1,478
Views
6
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

O-coumaric acid ester, a potential early signaling molecule in Pinus pinea and Pisolithus arhizus symbiosis established in vitro

, , , , , , & show all
Pages 297-305 | Received 02 Apr 2013, Accepted 31 Jul 2013, Published online: 03 Sep 2013

References

  • Abdul-Raman AA, Habib SA. 1989. Allelopathic effects of alfalfa (Medicago sativa) on bladygrass (Imperata cylindrica). J Chem Ecol. 15:2289–2300. doi:10.1007/BF01012082
  • Amalesh S, Gouranga D, Sanjoy KD. 2011. Roles of flavonoids in plants. Int J Pharm Sci Tech. 6:12–35.
  • Atoui AK, Mansouri A, Boskou G, Kefalas P. 2005. Tea and herbal infusions: their antioxidant activity and phenolic profile. Food Chem. 89:27–36.
  • Bais HP, Loyola Vargas VM, Flores HE, Vivanco JM. 2001. Root specific metabolism: the biology and biochemistry of underground organs. In Vitro Cell Dev Biol-Plant. 37:730–741.
  • Bais HP, Prithiviraj B, Jha AK, Ausubel FM, Vivanco JM. 2005. Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature. 434:217–221.
  • Barghini P, Montebove F, Ruzzi M, Schisser A. 1998. Optimal conditions for bioconversion of ferulic acid into vanillic acid by Pseudomonas fluorescens BF13 cells. Appl Microbiol Biothechnol. 49:309–314.
  • Bonfante P, Genre A. 2010. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun. 4: 1–11. doi:10.1038/ncomms1046
  • Canuto KM, Lima MA, Silveira ER. 2010. Amburosides C-H and 6-o-protocatechuoyl coumarin from Amburana cearensis. J Braz Chem Soc. 21:1746–1753.
  • Castro MR, Ragonezi C, Oliveira P, Zavattieri A. 2012. Patent - method for extraction of metabolic root exudates from in vitro plant cultures of Pinus pinea L. National Institute of Industrial Property Portugal (INPI) No. 105239.
  • Chambers SM, Cairney JWG. 1999. Pisolithus. In: Cairney JWG, Chambers SM, editors. Ectomycorrhizal fungi. Key genera in profile. Berlin: Springer; p. 1–31.
  • Estabrook EM, Yoder JI. 1998. Plant-plant communications: rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol. 116:1–7.
  • Graham TL. 1991. A rapid, high resolution high performance liquid chromatography profiling procedure for plant and microbial aromatic secondary metabolites. Plant Physiol. 95:584–593.
  • Harrison MJ, Dixon RA. 1993. Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant Microbe Interact. 6:643–54.
  • Hassan S, Mathesius U. 2012. The role of flavonoids in root-rhizosphere signalling opportunities and challenges for improving plant–microbe interactions. J Exp Bot. 63:3429–3444. doi:10.1093/jxb/err430
  • Kefeli VI, Kalevitch MV, Borsari B. 2003. Phenolic cycle in plants and environment. J Cell Mol Biol. 2:13–18.
  • Lagrange H, Jay-Allgmand C, Lapeyrie F. 2001. Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol. 149:349–355.
  • Lloyd G, McCown, B. 1981. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by the use of shoot tip culture. Proc Plant Prop Soc. 30:421–427.
  • Lynn DG, Chang M. 1990. Phenolic signals in combination: implications for plant development. Annu Rev Plant Physiol Plant Mol Biol. 41:497–526.
  • Mandal SM, Chakraborty D, Dey S. 2010. Phenolic acids act as signaling molecules in plant–microbe symbioses. Plant Signal Behav. 5:359–368.
  • Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F. 2001. Developmental cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol. 151:145–154.
  • Münzenberger B, Hammer E, Wray V, Schauer F, Schmidt J, Strack D. 2003. Detoxification of ferulic acid by ectomycorrhizal fungi. Mycorrhiza. 13:117–121.
  • Münzenberger B, Kotte I, Oberwinkler F. 1995. Reduction of phenolics in mycorrhizas of Larix decidua Mill. Tree Physiol. 15:191–196.
  • Ngoc TM, Lee I, Ha DT, Kim HJ, Min BS, Bae K. 2009. Tyrosinase-inhibitory constituents from the twigs of Cinnamomum cassia. J Nat Prod. 72:1205–1208.
  • Niemi K, Julkunen-Tiitto R, Häggman H, Sarjala T. 2007. Suillus variegatus causes significant changes in the content of individual polyamines and flavonoids in Scots pine seedlings during mycorrhiza formation in vitro. J Exp Bot. 58:391–401.
  • Niemi K, Salonen M, Ernstsen A, Heinonen-Tanski H, Häggman H. 2000. Application of ectomycorrhizal fungi in rooting of Scots pine fascicular shoots. Can J For Res. 30:1221–1230.
  • Oliveira P, Barriga J, Cavaleiro C, Peixe A, Potes AZ. 2003. Sustained in vitro root development obtained in Pinus pinea inoculated with ectomycorrhizal fungi. Forestry. 76:579–587.
  • Peters NK, Frost JW, Long SR. 1986. A plant flavones, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science. 233:977–980.
  • Plazonić A, Bucar F, Maleš Z, Mornar A, Nigović B, Kujundžić N. 2009. Identification and Quantification of Flavonoids and Phenolic Acids in Burr Parsley (Caucalis platycarpos L.), Using High-Performance Liquid Chromatography with Diode Array Detection and Electrospray Ionization Mass Spectrometry. Molecules. 14:2466–2490.
  • Plett JM, Martin F. 2012. Poplar root exudates contain compounds that induce the expression of MiSSP7 in Laccaria bicolor. Plant Signal Behav. 17:12–5.
  • Ragonezi C, Caldeira AT, Martins MR, Dias LS, Santos-Silva C, Ganhão E, Miralto O, Pereira I, Louro R, Klimaszewska K, Zavattieri MA. 2012. Pisolithus arhizus (Scop.) Rauschert improves growth of adventitious roots and acclimation on in vitro regenerated plantlets of Pinus pinea. Propag Ornam Plants. 12:139–147.
  • Ruzzi M, Barghini P, Montebove F, Schiesser Ponente A. 1997. Effect of the carbon source on the utilization of ferulic, m- and p-coumaric acids by a Pseudomonas fluorescens strain. Annali Di Microbiologia Ed Enzimologia. 47:87–96.
  • Scervino J, Ponce M, Erra-Balsells R, Vierheilig H, Ocampo JA, Godeas A. 2005a. Flavonoids exclusively present in mycorrhizal roots of white clover exhibit a different effect on arbuscular mycorrhizal fungi than flavonoids exclusively present in non-mycorrhizal roots of white clover. J Plant Interact. 1:15–22.
  • Scervino J, Ponce M, Erra-Balsells R, Vierheilig H, Ocampo JA, Godeas A. 2005b. Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res. 109:789–794.
  • Schützendübel A, Polle A. 2002. Plant responses to abiotic stress: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot. 53:1351–1365.
  • Seddas P, Gianinazzi-Pearson V, Schoefs B, Küster H, Wipf, D, Balu F. 2009. Communication and signaling in the plant–fungi symbiosis: the mycorrhiza. In: Baluška F, editor. Plant-environment interactions. Signaling and communication in plants. Berlin, Heidelberg: Springer; p. 45–71.
  • Sellami IH, Maamouri E, Chahed T, Wannes WA, Kchouk ME, Marzouk B. 2009. Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.). Ind Crop Prod. 30:395.
  • Siqueira JO, Safir GR, Nair MG. 1991. Stimulation of vesicular-arbuscular mycorrhizae formation by flavonoid compounds. New Phytol. 118:87–93.
  • Tsai SM, Phillips DA. 1991. Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol. 57:1485–1488.
  • Vega M, De Carvalho M, Vieira I, Braz-filho R. 2008. Chemical constituents from the Paraguayan medicinal plant, Eupatorium macrocephalum Less. J Nat Med. 62:122–123
  • Walker TS, Bais HP, Grotewold E, Vivanco JM. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132:55–51.
  • Zheng G, Jia Y, Zhao X, Zhang F, Luo S, Li S, Li W. 2012. O-Coumaric acid from invasive Eupatorium adenophorum is a potent phytotoxin. Chemoecology. 22:131–138.
  • Zeng R, Mallik A. 2006. Selected ectomycorrhizal fungi of black spruce (Picea mariana) can detoxify phenolic 484 compounds of Kalmia angustifolia. J Chem Ecol. 32:1473–1489.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.