2,165
Views
59
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Effects of exogenous nitric oxide on photosynthesis, antioxidative ability, and mineral element contents of perennial ryegrass under copper stress

, , , , &
Pages 402-411 | Received 26 Jul 2013, Accepted 15 Sep 2013, Published online: 11 Oct 2013

References

  • Altpeter F, Xu JP, Ahmed S. 2000. Generation of large number of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage and turf-type cultivars. Mol Breed. 6:519–528. doi:10.1023/A:1026589804034
  • Arienzo M, Adamo P, Cozzolino V. 2004. The potential of Lolium perenne for revegetation of contaminated soil from a metallurgical site. Sci Total Environ. 319:13–25. doi:10.1016/S0048-9697(03)00435-2
  • Beard JB. 2002. Turfgrass management for golf courses. 2nd ed. Hoboken: Wiley; p. 793.
  • Beligni MV, Lamattina L. 1999. Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta. 208:337–344. doi:10.1007/s004250050567
  • Besson-Bard A, Pugin A, Wendehenne D. 2008. New insights into nitric oxide signaling in plants. Annu Rev Plant Biol. 59:21–39. doi:10.1146/annurev.arplant.59.032607.092830
  • Brahim L, Mohamed M. 2011. Effects of copper stress on antioxidative enzymes, chlorophyll and protein content in Atriplex halimus. Afr J Biotechnol. 50:10143–10148.
  • Chen F, Wang F, Sun HY, Cai Y, Mao WH, Zhang GP, Vincze E, Wu FB. 2010. Genotype-dependent effect of exogenous nitric oxide on Cd-induced changes in antioxidative metabolism, ultrastructure, and photosynthetic performance in barley seedlings (Hordeum vulgare). J Plant Growth Regul. 29:394–408. doi:10.1007/s00344-010-9151-2
  • Coppens P, Novozhilova I, Kovalevsky A. 2002. Photoinduced linkage isomers of transition-metal nitrosyl compounds and related complexes. Chem Rev. 102:861–883. doi:10.1021/cr000031c
  • Cui XM, Zhang YK, Wu XB, Liu CS. 2010. The investigation of the alleviated effect of copper toxicity by exogenous nitric oxide in tomato plants. Plant Soil Environ. 56:274–281.
  • Elstner EF, Heupel A. 1976. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Anal Biochem. 70:616–620. doi:10.1016/0003-2697(76)90488-7
  • Fecht-Christoffers MM, Braun HP, Lemaitre-Guillier C, van Dorsselaer A, Horst WJ. 2003. Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol. 133: 1935–1946. doi:10.1104/pp.103.029215
  • Fernandes JC, Henriques FS. 1991. Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev. 57:246–273. doi:10.1007/BF02858564
  • Harrison MD, Jones CE, Dameron CT. 1999. Copper chaperones: function structure and copper-binding properties. JBIC. 4:145–153. doi:10.1007/s007750050297
  • Hattab S, Chouba L, Benkheder M, Mahouachi T, Boussetta H. 2009. Cadmium- and copper-induced DNA damage in Pisum sativum roots and leaves as determined by the Comet assay. Plant Biosyst. 143:6–11. doi:10.1080/11263500903187035
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125:189–198. doi:10.1016/0003-9861(68)90654-1
  • Hu KD, Hu LY, Li YH, Zhang FQ, Zhang H. 2007. Protective roles of nitric oxide on germination and antioxidant metabolism in wheat seeds under copper stress. Plant Growth Regul. 53:173–183. doi:10.1007/s10725-007-9216-9
  • Jayakumar K, Abdul Jaleel C, Vijayarengan P. 2009. Effect of different concentrations of cobalt on pigment contents of soybean. Bot Res Int. 2:153–156.
  • John R, Ahmad P, Gadgil K, Sharma S. 2009. Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod. 3:65–76.
  • Kaplan M. 1999. Accumulation of Cu in soils and leaves of tomato plants in greenhouses in Turkey. J Plant Nutr. 22:237–244. doi:10.1080/01904169909365622
  • Kechavarzi C, Pettersson K, Leeds-Harrison P, Ritchie L, Ledin S. 2007. Root establishment of perennial ryegrass (L. perenne) in diesel contaminated subsurface soil layers. Environ Pollut. 145:68–74. doi:10.1016/j.envpol.2006.03.039
  • Kevresan S, Petrovic N, Popovic M, Kandrac J. 2001. Nitrogen and protein metabolism in young pea plants as affected by different concentrations of nickel, cadmium, lead, and molybdenum. J Plant Nutr. 24:1633–1644. doi:10.1081/PLN-100106026
  • Knudson LL, Tibbitts TW, Edwards GE. 1997. Measurement of ozone injury by determination of leaf chlorophyll concentration. Plant Physiol. 60:606–608. doi:10.1104/pp.60.4.606
  • Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G. 2003. Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol. 54:109–136. doi:10.1146/annurev.arplant.54.031902.134752
  • Losak T, Hlusek J, Martinec J, Jandák J, Szostkova M, Filipcík R, Manásek J, Prokes K, Peterka J, Varga L, et al. 2011. Nitrogen fertilization does not affect micronutrient uptake in grain maize (Zea mays L.). Acta Agric Scand Sect B – SP. 61:543–550.
  • Maksymiec W. 1997. Effect of copper on cellular processes in higher plants. Photosynthetica. 34:321–342. doi:10.1023/A:1006818815528
  • Maksymiec W, Bednara J, Baszynski T. 1995. Responses of runner plants to excess copper as a function of plant growth stages: effects on morphology and structure of primary leaves and their chloroplast ultrastructure. Photosynthetica. 31:427–435.
  • Martinez GR, Mascio PD, Bonini MG, Augusto O, Briviba K, Sies H. 2000. Peroxynitrite does not decompose to singlet oxygen (1gO2) and nitroxyl (NO-). Proc Natl Acad Sci. 97:10307–10312. doi:10.1073/pnas.190256897
  • Mihailovic N, Drazic G. 2011. Incomplete alleviation of nickel toxicity in bean by nitric oxide supplementation. Plant Soil Environ. 57:396–401. doi:10.1080/00380768.2011.582588
  • Nakano Y, Asada K. 1981. Hydrogen peroxide scanvenged by ascorbated specific peroxidase in spinach chloroplast. Plant Cell Physiol. 22:867–880.
  • Nickel RS, Cunningham BA. 1969. Improved peroxidase assay method using Ieuco 2, 3, 6-trichlcroindophenol and application to comparative measurements of peroxidase catalysis. Anal Biochem. 27:292–299. doi:10.1016/0003-2697(69)90035-9
  • Patra HL, Kar M, Mishre D. 1978. Catalase activity in leaves and cotyledons during plant development and senescence. Biochem Pharmacol. 172:385–390.
  • Polle A, Schützendübel A. 2004. Heavy metal signalling in plants: linking cellular and organismic responses. In: Hirt H, Schinozaki K, editors. Plant Responses to Abiotic Stress. Berlin, Heidelberg: Springer–Verlag; p. 187–216.
  • Qiao W, Fan LM. 2008. Nitric oxide signaling in plant responses to abiotic stresses. J Integr Plant Biol. 50:1238–1246. doi:10.1111/j.1744-7909.2008.00759.x
  • Ramirez L, Zabaleta EJ, Lamattina L. 2010. Nitric oxide and frataxin: two players contributing to maintain cellular iron homeostasis. Ann Bot. 46:415–422.
  • Romero-Puertas MC, Laxa M, Matte A, Zaninotto F, Finkemeier I, Jones AM, Perazzolli M, Vandelle E, Dietz KJ, Delledonne M. 2007. S-Nitrosylation of peroxiredoxin II E promotes peroxynitrite-mediated tyrosine nitration. Plant Cell. 19:4120–4130. doi:10.1105/tpc.107.055061
  • Sheldon AR, Menzies NW. 2005. The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant Soil. 278:341–349. doi:10.1007/s11104-005-8815-3
  • Siddiqui MH, Al-Whaibi MH, Basalah MO. 2011. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma. 248:447–455. doi:10.1007/s00709-010-0206-9
  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli PK. 2009. Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide. 20:289–297. doi:10.1016/j.niox.2009.02.004
  • Stewart RC, Bewley JD. 1980. Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 65:245–248. doi:10.1104/pp.65.2.245
  • Tewari RK, Hahn EJ, Paek KY. 2008. Modulation of copper toxicity-induced oxidative damage by nitric oxide supply in the adventitious roots of Panax ginseng. Plant Cell Rep. 27:171–181. doi:10.1007/s00299-007-0423-7
  • Tu J, Shen WB, Xu LL. 2003. Regulation of nitric oxide on the aging process of wheat leaves. Acta Botanica Sinica. 45:1055–1062.
  • Van Assche F, Clijsters H. 1990. Effects of metals on enzyme activity in plant. Plant Cell Environ. 13:195–206. doi:10.1111/j.1365-3040.1990.tb01304.x
  • Vantová I, Bačkor M, Klejdus B, Bačkorová M, Kováčik J. 2013. Copper uptake and copper-induced physiological changes in the epiphytic lichen Evernia prunastri. Plant Growth Regul. 69:1–9. doi:10.1007/s10725-012-9741-z
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 151: 59–66. doi:10.1016/S0168-9452(99)00197-1
  • Wang QH, Liang X, Dong YJ, Xu LL, Zhang XW, Hou J, Fan ZY. 2013a. Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul. 69:11–20. doi:10.1007/s10725-012-9742-y
  • Wang QH, Liang X, Dong YJ, Xu LL, Zhang XW, Kong J, Liu S. 2013b. Effects of exogenous salicylic acid and nitric oxide on physiological characteristics of perennial ryegrass under cadmium stress. J Plant Growth Regul. doi:10.1007/s00344-013-9339-3
  • Wang YS, Yang ZM. 2005. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant Cell Physiol. 46:1915–1923. doi:10.1093/pcp/pci202
  • Xiong J, An L, Lu H, Yhu C. 2009. Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta. 230:755–765. doi:10.1007/s00425-009-0984-5
  • Xu J, Wang WY, Yin HX, Liu XJ, Sun H, Mi Q. 2010. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress. Plant Soil. 326:321–330. doi:10.1007/s11104-009-0011-4
  • Xu LL, Fan ZY, Dong YJ, Kong J, Liu S, Hou J, Bai XY. 2013a. Effects of exogenous NO supplied with different approaches on cadmium toxicity in lettuce seedlings. Plant Biosyst. Available from: http://dx.doi.org/10.1080/11263504.2013.822030
  • Xu LL, Dong YJ, Fan ZY, Kong J, Liu S, Bai XY. 2013b. Effects of the application of exogenous NO at different growth stage on the physiological characteristics of peanut grown in Cd-contaminated soil. J Plant Interact. Available from: http://www.tandfonline.com/doi/full/10.1080/17429145.2013.830780
  • Yu CC, Hung KT, Kao CH. 2005. Nitric oxide reduces Cu toxicity and Cu-induced NH4+ accumulation in rice leaves. J Plant Physiol. 162:1319–1330. doi:10.1016/j.jplph.2005.02.003
  • Zhang FQ, Wang YS, Lou ZP, Dong GD. 2007. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemotherapy. 67:44–50.
  • Zhang Y., Han X., Chen X., Jin H., Cui X. 2009. Exogenous nitric oxide on antioxidative system and ATPase activities from tomato seedlings under copper stress. Scientia Hortic. 123:217–223. doi:10.1016/j.scienta.2009.08.015
  • Zhu JK, Liu JP, Xiong LM. 1998. Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell. 10:1181–1191.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.