1,693
Views
10
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

ACC-deaminase and/or nitrogen-fixing rhizobacteria and growth response of tomato (Lycopersicon pimpinellfolium Mill.)

, &
Pages 869-882 | Received 31 May 2014, Accepted 09 Sep 2014, Published online: 03 Dec 2014

References

  • Ahemad M. 2012. Implications of bacterial resistance against heavy metals in bioremediation: a review. Inst Integ Omics Appl Biotech. 3:39–46.
  • Ahemad M, Malik A. 2011. Bioaccumulation of heavy metals by zinc resistant bacteria isolated from agricultural soils irrigated with wastewater. Bacteriol J. 2:12–21. 10.3923/bj.2012.12.21
  • Ali SZ, Sandhya V, Grover M, Linga VR, Bandi V. 2011. Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. J Plant Interact. 6:239–246. 10.1080/17429145.2010.545147
  • Arnon DI. 1949. Copper induced enzyme in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1–15. 10.1104/pp.24.1.1
  • Arshad M, Saleem M, Hussain S. 2007. Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol. 25:356–362. 10.1016/j.tibtech.2007.05.005
  • Asghar HN, Zahir ZA, Arshad M. 2004. Screening rhizobacteria for improving growth, yield and oil contents of canola (Brassica napus L.). Aust J Agri Res. 55:187–194. 10.1071/AR03112
  • Buresh RJ, Austin ER, Craswell ET. 1982. Analytical methods in N-15 research. Fert Res. 3:37–62. 10.1007/BF01063408
  • Çakmakçi R, Dönmez F, Aydm A, Şahin F. 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol Biochem. 38:1482–1487.
  • Cakmak I, Horst WJ. 1991. Effect of aluminium on lipid peroxidation, superoxidase dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant. 83:463–468. 10.1111/j.1399-3054.1991.tb00121.x
  • Campanelli A, Ruta C, Tagarelli A, Morone-Fortunato I, Mastro GD. 2013. Effectiveness of mycorrhizal fungi on globe artichoke (Cynara cardunculus L. var. scolymus) micropropagation. J Plant Interact. 9:100–106. 10.1080/17429145.2013.770928
  • Chapman HD, Pratt PF. 1961. Methods of analysis for soils, plants and water. Berkeley: University of California.
  • Damodaran T, Rai RB, Jha SK, Kannan R, Pandey BK, Vijayalaxmi Sah, Mishra VK, Sharma DK. 2014. Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J Plant Interact. 9:577–584. 10.1080/17429145.2013.873958
  • Davies KG, Whitbread R. 1989. A comparison of method for measuring the colonization of root system by fluorescent pseudomonads. Plant Soil. 116:239–246. 10.1007/BF02214553
  • Dworken M, Foster J. 1958. Experiment with some microorganisms which utilize ethane and hydrogen. J Bacteriol. 75:92–601.
  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP. 2008. Alleviation of water stress effects in common bean (Phaseolus vulgaris L.) by co-inoculation Paenibacillus and Rhizobium tropici. Applied Soil Ecol. 40:182–188. 10.1016/j.apsoil.2008.04.005
  • Fröhlich A, Buddrus-Schiemann K, Durner J, Hartmann A, von Rad U. 2012. Response of barley to root colonization by Pseudomonas sp. DSMZ 13134 under laboratory, greenhouse, and field conditions. J Plant Interact. 7:1–9.
  • Gamalero E, Berta G, Glick BR. 2009. The use of microorganisms to facilitate the growth of plants in saline soils. In: Khan, MS, Zaidi A, Musarrat J, editors. Microbial strategies for crop improvement. New York: Springer; p. 1–22.
  • Glick BR. 2012. Plant growth-promoting bacteria: mechanisms and applications, Hindawi Publishing Corporation, Scientifica. 2012, Article ID 963401; p. 15. doi:10.6064/2012/963401
  • Habig WH, Pabst MJ, Jakoby WB. 1974. Glutathione S-transferases, the first enzymatic step in mercapturic acid formation. J Biol Chem. 249:7130–7139.
  • Hassan W. 2013. C and N mineralization and dissolved organic matter potentials of two contrasting plant residues: effects of residue type, moisture and temperature. Acta Agr Scand B-S P. 63:642–652.
  • Hassan W, Akmal M, Muhammad I, Younas M, Zahaid KR, Ali F. 2013. Response of soil microbial biomass and enzymes activity to cadmium (Cd) toxicity under different soil textures and incubation times. Aust J Crop Sci. 7:674–680.
  • Hassan W, Bano R, Bashir F, David J. 2014. Comparative effectiveness of ACC-deaminase and/or nitrogen fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Environ Sci Pollut Res. doi:10.1002/clen.201300727
  • Hassan W, Bano R, Khatak BU, Hussain I, Yousaf M, David J. 2014. Temperature sensitivity and soil organic carbon pools decomposition under different moisture regimes: effect on total microbial and enzymatic activity. CLEAN – Soil, Air, Water. 21:10983–10996. 10.1002/clen.201300727
  • Hassan W, Chen W, Cai P, Huang Q. 2013. Oxidative enzymes, the ultimate regulator: implications for factors affecting their efficiency. J Environ Qual. 42:1779–1790. 10.2134/jeq2013.05.0204
  • Hassan W, Chen W, Cai P, Huang Q. 2014. Estimation of enzymatic, microbial and chemical properties in Brown soil by microcalorimetry. J Therm Anal Cal. 116:969–998.
  • Hassan W, Chen W, Huang Q, Mohamed I. 2013. Microcalorimetric evaluation of soil microbiological properties under plant residues and dogmatic water gradients in Red soil. Soil Sci Plant Nut. 59:858–870. 10.1080/00380768.2013.845735
  • Hassan W, David J. 2014. Effect of lead pollution on soil microbiological index under spinach (Spinacia oleracea L.) cultivation. J Soils Sediments. 14:44–59. 10.1007/s11368-013-0802-3]SS
  • Hassan W, David J, Abbas F. 2014. Effect of type and quality of two contrasting plant residues on CO2 emission potential of Ultisol soil: implications for indirect influence of temperature and moisture. Catena. 114:90–96. 10.1016/j.catena.2013.11.001
  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol. 60:579–598. 10.1007/s13213-010-0117-1
  • Honma M, Shimomura T. 1978. Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agri Biol Chem. 42:1825–1831. 10.1271/bbb1961.42.1825
  • Jan AT, Azam M, Ali A, Haq QMR. 2011. Novel approaches of beneficial Pseudomonas in mitigation of plant diseases–an appraisal. J Plant Interact. 6:195–205. 10.1080/17429145.2010.541944
  • Khalid A, Akhtar MJ, Mahmood MH, Arshad M. 2006. Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology. 75:231–236. 10.1134/S0026261706020196
  • Lal L. 2002. Phosphate mineralizing and solubilizing microorganisms. Phosphatic biofertilizers. Udaipur: Agrotech Publishing Academy; p. 224.
  • Mayak S, Tirosh T, Glick BR. 2004. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem. 42:565–572. 10.1016/j.plaphy.2004.05.009
  • Nakano Y, Azada K. 1987. Purification of ascorbate peroxidase in spinach chloroplasts: its inactivation in ascorbate depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28:131–140.
  • Naveed M, Zahir ZA, Khalid M, Asghar HN, Akhtar MJ, Arshad M. 2008. Rhizobacteria containing ACC-deaminase for improving growth and yield of wheat under fertilized conditions. Pak J Bot. 40:1231–1241.
  • Premono HME, Moawad AM, Vlek PLG. 1996. Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indonesian J Crop Sci. 11:13–23.
  • Radhakrishnan R, Kang SM, Baek IY, Lee IJ. 2014. Characterization of plant growth-promoting traits of Penicillium species against the effects of high soil salinity and root disease. J Plant Interact. 9:754–762. 10.1080/17429145.2014.930524
  • Raymond J, Siefert JL, Staples CR, Blankenship RE. 2004. The natural history of nitrogen fixation. Mol Biol Evol. 21:541–554. 10.1093/molbev/msh047
  • Regan DL. 1988. Other micro-algae. In: Borowitzka MA, Borowitzka LJ, editors. Microalgal biotechnology. Cambridge: Cambridge University Press; p. 135–150.
  • Sahran BS, Nehra V. 2011. Plant growth promoting rhizobacteria: a critical review. Lif Sci Med Res. 2011:LSMR-21.
  • Saleem M, Arshad M, Hussain S, Bhatti AS. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Indian Microbiol Biotechnol. 34:635–648. 10.1007/s10295-007-0240-6
  • Sarwar M, Arshad M, Martins DA, Frankenberger Jr. 1992. Tryptophan-dependent biosynthesis of auxins in soil. Plant Soil. 147:207–215. 10.1007/BF00029072
  • Savci S. 2012. An agricultural pollutant: chemical fertilizer. Int J Environ Sci Dev. 3:77–80.
  • Shaharoona B, Arshad M, Zahir ZA. 2006. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean. Lett Appl Microbiol. 42:155–159. 10.1111/j.1472-765X.2005.01827.x
  • Shaharoona B, Arshad M, Zahir ZA, Mahmood MH. 2003. 1-aminocyclopropane-1-carboxylate (ACC) enrichment: an effective approach to screen plant growth promoting rhizobacteria for maize. Pak J Agri Sci. 40:126–132.
  • Spaepen S, Vanderleyden J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. 3(4): pii: a001438. Available from: http://dx.doi.org/10.1101/cshperspect.a001438.
  • Stefan M, Munteanu N, Stoleru V, Mihasan M. 2013. Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status and yield of runner bean. Rom Biotech Letters. 18(2):8132–8143.
  • Vafadar F, Amooaghaie R, Otroshy M. 2014. Effects of plant growth-promoting rhizobacteria and Arbuscular mycorrhizal fungus on plant growth, stevioside, NPK and chlorophyll content of Stevia rebaudiana. J Plant Interact. 1:128–136. 10.1080/17429145.2013.779035
  • Van-Schouwenberg JCH, Walinge I. 1973. Methods of analysis for plant material. Wageningen (The Netherlands): Agriculture University Wageningen.
  • Wollum II AG. 1982. Cultural methods for soil microorganisms. In: Page AL, editor. Methods of soil analysis, part 2: chemical and microbiological properties, Agronomy No. 9. Madison, WI: ASA; p. 781–802.
  • Zafar-ul-Hye M, Zahir ZA, Shahzad SM, Naveed M, Arshad M, Khalid M. 2007. Preliminary screening of rhizobacteria containing ACC-deaminase for promoting growth of lentil seedlings under axenic conditions. Pak J Bot. 39:1725–1738.
  • Zahir ZA, Arshad M, Frankenberger WT. 2004. Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron. 81:97–168. 10.1016/S0065-2113(03)81003-9
  • Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M. 2008. Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. J Microbiol Biotechnol. 18:958–963.
  • Zaidi A, Khan MS, Ahemad M, Oves M. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung. 56:263–284. 10.1556/AMicr.56.2009.3.6
  • Zhou Z, Zhang C, Zhou W, Li W, Chu L, Yan J, Li H. 2014. Diversity and plant growth-promoting ability of endophytic fungi from the five flower plant species collected from Yunnan, Southwest China. J Plant Interact. 9:585–591. 10.1080/17429145.2013.873959