0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Dose optimization of β-lactam antibiotics in children: from population pharmacokinetics to individualized therapy

, , , ORCID Icon, , , , , , , & show all
Received 16 Apr 2024, Accepted 24 Jul 2024, Accepted author version posted online: 30 Jul 2024
Accepted author version

References

  • Molloy L, Barron S, Khan N, et al. Oral β-Lactam Antibiotics for Pediatric Otitis Media, Rhinosinusitis, and Pneumonia. J Pediatr Health Care. 2020;34(3):291–300. doi: 10.1016/j.pedhc.2019.11.001
  • Willems J, Hermans E, Schelstraete P, et al. Optimizing the Use of Antibiotic Agents in the Pediatric Intensive Care Unit: A Narrative Review. Pediatric Drugs. 2021;23(1):39–53.
  • Bush K, Bradford PA.β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harbor Perspectives in Medicine. 2016;6(8):a025247.
  • Baquero F, Levin BR Proximate and ultimate causes of the bactericidal action of antibiotics. Nat Rev Microbiol. 2021 Feb;19(2):123–132.10.1038/s41579-020-00443-1
  • Craig WA. State-of-the-Art Clinical Article: Pharmacokinetic/Pharmacodynamic Parameters: Rationale for Antibacterial Dosing of Mice and Men. Clin Infect Dis. 1998;26(1):1-10; quiz 11-12. doi: 10.1086/516284
  • McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T>MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31(4):345–351.
  • Morales Junior R, Pereira GO, Tiguman GMB, et al. Beta-Lactams Therapeutic Monitoring in Septic Children–What Target Are We Aiming for? A Scoping Review. Front Pediatr. 2022; 10.
  • Smith PW, Zuccotto F, Bates RH, et al. Pharmacokinetics of β-lactam antibiotics: clues from the past to Help Discover Long-acting oral drugs in the future. ACS Infect Dis. 2018;4(10):1439–1447. doi: 10.1021/acsinfecdis.8b00160
  • Veiga RP, Paiva J-A. Pharmacokinetics-pharmacodynamics issues relevant for the clinical use of beta-lactam antibiotics in critically ill patients. Critical Care (London, England). 2018;22(1):233.
  • Abrams EM, Wakeman A, Gerstner TV, et al. Prevalence of beta-lactam allergy: a retrospective chart review of drug allergy assessment in a predominantly pediatric population. Allergy Asthma Clin Immunol. 2016;12(1):59. doi: 10.1186/s13223-016-0165-6
  • Joint-Task-Force-on-Practice-Parameters, American-Academy-of-Allergy A-a-I, American-College-of-Allergy, Asthma-and-Immunology, Joint-Council-of-Allergy -A-a-I. Drug allergy: an updated practice parameter. Ann Allergy Asthma Immunol. 2010;105(4):259–273.
  • Buhlinger KM, Fuller KA, Faircloth CB, Wallace JR. Effect of concomitant vancomycin and piperacillin-tazobactam on frequency of acute kidney injury in pediatric patients. Am J Health Syst Pharm. 2019;76(16):1204–1210.
  • Roger C, Louart B. Beta-lactams toxicity in the intensive care unit: an underestimated collateral damage? Microorganisms. 2021;9(7):1505. doi: 10.3390/microorganisms9071505
  • Nakaharai K, Sakamoto Y, Yaita K, et al. Drug-induced liver injury associated with high-dose ceftriaxone: a retrospective cohort study adjusted for the propensity score. Eur J Clin Pharmacol. 2016;72(8):1003–1011. doi: 10.1007/s00228-016-2064-7
  • Tang Girdwood S, Pavia K, Paice K, et al. β-lactam precision dosing in critically ill children: Current state and knowledge gaps. Front Pharmacol. 2022;13:1044683. doi: 10.3389/fphar.2022.1044683
  • Asín-Prieto E, Rodríguez-Gascón A, Isla A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother. 2015;21(5):319–329. doi: 10.1016/j.jiac.2015.02.001
  • Barker CIS, Standing JF, Kelly LE, et al. Pharmacokinetic studies in children: recommendations for practice and research. Arch Dis Child. 2018;103(7):695–702. doi: 10.1136/archdischild-2017-314506
  • Lu H, Rosenbaum S. Developmental Pharmacokinetics in Pediatric Populations. The Journal of Pediatric Pharmacology and Therapeutics. 2014;19(4):262–276. doi: 10.5863/1551-6776-19.4.262
  • Ruggiero A, Ariano A, Triarico S, et al. Neonatal pharmacology and clinical implications. Drugs Context. 2019;8:212608.
  • Bansal N, Momin S, Bansal R, et al. Pharmacokinetics of drugs: newborn perspective. Pediatric Medicine. 2024;7:1–14.
  • Fuchs A, Li G, van den Anker JN, Bielicki J. Optimising β -lactam Dosing in Neonates: A Review of Pharmacokinetics, Drug Exposure and Pathogens. Cur Pharm Des. 2017;23(38):5805–5838.
  • Gijsen M, Vlasselaers D, Spriet I, Allegaert K. Pharmacokinetics of Antibiotics in Pediatric Intensive Care: Fostering Variability to Attain Precision Medicine. Antibiotics. 2021;10(10):1182. 10.3390/antibiotics10101182
  • Van Der Heggen T, Dhont E, Willems J, et al. Suboptimal Beta-Lactam Therapy in Critically Ill Children: Risk Factors and Outcome. Pediatr Crit Care Med. 2022;23(7):e309–e318.
  • Lonsdale DO, Baker EH, Kipper K, et al. Scaling beta-lactam antimicrobial pharmacokinetics from early life to old age. Br J Clin Pharmacol. 2019;85(2):316–346. doi: 10.1111/bcp.13756
  • Simeoli R, Dorlo TPC, Hanff LM, et al. Editorial: Therapeutic Drug Monitoring (TDM): A Useful Tool for Pediatric Pharmacology Applied to Routine Clinical Practice. Front Pharmacol. 2022;13:931843. 10.3389/fphar.2022.931843
  • Cies JJ, Moore WS, Enache A, et al. β-lactam therapeutic drug management in the PICU. Crit Care Med. 2018;46(2):272–279. doi: 10.1097/CCM.0000000000002817
  • Dhaese S, Van Vooren S, Boelens J, et al. Therapeutic drug monitoring of β-lactam antibiotics in the ICU. Expert Rev Anti Infect Ther. 2020;18(11):1155–1164. 10.1080/14787210.2020.1788387
  • Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy. 2021;41(2):220–233. doi: 10.1002/phar.2505
  • Bernhard M, Lichtenstern C, Eckmann C, et al. The early antibiotic therapy in septic patients - milestone or sticking point? Crit Care. 2014;18(6):671. doi: 10.1186/s13054-014-0671-1
  • Abdulla A, Edwina EE, Flint RB, et al. Model-Informed Precision Dosing of Antibiotics in Pediatric Patients: A Narrative Review. Front Pediatr. 2021;9:624639. 10.3389/fped.2021.624639
  • Tyson RJ, Park CC, Powell JR, et al. Precision Dosing Priority Criteria: Drug, Disease, and Patient Population Variables. Front. Pharmacol. 2020;11. 11 10.3389/fphar.2020.00420
  • Tang Girdwood S, Hasson D, Caldwell JT, et al. Relationship between piperacillin concentrations, clinical factors and piperacillin/tazobactam-associated acute kidney injury. J Antimicrob Chemother. 2023;78(2):478–487.
  • Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients—guidelines from the French Society of Pharmacology and Therapeutics (Société Française de Pharmacologie et Thérapeutique—SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Société Française d’Anesthésie et Réanimation—SFAR). Crit Care. 2019;23(1):104.
  • Arrieta AC, Ang JY, Zhang Z, et al. Plasma pharmacokinetics of ceftolozane/tazobactam in pediatric patients with cystic fibrosis. Pediatr Pulmonol. 2020;55(8):2025–2032. doi: 10.1002/ppul.24815
  • Bui S, Facchin A, Ha P, et al. Population pharmacokinetics of ceftazidime in critically ill children: impact of cystic fibrosis. J Antimicrob Chemother. 2020;75(8):2232–2239. doi: 10.1093/jac/dkaa170
  • Butragueno-Laiseca L, Marco-Arino N, Troconiz IF, et al. Population pharmacokinetics of piperacillin in critically ill children including those undergoing continuous kidney replacement therapy. Clin Microbiol Infect. 2022;28(9):1287.e9-1287.e15. doi: 10.1016/j.cmi.2022.03.031
  • Cojutti PG, Maximova N, Schillani G, et al. Population pharmacokinetics of continuous-infusion ceftazidime in febrile neutropenic children undergoing HSCT: implications for target attainment for empirical treatment against Pseudomonas aeruginosa. J Antimicrob Chemother. 2019;74(6):1648–1655. doi: 10.1093/jac/dkz065
  • Dong L, Zhai X-Y, Yang Y-L, et al. Population Pharmacokinetics and Dosing Optimization of Imipenem in Children with Hematological Malignancies. Antimicrob Ag Chemother. 2019;63(6):10.1128/aac.00006-19.
  • Franzese RC, McFadyen L, Watson KJ, et al. Population pharmacokinetic modeling and probability of pharmacodynamic target attainment for ceftazidime-avibactam in pediatric patients aged 3 months and older. Clin Pharmacol Ther. 2022;111(3):635–645. doi: 10.1002/cpt.2460
  • Hartman SJF, Upadhyay PJ, Hagedoorn NN, et al. Current ceftriaxone dose recommendations are adequate for most critically Ill children: results of a population pharmacokinetic modeling and simulation study. Clin Pharmacokinet. 2021;60(10):1361–1372. doi: 10.1007/s40262-021-01035-9
  • Larson KB, Patel YT, Willavize S, et al. Ceftolozane-Tazobactam Population Pharmacokinetics and Dose Selection for Further Clinical Evaluation in Pediatric Patients with Complicated Urinary Tract or Complicated Intra-abdominal Infections. Antimicrob Agents Chemother. 2019;63(6):e02578–18. doi: 10.1128/AAC.02578-18
  • Lima-Rogel V, Medina-Rojas EL, Del Carmen Milan-Segovia R, et al. Population pharmacokinetics of cefepime in neonates with severe nosocomial infections. J Clin Pharm Ther. 2008;33(3):295–306. doi: 10.1111/j.1365-2710.2008.00913.x
  • Rapp M, Urien S, Foissac F, et al. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur J Clin Pharmacol. 2020;76(1):61–71. doi: 10.1007/s00228-019-02761-7
  • Saito J, Shoji K, Oho Y, et al. Population Pharmacokinetics and Pharmacodynamics of Meropenem in Critically Ill Pediatric Patients. Antimicrob Agents Chemother. 2021;65(2).10.1128/AAC.01909-20
  • Salvador E, Oualha M, Bille E, et al. Population pharmacokinetics of cefazolin in critically ill children infected with methicillin-sensitive staphylococcus aureus. Clin Microbiol Infect. 2021;27(3):413–419. doi: 10.1016/j.cmi.2020.04.022
  • Schmitz ML, Blumer JL, Cetnarowski W, et al. Determination of appropriate weight-based cutoffs for empiric cefazolin dosing using data from a phase 1 pharmacokinetics and safety study of cefazolin administered for surgical prophylaxis in pediatric patients aged 10 to 12 years. Antimicrob Agents Chemother. 2015;59(7):4173–4180. doi: 10.1128/AAC.00082-15
  • Shi Z-R, Chen X-K, Tian L-Y, et al. Population Pharmacokinetics and Dosing Optimization of Ceftazidime in Infants. Antimicrob Ag Chemother. 20182018-04;62(4):e02486–17.
  • van den Anker JN, Pokorna P, Kinzig-Schippers M, et al. Meropenem pharmacokinetics in the newborn. Antimicrob Agents Chemother. 2009;53(9):3871–9.
  • Wang Y, Chen W, Huang Y, et al. Optimized Dosing Regimens of Meropenem in Septic Children Receiving Extracorporeal Life Support. Front Pharmacol. 2021;12:699191. 10.3389/fphar.2021.699191
  • Yonwises W, Wacharachaisurapol N, Anugulruengkitt S, et al. Population pharmacokinetics of meropenem in critically ill infant patients. Int J Infect Dis. 2021;111:58–64. 10.1016/j.ijid.2021.08.031
  • Zyryanov S, Bondareva I, Butranova O, et al. Population PK/PD modelling of meropenem in preterm newborns based on therapeutic drug monitoring data. Front Pharmacol. 2023;14:1079680. 10.3389/fphar.2023.1079680
  • De Cock PA, Mulla H, Desmet S, et al. Population pharmacokinetics of cefazolin before, during and after cardiopulmonary bypass to optimize dosing regimens for children undergoing cardiac surgery. J Antimicrob Chemother. 2017;72(3):791–800.
  • Tang Girdwood S, Dong M, Tang P, et al. Population pharmacokinetic modeling of total and free ceftriaxone in critically Ill children and young adults and monte carlo simulations support twice daily dosing for target attainment. Antimicrob Agents Chemother. 2022;66(1):e0142721. doi: 10.1128/AAC.01427-21
  • Bijleveld Y, Mathôt R, van der Lee J, et al. Population Pharmacokinetics of Amoxicillin in Term Neonates Undergoing Moderate Hypothermia. Clin Pharmacol Ther. 2018 2018;103(3):458–467.
  • Bijleveld YA, de Haan TR, van der Lee JH, et al. Evaluation of a system-specific function to describe the pharmacokinetics of Benzylpenicillin in term neonates undergoing moderate hypothermia. Antimicrob Agents Chemother. 2018;62(4):e02311–17. doi: 10.1128/AAC.02311-17
  • van der Veer MAA, de Haan TR, Franken LGW, et al. Population Pharmacokinetics and Dosing Optimization of Ceftazidime in Term Asphyxiated Neonates during Controlled Therapeutic Hypothermia. Antimicrob Ag Chemother. 2023 2023-04-03;67(5):e01707–22.
  • Saito J, Shoji K, Oho Y, et al. Meropenem pharmacokinetics during extracorporeal membrane oxygenation and continuous haemodialysis: a case report. J Glob Antimicrob Resist. 2020;22:651–655. 10.1016/j.jgar.2020.04.029
  • Zuppa AF, Zane NR, Moorthy G, et al. A population pharmacokinetic analysis to study the effect of extracorporeal membrane oxygenation on cefepime disposition in children. Pediatr Crit Care Med. 2019;20(1):62–70. doi: 10.1097/PCC.0000000000001786
  • Thy M, Urien S, Bouazza N, et al. Meropenem population pharmacokinetics and dosing regimen optimization in critically Ill children receiving continuous renal replacement therapy. Clin Pharmacokinet. 2022;61(11):1609–1621. doi: 10.1007/s40262-022-01179-2
  • Dumangin G, Brenkman M, Pape E, et al. Temocillin dosage adjustment in a preterm infant with severe renal disease: a case report. Journal of Antimicrobial Chemotherapy. 2020 2020-12-01;75(12):3652–3655.
  • Hafeez M, Saleem Z, Bukhari NA, et al.. Off-label antibiotic use in a specialized children care hospital in Punjab, Pakistan: Findings and implications. J Infect Dev Ctries. 2020;14(5):540–544. doi: 10.3855/jidc.12058
  • Porta A, Esposito S, Menson E, et al. Off-label antibiotic use in children in three European countries. Eur J Clin Pharmacol. 2010;66(9):919–927. doi: 10.1007/s00228-010-0842-1
  • EMA. Inventory of paediatric therapeutic needs - Infectious diseases 2012 [updated May 8, 2014]. Available from: https://www.ema.europa.eu/en/documents/other/inventory-paediatric-therapeutic-needs-infectious-diseases_en.pdf
  • Clements MN, Russell N, Bielicki JA, et al. Global antibiotic dosing strategies in hospitalised children: characterising variation and implications for harmonisation of international guidelines. PLoS One. 2021;16(5):e0252223. doi: 10.1371/journal.pone.0252223
  • de Jong J, van den Berg PB, Visser ST, et al. Antibiotic usage, dosage and course length in children between 0 and 4 years. Acta Paediatr. 2009;98(7):1142–1148.
  • Hsia Y, Lee BR, Versporten A, et al. Use of the WHO access, watch, and reserve classification to define patterns of hospital antibiotic use (AWaRe): an analysis of paediatric survey data from 56 countries. Lancet Glob Health. 2019;7(7):e861–e871. doi: 10.1016/S2214-109X(19)30071-3
  • Gastine S, Hsia Y, Clements M, et al. Variation in target attainment of Beta‐Lactam antibiotic dosing between international pediatric formularies. Clin Pharmacol Ther. 2021;109(4):958–970. doi: 10.1002/cpt.2180
  • Xu W-X, Qu Q, Teng X-Q, et al. Personalized application of antimicrobial drugs in pediatric patients with augmented renal clearance: a review of literature. Eur J Pediatr. 2024;183(1):51–60.
  • EUCAST: New S, I and R definitions [updated July 9, 2021]. Available from: https://www.eucast.org/newsiandr
  • EUCAST: Clinical breakpoints and dosing of antibiotics 2023 [updated January 2, 2003]. Available from: https://www.eucast.org/clinical_breakpoints
  • Aguilera-Alonso D, Cantón R, Giske CG, et al. Searching High and Low: Call for a Joint European Society for Paediatric Infectious Diseases-European Committee on Antimicrobial Susceptibility Testing Survey on Dosage of Antibacterial Agents in Children-Part One. Pediatr Infect Dis J. 2022;41(4):e182–e185.
  • Barreto EF, Webb AJ, Pais GM, et al. Setting the Beta-Lactam Therapeutic Range for Critically Ill Patients: Is There a Floor or Even a Ceiling? Crit Care Explor. 2021;3(6):e0446.
  • Imani S, Buscher H, Marriott D, et al. Too much of a good thing: a retrospective study of β-lactam concentration–toxicity relationships. J Antimicrob Chemother. 2017;72(10):2891–2897. doi: 10.1093/jac/dkx209
  • Williams PCM, Bradley J, Roilides E, et al. Harmonising regulatory approval for antibiotics in children. Lancet Child Adolesc Health. 2021;5(2):96–98. doi: 10.1016/S2352-4642(20)30365-5
  • Budai KA, Tímár ÁE, Obeidat M, et al. Extended infusion of β-lactams significantly reduces mortality and enhances microbiological eradication in paediatric patients: a systematic review and meta-analysis. eClinicalMedicine. 2023;65:102293.10.1016/j.eclinm.2023.102293
  • Crocoli A, Martucci C, Persano G, et al. Vascular Access in Pediatric Oncology and Hematology: State of the Art. Children (Basel, Switzerland). 2022;9(1):70.
  • Kang JS, Lee MH. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009;24(1):1–10. doi: 10.3904/kjim.2009.24.1.1
  • Pai Mangalore R, Ashok A, Lee SJ, et al. Beta-Lactam Antibiotic Therapeutic Drug Monitoring in Critically Ill Patients: A Systematic Review and Meta-Analysis. Clinl Infect Dis. 2022;75(10):1848–1860.
  • Blair M, Cote JM, Cotter A, et al. Nephrotoxicity from vancomycin combined with Piperacillin-Tazobactam: a comprehensive review. Am J Nephrol. 2021;52(2):85–97. doi: 10.1159/000513742
  • Huo X, Meng Q, Wang C, et al. Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs). Acta Pharm Sin B. 2019 Sep;9(5):986–996.10.1016/j.apsb.2019.02.005
  • Goa KL, Noble S. Panipenem/betamipron. Drugs. 2003;63(9):913–25; discussion 926.
  • Nishioka H, Cho Y, Irie K, et al. Ceftriaxone-associated encephalopathy in a patient with high levels of ceftriaxone in blood and cerebrospinal fluid. Int J Infect Dis. 2022;116:223–225. 10.1016/j.ijid.2022.01.023
  • Guilhaumou R, Benaboud S, Bennis Y, et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Societe Francaise de Pharmacologie et Therapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Societe Francaise d’Anesthesie et Reanimation-SFAR). Crit Care. 2019 Mar 29;23(1):104.
  • Abdulla A, van den Broek P, Ewoldt TMJ, et al. Barriers and facilitators in the clinical implementation of beta-lactam therapeutic drug monitoring in critically Ill patients: a critical review. Ther Drug Monit. 2022;44(1):112–120. doi: 10.1097/FTD.0000000000000937
  • Schouwenburg S, van der Klip RFJ, Smeets TJL, et al. Review of scavenged sampling for sustainable therapeutic drug monitoring: do more with less. Ther Drug Monit. 2022;44(1):215–223. doi: 10.1097/FTD.0000000000000928
  • Frymoyer A, Stockmann C, Hersh AL, et al. Individualized empiric vancomycin dosing in neonates using a Model-based approach. J Pediatric Infect Dis Soc. 2019;8(2):97–104. doi: 10.1093/jpids/pix109
  • Hughes DM, Goswami S, Keizer RJ, et al. Bayesian clinical decision support-guided versus clinician-guided vancomycin dosing in attainment of targeted pharmacokinetic parameters in a paediatric population. J Antimicrob Chemother. 2020;75(2):434–437.
  • Leroux S, Jacqz-Aigrain E, Biran V, et al. Clinical Utility and Safety of a Model-Based Patient-Tailored Dose of Vancomycin in Neonates. Antimicrob Ag Chemother. 2016;60(4):2039–2042.
  • Ewoldt TMJ, Abdulla A, Rietdijk WJR, et al. Which patients benefit from model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin at the ICU? Int J Antimicrob Ag. 2023;62(4):106931.
  • Dewi W, Christie CD, Wardhana A, et al. Pediatric logistic organ dysfunction-2 (Pelod-2) score as a model for predicting mortality in pediatric burn injury. Ann Burns Fire Disasters. 2019;32(2):135–142.
  • Evans SR, Rubin D, Follmann D, et al. Desirability of outcome ranking (DOOR) and response adjusted for duration of antibiotic risk (RADAR). Clin Infect Dis. 2015;61(5):800–806. doi: 10.1093/cid/civ495
  • Cavaleri M, Manolis E. Hollow Fiber System Model for Tuberculosis: The European Medicines Agency Experience. Clin Infect Dis. 2015;61(suppl_1):S1–S4. doi: 10.1093/cid/civ484
  • Srivastava S, Pasipanodya JG, Ramachandran G, et al. A Long-term Co-perfused Disseminated Tuberculosis-3D Liver Hollow Fiber Model for Both Drug Efficacy and Hepatotoxicity in Babies. EBioMedicine. 2016;6:126–138.10.1016/j.ebiom.2016.02.040
  • Smeets NJL, Bökenkamp A, Grubb A, et al. Cystatin C as a Marker for glomerular filtration rate in critically Ill neonates and children: validation against iohexol plasma clearance. Kidney Int Rep. 2023;8(8):1672–1675. doi: 10.1016/j.ekir.2023.05.028
  • Pai Mangalore R, Peel TN, Udy AA, et al. The clinical application of beta-lactam antibiotic therapeutic drug monitoring in the critical care setting. J Antimicrob Chemother. 2023;78(10):2395–2405. doi: 10.1093/jac/dkad223
  • Uster DW, Stocker SL, Carland JE, et al. A Model Averaging/Selection approach improves the predictive performance of Model-informed precision dosing: vancomycin as a case study. Clin Pharmacol Ther. 2021;109(1):175–183. doi: 10.1002/cpt.2065
  • Mouton JW, Muller AE, Canton R, et al. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother. 2018;73(3):564–568. doi: 10.1093/jac/dkx427
  • Seeger J, Guenther S, Schaufler K, et al.. Novel Pharmacokinetic/Pharmacodynamic Parameters Quantify the Exposure–Effect Relationship of Levofloxacin against Fluoroquinolone-Resistant Escherichia coli. Antibiotics. 2021;10(6):615. doi: 10.3390/antibiotics10060615
  • Landersdorfer CB, Nation RL Limitations of Antibiotic MIC-Based PK-PD Metrics: Looking Back to Move Forward. Front Pharmacol. 2021;12:770518. 10.3389/fphar.2021.770518
  • Darwich AS, Polasek TM, Aronson JK, et al. Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu Rev Pharmacol Toxicol. 2021;61(1):225–245. doi: 10.1146/annurev-pharmtox-033020-113257
  • D’Agate S, Musuamba FT, Della Pasqua O Dose Rationale for Amoxicillin in Neonatal Sepsis When Referral Is Not Possible. Front Pharmacol. 2020;11:521933. 10.3389/fphar.2020.521933
  • Wu YE, Wang YK, Tang BH, et al. Population pharmacokinetics and dosing optimization of amoxicillin in Chinese infants. J Clin Pharmacol. 2021;61(4):538–546. doi: 10.1002/jcph.1752
  • Tang BH, Wu YE, Kou C, et al. Population Pharmacokinetics and Dosing Optimization of Amoxicillin in Neonates and Young Infants. Antimicrob Agents Chemother. 2019;63(2).10.1128/AAC.02336-18
  • Pullen J, Stolk LM, Nieman FH, et al. Population pharmacokinetics and dosing of amoxicillin in (pre)term neonates. Ther Drug Monit. 2006;28(2):226–31.
  • Charles BG, Preechagoon Y, Lee TC, et al. Population pharmacokinetics of intravenous amoxicillin in very low birth weight infants. J Pharm Sci. 1997;86(11):1288–1292. doi: 10.1021/js970068l
  • De Cock PA, Standing JF, Barker CI, et al. Augmented renal clearance implies a need for increased amoxicillin-clavulanic acid dosing in critically ill children. Antimicrob Agents Chemother. 2015;59(11):7027–35.
  • Kado J, Salman S, Hand R, et al. Population pharmacokinetic study of benzathine penicillin G administration in indigenous children and young adults with rheumatic heart disease in the Northern Territory, Australia. J Antimicrob Chemother. 2022;77(10):2679–2682. doi: 10.1093/jac/dkac231
  • Padari H, Metsvaht T, Germovsek E, et al. Pharmacokinetics of Penicillin G in Preterm and Term Neonates. Antimicrob Agents Chemother. 2018;62(5):e02238–17. doi: 10.1128/AAC.02238-17
  • Schmitz ML, Rubino CM, Onufrak NJ, et al. Pharmacokinetics and optimal dose selection of Cefazolin for surgical prophylaxis of pediatric patients. J Clin Pharmacol. 2021;61(5):666–676. doi: 10.1002/jcph.1785
  • De Cock RF, Smits A, Allegaert K, et al. Population pharmacokinetic modelling of total and unbound cefazolin plasma concentrations as a guide for dosing in preterm and term neonates. J Antimicrob Chemother. 2014;69(5):1330–1338. doi: 10.1093/jac/dkt527
  • de Cacqueray N, Hirt D, Zheng Y, et al. Cefepime population pharmacokinetics and dosing regimen optimization in critically ill children with different renal function. Clin Microbiol Infect. 2022;28(10):.e1389.1–.e1389.7. doi: 10.1016/j.cmi.2022.05.007
  • Al-Shaer MH, Neely MN, Liu J, et al. Population Pharmacokinetics and Target Attainment of Cefepime in Critically Ill Patients and Guidance for Initial Dosing. Antimicrob Agents Chemother. 2020;64(9).10.1128/AAC.00745-20
  • Liu J, Neely M, Lipman J, et al. Development of population and bayesian models for applied use in patients receiving cefepime. Clin Pharmacokinet. 2020;59(8):1027–1036. doi: 10.1007/s40262-020-00873-3
  • Zhao Y, Yao BF, Kou C, et al. Developmental Population Pharmacokinetics and Dosing Optimization of Cefepime in Neonates and Young Infants. Front Pharmacol. 2020;11:14. 10.3389/fphar.2020.00014
  • Shoji K, Bradley JS, Reed MD, et al. Population pharmacokinetic assessment and pharmacodynamic implications of pediatric cefepime dosing for susceptible-dose-dependent organisms. Antimicrob Agents Chemother. 2016;60(4):2150–2156. doi: 10.1128/AAC.02592-15
  • Capparelli E, Hochwald C, Rasmussen M, et al. Population pharmacokinetics of cefepime in the neonate. Antimicrob Agents Chemother. 2005;49(7):2760–2766. doi: 10.1128/AAC.49.7.2760-2766.2005
  • Hartman SJF, Upadhyay PJ, Mathot RAA, et al. Population pharmacokinetics of intravenous cefotaxime indicates that higher doses are required for critically ill children. J Antimicrob Chemother. 2022;77(6):1725–1732. doi: 10.1093/jac/dkac095
  • Maksoud E, Koehl B, Facchin A, et al. Population Pharmacokinetics of Cefotaxime and Dosage Recommendations in Children with Sickle Cell Disease. Antimicrob Agents Chemother. 2018;62(4):e00637–17. doi: 10.1128/AAC.00637-17
  • Beranger A, Oualha M, Urien S, et al. Population pharmacokinetic Model to Optimize Cefotaxime Dosing Regimen in critically Ill children. Clin Pharmacokinet. 2018;57(7):867–875. doi: 10.1007/s40262-017-0602-9
  • Leroux S, Roue JM, Gouyon JB, et al. A population and Developmental Pharmacokinetic Analysis to Evaluate and Optimize Cefotaxime Dosing Regimen in neonates and young infants. Antimicrob Agents Chemother. 2016;60(11):6626–6634. doi: 10.1128/AAC.01045-16
  • van der Veer MAA, de Haan TR, Franken LGW, et al. Population Pharmacokinetics and Dosing Optimization of Ceftazidime in Term Asphyxiated Neonates during Controlled Therapeutic Hypothermia. Antimicrob Agents Chemother. 2023;67(5):e0170722.
  • Li X, Qi H, Jin F, et al. Population pharmacokinetics-pharmacodynamics of ceftazidime in neonates and young infants: Dosing optimization for neonatal sepsis. Eur J Pharm Sci. 2021;163:105868. 10.1016/j.ejps.2021.105868
  • Wang H, Li X, Sun S, et al. Population pharmacokinetics and dosing simulations of ceftazidime in Chinese neonates. J Pharm Sci. 2018;107(5):1416–1422. doi: 10.1016/j.xphs.2017.12.018
  • Wang YK, Wu YE, Li X, et al. Optimal dosing of ceftriaxone in infants based on a developmental population pharmacokinetic-pharmacodynamic analysis. Antimicrob Agents Chemother. 2020;64(11):e01412–20. doi: 10.1128/AAC.01412-20
  • Khan MW, Wang YK, Wu YE, et al. Population pharmacokinetics and dose optimization of ceftriaxone for children with community-acquired pneumonia. Eur J Clin Pharmacol. 2020;76(11):1547–1556. doi: 10.1007/s00228-020-02939-4
  • Standing JF, Ongas MO, Ogwang C, et al. Dosing of Ceftriaxone and metronidazole for children with severe acute malnutrition. Clin Pharmacol Ther. 2018;104(6):1165–1174. doi: 10.1002/cpt.1078
  • Blumer JL, Reed MD, Kaplan EL, et al. Explaining the poor bacteriologic eradication rate of single-dose ceftriaxone in group a streptococcal tonsillopharyngitis: a reverse engineering solution using pharmacodynamic modeling. Pediatrics. 2005;116(4):927–932. doi: 10.1542/peds.2004-2294
  • Dao K, Fuchs A, Andre P, et al. Dosing strategies of imipenem in neonates based on pharmacometric modelling and simulation. J Antimicrob Chemother. 2022;77(2):457–465. doi: 10.1093/jac/dkab394
  • Yoshizawa K, Ikawa K, Ikeda K, et al. Population pharmacokinetic-pharmacodynamic target attainment analysis of imipenem plasma and urine data in neonates and children. Pediatr Infect Dis J. 2013;32(11):1208–16.
  • Wu YE, Kou C, Li X, et al. Developmental population pharmacokinetics-pharmacodynamics of Meropenem in Chinese Neonates and young infants: dosing recommendations for late-onset sepsis. Children (Basel). 2022;9(12):1998. doi: 10.3390/children9121998
  • Zylbersztajn B, Parker S, Navea D, et al. Population Pharmacokinetics of Vancomycin and Meropenem in Pediatric Extracorporeal Membrane Oxygenation Support. Front Pharmacol. 2021;12:709332. 10.3389/fphar.2021.709332
  • Lima-Rogel V, Olguin-Mexquitic L, Kuhn-Cordova I, et al. Optimizing meropenem therapy for severe nosocomial infections in neonates. J Pharm Sci. 2021;110(10):3520–3526. doi: 10.1016/j.xphs.2021.05.019
  • Wang ZM, Chen XY, Bi J, et al. Reappraisal of the Optimal Dose of Meropenem in Critically Ill Infants and Children: a Developmental Pharmacokinetic-Pharmacodynamic Analysis. Antimicrob Agents Chemother. 2020;64(8):e00760–20. doi: 10.1128/AAC.00760-20
  • Cies JJ, Moore WS 2nd, Enache A, et al. Population pharmacokinetics and pharmacodynamic target attainment of Meropenem in critically Ill young children. J Pediatr Pharmacol Ther. 2017;22(4):276–285. doi: 10.5863/1551-6776-22.4.276
  • Pettit RS, Neu N, Cies JJ, et al. Population pharmacokinetics of meropenem administered as a prolonged infusion in children with cystic fibrosis. J Antimicrob Chemother. 2016;71(1):189–195. doi: 10.1093/jac/dkv289
  • Padari H, Metsvaht T, Korgvee LT, et al. Short versus long infusion of meropenem in very-low-birth-weight neonates. Antimicrob Agents Chemother. 2012;56(9):4760–4764. doi: 10.1128/AAC.00655-12
  • Smith PB, Cohen-Wolkowiez M, Castro LM, et al. Population pharmacokinetics of meropenem in plasma and cerebrospinal fluid of infants with suspected or complicated intra-abdominal infections. Pediatr Infect Dis J. 2011;30(10):844–849. doi: 10.1097/INF.0b013e31822e8b0b
  • Ohata Y, Tomita Y, Nakayama M, et al. Optimal dosage regimen of meropenem for pediatric patients based on pharmacokinetic/pharmacodynamic considerations. Drug Metab Pharmacokinet. 2011;26(5):523–531. doi: 10.2133/dmpk.DMPK-11-RG-027
  • Ikawa K, Morikawa N, Ikeda K, et al. Population pharmacokinetics and pharmacodynamics of meropenem in Japanese pediatric patients. J Infect Chemother. 2010;16(2):139–143. doi: 10.1007/s10156-009-0025-0
  • Bradley JS, Sauberan JB, Ambrose PG, et al. Meropenem pharmacokinetics, pharmacodynamics, and Monte Carlo simulation in the neonate. Pediatr Infect Dis J. 2008;27(9):794–799. doi: 10.1097/INF.0b013e318170f8d2
  • Du X, Li C, Kuti JL, et al. Population pharmacokinetics and pharmacodynamics of meropenem in pediatric patients. J Clin Pharmacol. 2006;46(1):69–75. doi: 10.1177/0091270005283283
  • Parker EM, Hutchison M, Blumer JL. The pharmacokinetics of meropenem in infants and children: a population analysis. J Antimicrob Chemother. 1995;36 Suppl A:63–71.
  • Thy M, Urien S, Foissac F, et al. Piperacillin population pharmacokinetics and dosing regimen optimization in critically Ill children receiving continuous renal replacement therapy. Antimicrob Agents Chemother. 2022;66(12):e0113522. doi: 10.1128/aac.01135-22
  • Thibault C, Lavigne J, Litalien C, et al. Population Pharmacokinetics and Safety of Piperacillin-Tazobactam Extended Infusions in Infants and Children. Antimicrob Agents Chemother. 2019;63(11):e01260–19. doi: 10.1128/AAC.01260-19
  • Thorsted A, Kristoffersson AN, Maarbjerg SF, et al. Population pharmacokinetics of piperacillin in febrile children receiving cancer chemotherapy: the impact of body weight and target on an optimal dosing regimen. J Antimicrob Chemother. 2019;74(10):2984–2993. doi: 10.1093/jac/dkz270
  • Beranger A, Benaboud S, Urien S, et al. Piperacillin population pharmacokinetics and dosing regimen optimization in Critically Ill Children with normal and augmented renal clearance. Clin Pharmacokinet. 2019;58(2):223–233. doi: 10.1007/s40262-018-0682-1
  • De Cock P, van Dijkman SC, de Jaeger A, et al. Dose optimization of piperacillin/tazobactam in critically ill children. J Antimicrob Chemother. 2017;72(7):2002–2011.
  • Nichols K, Chung EK, Knoderer CA, et al. Population pharmacokinetics and pharmacodynamics of extended-infusion piperacillin and tazobactam in Critically Ill Children. Antimicrob Agents Chemother. 2016;60(1):522–531. doi: 10.1128/AAC.02089-15
  • Cies JJ, Shankar V, Schlichting C, et al. Population pharmacokinetics of piperacillin/tazobactam in critically ill young children. Pediatr Infect Dis J. 2014;33(2):168–173. doi: 10.1097/INF.0b013e3182a743c7
  • Cies JJ, Jain J, Kuti JL. Population pharmacokinetics of the piperacillin component of piperacillin/tazobactam in pediatric oncology patients with fever and neutropenia. Pediatr Blood Cancer. 2015;62(3):477–482. doi: 10.1002/pbc.25287
  • Li Z, Chen Y, Li Q, et al. Population pharmacokinetics of piperacillin/tazobactam in neonates and young infants. Eur J Clin Pharmacol. 2013;69(6):1223–1233. doi: 10.1007/s00228-012-1413-4
  • Cohen-Wolkowiez M, Benjamin DK Jr., Ross A, et al. Population pharmacokinetics of piperacillin using scavenged samples from preterm infants. Ther Drug Monit. 2012;34(3):312–319. doi: 10.1097/FTD.0b013e3182587665
  • Zavicefta | European Medicines Agency 2020 [updated November 11, 2020]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/zavicefta
  • Zinforo | European Medicines Agency 2019 [updated October 17, 2019]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/zinforo
  • Zerbaxa | European Medicines Agency 2022 [updated September 6, 2022]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/zerbaxa
  • Vaborem | European Medicines Agency 2018 [updated December 18, 2018]. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/vaborem
  • European Medicines Agency decision P/0260/2021 of 9 July 2021 on the acceptance of a modification of an agreed paediatric investigation plan for meropenem (trihydrate)/vaborbactam (Vaborem), (EMEA-001731-PIP01-14-M03).
  • Keizer RJ, ter Heine R, Frymoyer A, et al. Model-Informed Precision Dosing at the Bedside: Scientific Challenges and Opportunities. CPT: Pharmacometrics & Systems Pharmacology. 2018 2018;7(12):785–787.
  • Maier C, de Wiljes J, Hartung N, et al. A continued learning approach for model-informed precision dosing: updating models in clinical practice. CPT Pharmacometrics Syst Pharmacol. 2022;11(2):185–198. doi: 10.1002/psp4.12745
  • Guo T, van Hest RM, Zwep LB, et al. Optimizing predictive performance of bayesian forecasting for vancomycin concentration in intensive care patients. Pharm Res. 2020;37(9):171. doi: 10.1007/s11095-020-02908-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.