavalactones and flavokavins, the two main bioactive components in Kava (Piper methysticum). Evid Based Complement Alternat Med. 2021;2021:1–14. doi: 10.1155/2021/6851798
  • Romm AJ, Kava K. Botanical medicine for women’s health. St Louis (Mo): Churchill Livingstone/Elsevier; 2010. p. 539–541.
  • Kautu BB, Phillips J, Steele K, et al. A behavioral survey of the effects of kavalactones on Caenorhabditis elegans neuromuscular transmission. J Exp Neurosci. 2017;11:117906951770538. doi: 10.1177/1179069517705384
  • Krum BN, de Freitas CM, Busanello A, et al. Ex vivo and in vitro inhibitory potential of kava extract on monoamine oxidase B activity in mice. J Tradit Complement Med. 2022;12(2):115–122. doi: 10.1016/j.jtcme.2021.07.002
  • Sub Laban T, Saadabadi A. Monoamine Oxidase Inhibitors (MAOI). StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 [cited 2023 Oct 20]. Available from: http://www.ncbi.nlm.nih.gov/books/NBK539848/
  • Konradi C, Riederer P, Jellinger K, et al. Cellular action of MAO inhibitors. J Neural Transm Suppl. 1987;25:15–25.
  • Riederer P, Laux G. MAO-inhibitors in Parkinson’s disease. Exp Neurobiol. 2011;20(1):1–17. doi: 10.5607/en.2011.20.1.1
  • Schelosky L, Raffauf C, Jendroska K, et al. Kava and dopamine antagonism. J Neurol Neurosurg & Psychiatry. 1995;58(5):639–640. doi: 10.1136/jnnp.58.5.639
  • Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—chemistry, bioavailability, and metabolism. Molecules. 2017;22(11):1942. doi: 10.3390/molecules22111942
  • Blumenthal M, Busse WR; Bundesinstitut für Arzneimittel und Medizinprodukte (Germany), editors. The complete German Commission E monographs. Therapeutic guide to herbal medicines. Austin (TX): boston: American Botanical Council; Integrative Medicine Communications; 1998.
  • National Toxicology Program. Toxicology and carcinogenesis studies of milk thistle extract (CAS No. 84604-20-6) in F344/N rats and B6C3F1 mice (feed studies). Natl Toxicol Program Tech Rep Ser. 2011:1–177.
  • Lu C-W, Lin T-Y, Chiu K-M, et al. Silymarin inhibits glutamate release and prevents against kainic acid-induced excitotoxic injury in rats. Biomedicines. 2020;8(11):486. doi: 10.3390/biomedicines8110486
  • Xie Z, Ding S, Shen Y. Silibinin activates AMP-activated protein kinase to protect neuronal cells from oxygen and glucose deprivation-re-oxygenation. Biochem Biophys Res Commun. 2014;454(2):313–319. doi: 10.1016/j.bbrc.2014.10.080
  • Duan S, Guan X, Lin R, et al. Silibinin inhibits acetylcholinesterase activity and amyloid β peptide aggregation: a dual-target drug for the treatment of Alzheimer’s disease. Neurobiol Aging. 2015;36(5):1792–1807. doi: 10.1016/j.neurobiolaging.2015.02.002
  • Fanoudi S, Alavi MS, Karimi G, et al. Milk thistle (Silybum Marianum) as an antidote or a protective agent against natural or chemical toxicities: a review. Drug Chem Toxicol. 2020;43(3):240–254. doi: 10.1080/01480545.2018.1485687
  • Haddadi R, Shahidi Z, Eyvari-Brooshghalan S. Silymarin and neurodegenerative diseases: Therapeutic potential and basic molecular mechanisms. Phytomedicine. 2020;79:153320. doi: 10.1016/j.phymed.2020.153320
  • Devi KP, Malar DS, Braidy N, et al. A mini review on the chemistry and neuroprotective effects of silymarin. Curr Drug Targets. 2017;18(13):1529–1536. doi: 10.2174/1389450117666161227125121
  • Nerium oleander L.(PIM 366) [Internet]. [cited 2023 Oct 20]. Available from: https://inchem.org/documents/pims/plant/pim366.htm#SectionTitle:1.3%20%20Common%20name(s)%20and%20synonyms
  • Zhai J, Dong X, Yan F, et al. Oleandrin: A systematic review of its natural sources, structural properties, detection methods, pharmacokinetics and toxicology. Front Pharmacol. 2022;13:822726. doi: 10.3389/fphar.2022.822726
  • Azzalini E, Bernini M, Vezzoli S, et al. A fatal case of self-poisoning through the ingestion of oleander leaves. J Forensic Leg Med. 2019;65:133–136. doi: 10.1016/j.jflm.2019.05.016
  • Pietsch J, Oertel R, Trautmann S, et al. A non-fatal oleander poisoning. Int J Legal Med. 2005;119(4):236–240. doi: 10.1007/s00414-005-0548-6
  • Carfora A, Petrella R, Borriello R, et al. Fatal poisoning by ingestion of a self-prepared oleander leaf infusion. Forensic Sci Med Pathol. 2021;17(1):120–125. doi: 10.1007/s12024-020-00338-w
  • Bavunoglu I, Balta M, Turkmen Z. Oleander poisoning as an example of self-medication attempt. Balkan Med J. 2016;33(5):559–562. doi: 10.5152/balkanmedj.2016.150307
  • Farkhondeh T, Kianmehr M, Kazemi T, et al. Toxicity effects of Nerium oleander, basic and clinical evidence: a comprehensive review. Hum Exp Toxicol. 2020;39(6):773–784. doi: 10.1177/0960327120901571
  • Moseley AE, Williams MT, Schaefer TL, et al. Deficiency in Na,K-ATPase α isoform genes alters spatial learning, motor activity, and anxiety in mice. J Neurosci. 2007;27(3):616–626. doi: 10.1523/JNEUROSCI.4464-06.2007
  • Botelho AFM, Pierezan F, Soto-Blanco B, et al. A review of cardiac glycosides: Structure, toxicokinetics, clinical signs, diagnosis and antineoplastic potential. Toxicon. 2019;158:63–68. doi: 10.1016/j.toxicon.2018.11.429
  • van Kanegan MJ, He DN, Dunn DE, et al. BDNF mediates neuroprotection against oxygen-glucose deprivation by the cardiac glycoside oleandrin. J Neurosci. 2014;34(3):963–968. doi: 10.1523/JNEUROSCI.2700-13.2014
  • Garofalo S, Grimaldi A, Chece G, et al. The glycoside oleandrin reduces glioma growth with direct and indirect effects on tumor cells. J Neurosci. 2017;37(14):3926–3939. doi: 10.1523/JNEUROSCI.2296-16.2017
  • Serafini S, de Freitas Souza C, Baldissera MD, et al. Fish exposed to water contaminated with eprinomectin show inhibition of the activities of AChE and Na+/K±ATPase in the brain, and changes in natural behavior. Chemosphere. 2019;223:124–130. doi: 10.1016/j.chemosphere.2019.02.026
  • Khordadmehr M, Nazifi S. Study of troponin, creatine kinase biomarkers, and histopathological lesions in experimental Nerium oleander toxicity in rats and mice. J Vet Res. 2018;62(1):97–102. doi: 10.2478/jvetres-2018-0013
  • Dinesh P, Rasool M. Herbal formulations and their bioactive components as dietary supplements for treating rheumatoid arthritis. Bioactive Food as Dietary Interventions for Arthritis and Related Inflammatory Diseases [Internet]; Elsevier. 2019 [cited 2023 Oct 20]. p. 385–399. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128138205000222
  • Liu R, Li X, Huang N, et al. Toxicity of traditional Chinese medicine herbal and mineral products. Advances in Pharmacology [Internet]. Elsevier; 2020 [cited 2023 Oct 20]. p. 301–346. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1054358919300638
  • Ru Y, Luo Y, Zhou Y, et al. Adverse events associated with treatment of Tripterygium wilfordii Hook F: A quantitative evidence synthesis. Front Pharmacol. 2019;10:1250. doi: 10.3389/fphar.2019.01250
  • Chou W-C, Wu C-C, Yang P-C, et al. Hypovolemic shock and mortality after ingestion of tripterygium wilfordii hook F.: a case report. Int J Cardiol. 1995;49(2):173–177. doi: 10.1016/0167-5273(95)02282-2
  • Wu B-K, Yuan R-Y, Chang Y-P, et al. Epicatechin isolated from tripterygium wilfordii extract reduces tau-GFP-induced neurotoxicity in zebrafish embryo through the activation of Nrf2. Biochem Biophys Res Commun. 2016;477(2):283–289. doi: 10.1016/j.bbrc.2016.06.058
  • Xu Y, Li W, Wen R, et al. Voltage-gated sodium channels, potential targets of Tripterygium wilfordii Hook. f. to exert activity and produce toxicity. J Ethnopharmacol. 2023;311:116448. doi: 10.1016/j.jep.2023.116448
  • National Toxicology Program. Toxicity studies of Usnea lichens containing (±) Usnic acid (CASRN 125-46-2) administered in feed to F344/N NCTR Rats and B6C3F1/NCTR Mice. Natl Toxicol Program Tech Rep Ser. 2022:1–143.
  • Crawford SD. Lichens used in Traditional Medicine. In: Ranković B, editor. Lichen Secondary Metabolites [Internet]. Cham: Springer International Publishing; 2015 [cited 2023 Oct 20]. p. 27–80. Available from: https://doi.org/10.1007/978-3-319-13374-4_2
  • Kwong SP, Wang C. Review: Usnic acid-induced hepatotoxicity and cell death. Environ Toxicol Pharmacol. 2020;80:103493. doi: 10.1016/j.etap.2020.103493
  • Guo L, Shi Q, Fang J-L, et al. Review of usnic acid and Usnea Barbata Toxicity. J Environ Sci Health Part C. 2008;26(4):317–338. doi: 10.1080/10590500802533392
  • Cazarin CA, Dalmagro AP, Gonçalves AE, et al. Usnic acid enantiomers restore cognitive deficits and neurochemical alterations induced by Aβ1–42 in mice. Behav Brain Res. 2021;397:112945. doi: 10.1016/j.bbr.2020.112945
  • Erfani S, Valadbeigi T, Aboutaleb N, et al. Usnic acid improves memory impairment after cerebral ischemia/reperfusion injuries by anti-neuroinflammatory, anti-oxidant, and anti-apoptotic properties. Iran J Basic Med Sci [Internet]. 2020 [cited 2023 Oct 20];23. doi: 10.22038/ijbms.2020.43280.10165
  • Lee S, Lee Y, Ha S, et al. Anti-inflammatory effects of usnic acid in an MPTP-induced mouse model of Parkinson’s disease. Brain Res. 2020;1730:146642. doi: 10.1016/j.brainres.2019.146642
  • Watts ME, Pocock R, Claudianos C. Brain energy and oxygen metabolism: Emerging role in normal function and disease. Front Mol Neurosci. 2018;11:216. doi: 10.3389/fnmol.2018.00216
  • Rabelo TK, Zeidán-Chuliá F, Vasques LM, et al. Redox characterization of usnic acid and its cytotoxic effect on human neuron-like cells (SH-SY5Y). Toxicol Vitro. 2012;26(2):304–314. doi: 10.1016/j.tiv.2011.12.003
  • Moreira CT, Oliveira AL, Comar JF, et al. Harmful effects of usnic acid on hepatic metabolism. Chem Biol Interact. 2013;203(2):502–511. doi: 10.1016/j.cbi.2013.02.001
  • EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS). Scientific Opinion on the evaluation of the safety in use of Yohimbe (Pausinystalia yohimbe (K. Schum.) Pierre ex Beille). EFS2 [Internet]. 2013 [cited 2023 Oct 19]. Available from: https://data.europa.eu/doi/10.2903/j.efsa.2013.3302
  • Lo Faro AF, di Trana A, La Maida N, et al. Biomedical analysis of New Psychoactive Substances (NPS) of natural origin. J Pharm Biomed Anal. 2020;179:112945. doi: 10.1016/j.jpba.2019.112945
  • Clark JT, Smith ER, Davidson JM. Enhancement of sexual motivation in male rats by yohimbine. Science. 1984;225(4664):847–849. doi: 10.1126/science.6474156
  • Grunewald KK, Bailey RS. Commercially marketed supplements for bodybuilding athletes. Sports Med. 1993;15(2):90–103. doi: 10.2165/00007256-199315020-00003
  • Anderson C, Anderson D, Harre N, et al. Case study: two fatal case reports of acute yohimbine intoxication. J Anal Toxicol. 2013;37(8):611–614. doi: 10.1093/jat/bkt057
  • Scatton B, Zivkovic B, Dedek J. Antidopaminergic properties of yohimbine. J Pharmacol Exp Ther. 1980;215(2):494–499.
  • Watanabe K, Yano S, Horiuchi H, et al. Ca2+ channel-blocking effect of the yohimbine derivatives, 14β-benzoyloxyyohimbine and 14β- p -nitrobenzoyloxyyohimbine. J Pharm and Pharmacol. 2011;39(6):439–443. doi: 10.1111/j.2042-7158.1987.tb03416.x
  • Kleef Rgdm V, Embry MR, Mitchell CA, et al. Neuroactivity screening of botanical extracts using microelectrode array (MEA) recordings. Food Chem Toxicol. 2024;184:114438. doi: 10.1016/j.fct.2024.114438