1,121
Views
3
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Isolation of (2S,4R)-2-amino-4-methyl-hex-5-enoic acid, a nonprotein amino acid, as an allelochemical from the fruiting bodies of Boletus fraternus Peck.

, &
Pages 627-631 | Received 20 Oct 2013, Accepted 31 Dec 2013, Published online: 30 Jan 2014

References

  • Araya H. 2005. Allelopathic activities in litters of mushrooms. In: Clark JM, Ohkawa H, editors. New discoveries in agrochemicals. Washington, DC: ACS; p. 63–72.
  • Araya H. 2007. Fruiting bodies of mushrooms as allelopathic plants. In: Fujii Y, Hiradate S, editors. Allelopathy – new concepts and methodology. Enfield: Science Publisher; p. 341–352.
  • Araya H, Otaka J, Nishihara E, Fujii Y. 2012. First isolation and identification of salicylate from Betula grossa var. ulmifolia – a potent root growth inhibitor. Allelopathy J. 30:153–158.
  • Badri DV, Weir TL, Lelie D, Vivanco1 JM. 2009. Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotech. 20:642–650. 10.1016/j.copbio.2009.09.014
  • Biemelt S, Sonnewald U. 2006. Plant–microbe interactions to probe regulation of plant carbon metabolism. J Plant Physiol. 163:307–318. 10.1016/j.jplph.2005.10.011
  • Chaumont JP, Simeray J. 1985. Propriétés allélopathiques de 114 extraits de carpophores de champignons sur la germination de semences de radis [Allelopathic effects of 114 mushroom fruiting bodies on the germination of radish seeds]. Revue D Ecologie Et De Biologie Du Sol. 22:331–339.
  • Choi JH, Abe N, Tanaka H, Fushimi K, Nishina Y, Morita A, Kiriiwa Y, Motohashi R, Hashizume D, Koshino H, Kawagishi H. 2010. Plant-growth regulator, imidazole-4-carboxamide produced by fairy-ring forming fungus Lepista sordida. J Agric Food Chem. 58:9956–9959. 10.1021/jf101619a
  • Choi JH, Fushimi K, Abe N, Tanaka H, Maeda S, Morita A, Hara M, Motohashi R, Matsunaga J, Eguchi Y, et al. 2010. Disclosure of the “fairy” of fairy-ring forming fungus Lepista sordida. Chem Bio Chem. 11:1373–1377. 10.1002/cbic.201000112
  • Dangl J, Jones JDG. 1998. Plant–microbe interactions – affairs of the plant: colonization, intolerance, exploitation and co-operation in plant–microbe interactions. Curr Opin Plant Biol. 1:285–287. 10.1016/1369-5266(88)80047-5
  • Endo Y, Minowa A, Kanamori R, Araya H. 2012. A rare α-pyrone from bitter tooth mushroom, Sarcodon scabrosus (Fr.) Karst. Biochem Syst Ecol. 44:286–288. 10.1016/j.bse.2012.06.018
  • Gellert E, Halpern B, Rudzats R. 1973. Amino acids and steroids of a New Guinea Boletus. Phytochemistry. 12:689–692. 10.1016/S0031-9422(00)84465-9
  • Gellert E, Halpern B, Rudzats R. 1978. The absolute configuration of the new amino acid 2-amino-4-methyl-hex-5-enoic acid from a new guinea Boletus. Phytochemistry. 17:802. 10.1016/S0031-9422(00)94235-3
  • Jonassona S, Castroa J, Michelsen A. 2006. Interactions between plants, litter and microbes in cycling of nitrogen and phosphorus in the arctic. Soil Biol Biochem. 38:526–532. 10.1016/j.soilbio.2005.05.024
  • Kelly RB, Martin DG, Hanka LJ. 1969. 2-Amino-4-methyl-5-hexenoic acid, a naturally occurring antimetabolite antibiotic. Can J Chem. 47:2504–2506. 10.1139/v69-414
  • Li C, Oberlies NH. 2005. The most widely recognized mushroom: chemistry of the genus Amanita. Life Sci. 78:532–538. 10.1016/j.lfs.2005.09.003
  • Lincoff GH. 1981. National Audubon society field guide to North American mushrooms. New York (NY): Chanticleer Press Inc.; p. 11–13.
  • Lindequist U, Niedermeyer THJ, Jülich WD. 2005. The pharmacological potential of mushroom. eCAM. 2:285–299.
  • Liu JK. 2007. Secondary metabolites from higher fungi in China and their biological activity. Drug Discov Ther. 1:94–103.
  • Mo MH, Ma HM, Xiao QF. 2004. Study of the allelopathic effects of the ethanol-soluble extracts of Lactarius hatsudake on Oryza sativa and Echinoloa crusgalli. Acta Ecol Sin. 24:2951–2954.
  • Molisch H. 1937. Der Einfluβ einer Pflanze auf die andere Allelopathy [The influence of one plant on another: allelopathy]. Jena: Fischer; p. 41.
  • Negishi O, Negishi Y, Aoyagi Y, Sugawara T, Ozawa T. 2001. Mercaptan-capturing properties of mushrooms. J Agr Food Chem. 49:5509–5515. 10.1021/jf010534z
  • Otaka J, Araya H. 2013. Two new isodrimene sesquiterpenes from the fungal culture broth of Polyporus arcularius. Phytochem Lett. 6:598–601. 10.1016/j.phytol.2013.07.010
  • Otaka J, Taiko S, Goseki S, Miketa M, Araya H. 2013. Isolation and bioassay studies of Cryptoporic acids from Cryptoporus volvatus fruiting bodies. Mushroom Sci Biotech. 21:113–122.
  • Paterson RRM. 2006. Ganoderma – a therapeutic fungal biofactory. Phytochemistry. 67:1985–2001. 10.1016/j.phytochem.2006.07.004
  • Quang DN, Hashimoto T, Asakawa Y. 2006. Inedible mushroom: a good source of biologically active substances. Chem Rec. 6:79–99. 10.1002/tcr.20074
  • Rudzats R, Gellert E, Halpern B. 1972. Constituents of a new guinea Boletus – isolation and identification of a new unsaturated α-amino acid. Biochem Biophys Res Commun. 47:290–292. 10.1016/S0006-291X(72)80041-X
  • Snider BB, Dunčia JV. 1981. Stereospecific synthesis of both diastereomers of (±)-2-amino-4-methyl-5-hexenoic acid. J Org Chem. 46:3223–3226. 10.1021/jo00329a015
  • Zhong JJ, Xiao JH. 2009. Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Adv Biochem Eng Biotech. 113:79–150.
  • Zjawiony JK. 2004. Biologically active compounds from Aphyllophorales (Polypore) fungi. J Nat Prod. 67:300–310. 10.1021/np030372w