3,242
Views
32
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Reducing carbon: phosphorus ratio can enhance microbial phytin mineralization and lessen competition with maize for phosphorus

, , , , &
Pages 850-856 | Received 23 Aug 2014, Accepted 14 Oct 2014, Published online: 17 Nov 2014

References

  • Attar HA, Blavet D, Selim EM, Abdelhamid MT, Drevon JJ. 2012. Relationship between phosphorus status and nitrogen fixation by common beans (Phaseolus vulgaris L.) under drip irrigation. Int J Environ Sci Technol. 9:1–13. 10.1007/s13762-011-0001-y
  • Bittman S, Kowalenko CG, Hunt DE, Forge TA, Wu X. 2006. Starter phosphorus and broadcast nutrients on corn with contrasting colonization by mycorrhizae. Agron J. 98:394–401. 10.2134/agronj2005.0093
  • Brookes PC, Powlson DS, Jenkinson DS. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem. 14:319–329. 10.1016/0038-0717(82)90001-3
  • Buchan D, Gebremikael MT, Ameloot N, Sleutel S, De Neve S. 2013. The effect of free-living nematodes on nitrogen mineralisation in undisturbed and disturbed soil cores. Soil Biol Biochem. 60:142–155. 10.1016/j.soilbio.2013.01.022
  • Butterly CR, Bunemann EK, McNeill AM, Baldock JA, Marschner P. 2009. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem. 41:1406–1416. 10.1016/j.soilbio.2009.03.018
  • Cahill S, Johnson A, Osmond D, Hardy D. 2008. Response of corn and cotton to starter phosphorus on soils testing very high in phosphorus. Agron J. 100:537–542. 10.2134/agronj2007.0202
  • Chen CR, Condron LM, Davis MR, Sherlock RR. 2002. Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.). Soil Biol Biochem. 34:487–499. 10.1016/S0038-0717(01)00207-3
  • Cordell D, Drangert J-O, White S. 2009. The story of phosphorus: global food security and food for thought. Global Environ Change. 19:292–305. 10.1016/j.gloenvcha.2008.10.009
  • Costigan PA. 1984. The effects of placing small amounts of phosphate fertilizer close to the seed on growth and nutrient concentrations of lettuce. Plant Soil. 79:191–201. 10.1007/BF02182341
  • DeForest JL, Smemo KA, Burke DJ, Elliott HL, Becker JC. 2012. Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests. Biogeochemistry. 109:189–202. 10.1007/s10533-011-9619-6
  • Djodjic F, Mattsson L. 2013. Changes in plant-available and easily soluble phosphorus within 1 year after P amendment. Soil Use Manage. 29:45–54.
  • Gahoonia T, Nielsen N. 1992. The effects of root-induced pH changes on the depletion of inorganic and organic phosphorus in the rhizosphere. Plant Soil. 143:185–191. 10.1007/BF00007872
  • Harrison AF. 1987. Soil organic phosphorus: a review of world literature. Wallingford: CAB International.
  • Hayatsu M, Tago K, Saito M. 2008. Various players in the nitrogen cycle: diversity and functions of the microorganisms involved in nitrification and denitrification. Soil Sci Plant Nutr. 54:33–45. 10.1111/j.1747-0765.2007.00195.x
  • Hayes JE, Richardson AE, Simpson RJ. 1999. Phytase and acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Aust J Plant Physiol. 26:801–809.
  • Hodge A, Paterson E, Thornton B, Millard P, Killham K. 1997. Effects of photon flux density on carbon partitioning and rhizosphere carbon flow of Lolium perenne. J Exp Bot. 48:1797–1805.
  • Jackson ML. 1958. Soil chemical analysis. Englewood Cliffs: Prentice-Hall.
  • Jorquera MA, Hernández MT, Rengel Z, Marschner P, de la Luz Mora M. 2008. Isolation of culturable phosphobacteria with both phytate-mineralization and phosphate-solubilization activity from the rhizosphere of plants grown in a volcanic soil. Biol Fertil Soils. 44:1025–1034. 10.1007/s00374-008-0288-0
  • Krey T, Caus M, Baum C, Ruppel S, Eichler-Lobermann B. 2011. Interactive effects of plant growth-promoting rhizobacteria and organic fertilization on P nutrition of Zea mays L. and Brassica napus L. J Plant Nutr Soil Sci. 174:602–613. 10.1002/jpln.200900349
  • Kuzyakov Y, Friedel JK, Stahr K. 2000. Review of mechanisms and quantification of priming effects. Soil Biol Biochem. 32:1485–1498. 10.1016/S0038-0717(00)00084-5
  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, del Rio TG, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. 10.1038/nature11237
  • Marschner P. 2007. Plant microbe interactions in the rhizosphere and nutrient cycling. In: Marschner P, Rengel Z, editors. Nutrient cycling in terrestrial ecosystems, soil biology series. Heidelberg: Springer; p. 159–182.
  • Marschner P. 2008. The role of rhizosphere microorganisms in relation to P uptake by plants. In: White PJ, Hammond JP, editors. The ecophysiology of plant-phosphorus interactions. Heidelberg: Springer; p. 165–176.
  • Neumann G. 2006. Quantitative determination of acid phosphatase activity in the rhizosphere and on the root surface. In: Jones DL. 4.2 Biochemistry. In: Luster J, Finlay R, editors. Handbook of methods used in rhizosphere research, Online Edition. Available from: http://www.rhizo.at/handbook.
  • Olsen SR, Cole CV, Watanabe FS, Dean LA. 1954. Estimation of available phosphorus in soils by extraction with sodium carbonate. US Dep Agric Circ; p. 939.
  • Radersma S, Grierson PF. 2004. Phosphorus mobilization in agroforestry: organic anions, phosphatase activity and phosphorus fractions in the rhizosphere. Plant Soil. 259:209–219. 10.1023/B:PLSO.0000020970.40167.40
  • Richardson AE. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol. 28:897–906. 10.1104/pp.111.175448
  • Richardson AE, Hadobas PA, Hayes JE. 2000. Acid phosphomonoesterase and phytase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ. 23:397–405. 10.1046/j.1365-3040.2000.00557.x
  • Richardson AE, Simpson RJ. 2011. Soil microorganisms mediating phosphorus availability. Plant Physiol. 156:989–996. 10.1104/pp.111.175448
  • Rodriguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 17:319–339. 10.1016/S0734-9750(99)00014-2
  • Ross DJ, Tate KR, Scott NA, Feltham CW. 1999. Land-use change: effects on soil carbon, nitrogen and phosphorus pools and fluxes in three adjacent ecosystems. Soil Biol Biochem. 31:803–813. 10.1016/S0038-0717(98)00180-1
  • Schilling G, Gransee A, Deubel A, LeZoviE G, Ruppe S. 1998. Phosphorus availability, root exudates, and microbial activity in the rhizosphere. Z Pflanzenernähr Bodenk. 161:465–478.
  • Shobirin A, Farouk A, Greiner R. 2009. Potential phytate-degrading enzyme producing bacteria isolated from Malaysian maize plantation. Afr J Biotechnol. 8:3540–3546.
  • Song QH, Li FM, Liu HS, Wang J, Li SQ. 2003. Effect of plastic film mulching on soil microbial biomass in spring wheat field in semi-arid loess area. Chin J Appl Ecol. 14:1512–1516.
  • Speir TW, Ross DJ. 1978. Soil phosphatase and sulphatase. In: Burns RG, editor. Soil enzymes. New York: Academic Press; p. 198–235.
  • Spohn M, Kuzyakov Y. 2013. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem. 61:69–75. 10.1016/j.soilbio.2013.02.013
  • Stevenson FJ. 1986. Cycles of soil carbon, nitrogen, phosphorus, sulfur, micronutrients. New York: Wiley.
  • Tabatabai MA, Bremner JM. 1969. Use of p-nitrophenyl phosphate for assay of phosphatase activity. Soil Biol Biochem. 1:301–307. 10.1016/0038-0717(69)90012-1
  • Thomas RL, Sheard RW, Moyer JR. 1967. Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant material using a single digestion. Agron J. 59:240–243. 10.2134/agronj1967.00021962005900030010x
  • Turner BL, Paphazy MJ, Haygarth PM, McKelvie ID. 2002. Inositol phosphates in the environment. Philos Trans R Soc London Ser B. 357:449–469. 10.1098/rstb.2001.0837
  • Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol. 157:423–447. 10.1046/j.1469-8137.2003.00695.x
  • Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA. 2012. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol. 195:306–320. 10.1111/j.1469-8137.2012.04190.x
  • Wolf DC, Skipper HD. 1994. Soil sterilization. In: Weaver RW, Angle JS, Bottomley PS, editors. Methods of soil analysis, part 2: microbiological and biochemical properties. Madison: Soil Science Society of America; p. 41–52.
  • Wu JS, Huang M, Xiao HA, Su YR, Tong CL, Huang DY, Syers JK. 2007. Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments. Plant Soil. 290:333–342. 10.1007/s11104-006-9165-5
  • Zhang L, Fan JQ, Ding XD, He XH, Zhang FS, Feng G. 2014. Hyphosphere interactions between an arbuscular mycorrhizal fungus and a phosphate solubilizing bacterium promote phytate mineralization in soil. Soil Biol Biochem. 74:177–183. 10.1016/j.soilbio.2014.03.004
  • Zoysa AKN, Loganathan P, Hedley MJ. 1997. A technique for studying rhizosphere processes in tree crops: soil phosphorus depletion around camellia (Camellia japonica L.) roots. Plant Soil. 190:253–265. 10.1023/A:1004264830936