4,901
Views
31
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Functional genomics and signaling events in mycorrhizal symbiosis

&
Pages 21-40 | Received 15 Sep 2014, Accepted 29 Dec 2014, Published online: 09 Feb 2015

References

  • Abdallah C, Valot B, Guillier C, Mounier A, Balliau T, Zivy M, van Tuinen D, Renaut J, Wipf D, Dumas-Gaudot E, Recorbet G. 2014. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. J Proteomics. 108:354–368.10.1016/j.jprot.2014.05.028
  • Akiyama K, Matsuzaki K, Hayashi H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 435:824–827.
  • Akiyama K, Ogasawara S, Ito S, Hayashi H. 2010. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 51:1104–1117.10.1093/pcp/pcq058
  • Albrecht C, Geurts R, Lapeyrie F, Bisseling, T. 1998. Endomycorrhizae and rhizobial Nod factors both require SYM8 to induce the expression of the early nodulin genes PsENOD5 and PsENOD12A. The Plant Journal. 15:605–614.10.1046/j.1365-313x.1998.00228.x
  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. 2012. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science. 335:1348–1351.10.1126/science.1218094
  • Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S. 2011. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. BMC Plant Biol. 11:75.
  • Ameres SL, Zamore PD. 2013. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 14:475–488.10.1038/nrm3611
  • Amiour N, Recorbet G, Robert F, Gianinazzi S, Dumas-Gaudot E. 2006. Mutations in DMI3 and SUNN modify the appressorium-responsive root proteome in arbuscular mycorrhiza. Plant Cell. 19:988–997.
  • Andrade SL, Dickmanns A, Ficner R, Einsle O. 2005. Crystal structure of the archaeal ammonium transporter Amt-1 from Archaeoglobus fulgidus. Proc Natl Acad Sci USA. 102:14994–14999.
  • Ané J-M, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GED, Ayax C, Lévy J, Debellé F, Baek J-M, Kalo P, et al. 2004. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science. 303:1364–1367.
  • Aono T, Maldonado-Mendoza IE, Dewbre GR, Harrison MJ, Saito M. 2004. Expression of alkaline phosphatase genes in arbuscular mycorrhizas. New Phytol. 162:525–534.10.1111/j.1469-8137.2004.01041.x
  • Balestrini R, Bonfante P. 2014. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Front Plant Sci. 5:237.
  • Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P. 2007. Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact. 20:1055–1062.10.1094/MPMI-20-9-1055
  • Balestrini R, Lanfranco L. 2006. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. Mycorrhiza. 16:509–524.10.1007/s00572-006-0069-2
  • Balestrini R, Jose-Estanyol M, Puigdomenech P, Bonfante P. 1997. Hydroxyproline-rich glycoprotein mRNA accumulation in maize root cells colonized by an arbuscular mycorrhizal fungus as revealed by in situ hybridization. Protoplasma. 198:36–42.
  • Balzergue C, Chabaud M, Barker DG, Bécard G, Rochange SF. 2013. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front Plant Sci. 4:426.
  • Banba M, Gutjahr C, Miyao A, Hirochika H, Paszkowski U, Kouchi H, Imaizumi-Anraku H. 2008. Divergence of evolutionary ways among common sym genes: CASTOR and CCaMK show functional conservation between two symbiosis systems and constitute the root of a common signaling pathway. Plant Cell Physiol. 49:1659–1671.10.1093/pcp/pcn153
  • Barker SJ, Tagu D. 2000. The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul. 19:144–154.
  • Benedetto A, Magurno F, Bonfante P, Lanfranco L. 2005. Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza. 15:620–627.10.1007/s00572-005-0006-9
  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4:e226.
  • Bestel-Corre G, Dumas-Gaudot E, Poinsot V, Dieu M, Dierick J-F, Van TD, Remacle J, Gianinazzi-Pearson V, Gianinazzi S. 2002. Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry. Electrophoresis. 23:122–37.10.1002/1522-2683(200201)23:1<122::AID-ELPS122>3.0.CO;2-4
  • Bever JD, Kang H, Kaonongbua W, Wang M. 2008. Genomic organization and mechanisms of inheritance in arbuscular mycorrhizal fungi : contrasting the evidence and implications of current theories. Mycorrhiza. 135–148.10.1007/978-3-540-78826-3_7
  • Bhattacharya C, Bonfante P, Deagostino A, Kapulnik Y, Larini P, Occhiato EG, Prandi C, Venturello P. 2009. A new class of conjugated strigolactone analogues with fluorescent properties: synthesis and biological activity. Org Biomol Chem. 7:3413–3420.
  • Blilou I., Ocampo JA, Garcia-Garrido JM. 1999. Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid. J Exp Bot. 50:1663–1668.10.1093/jxb/50.340.1663
  • Bona E, Cattaneo C, Cesaro P, Marsano F, Lingua G, Cavaletto M, Berta G. 2010. Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics. 10:3811–3834.10.1002/pmic.200900436
  • Bonfante P, Genre A. 2008. Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective. Trends Plant Sci. 13:492–498.
  • Bonfante P, Requena N. 2011. Dating in the dark: how roots respond to fungal signals to establish arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol. 14:451–457.10.1016/j.pbi.2011.03.014
  • Bouwmeester HJ, Roux C, Lopez-Raez JA, Bécard G. 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12:224–230.
  • Branscheid A, Devers EA, May P, Krajinski F. 2011. Distribution pattern of small RNA and degradome reads provides information on miRNA gene structure and regulation. Plant Signal Behav. 6:1609–1611.10.4161/psb.6.10.17305
  • Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible W-R, Krajinski F. 2010. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant Microbe Interact. 23:915–926.10.1094/MPMI-23-7-0915
  • Brechenmacher L, Weidmann S, van Tuinen D, Chatagnier O, Gianinazzi S, Franken P, Gianinazzi-Pearson V. 2004. Expression profiling of up-regulated plant and fungal genes in early and late stages of Medicago truncatula-Glomus mosseae interactions. Mycorrhiza. 14:253–262.10.1007/s00572-003-0263-4
  • Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT, Maolanon N, Vinther M, Lorentzen A, Madsen EB, Jensen KJ, et al. 2012. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc Natl Acad Sci USA. 109:13859–13864.10.1073/pnas.1205171109
  • Bucher M, Hause B, Krajinski F, Küster H. 2014. Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytol. 204:833–840.10.1111/nph.12862
  • Büttner M, Sauer N. 2000. Monosaccharide transporters in plants: structure, function and physiology. Biochim Biophys Acta. 1465:263–274.
  • Campos-Soriano L, Gómez-Ariza J, Bonfante P, San Segundo B. 2011. A rice calcium-dependent protein kinase is expressed in cortical root cells during the presymbiotic phase of the arbuscular mycorrhizal symbiosis. BMC Plant Biol. 11:90.
  • Cangahuala-Inocente GC, Da Silva MF, Johnson J-M, Manga A, van Tuinen D, Henry C, Lovato PE, Dumas-Gaudot E. 2011. Arbuscular mycorrhizal symbiosis elicits proteome responses opposite of P-starvation in SO4 grapevine rootstock upon root colonisation with two Glomus species. Mycorrhiza. 21:473–493.10.1007/s00572-010-0352-0
  • Capoen W, Sun J, Wysham D, Otegui MS, Venkateshwaran M, Hirsch S, Miwa H, Downie JA, Morris RJ, Ané J-M, Oldroyd GED. 2011. Nuclear membranes control symbiotic calcium signaling of legumes. Proc Natl Acad Sci USA. 108:14348–14353.10.1073/pnas.1107912108
  • Cathy A, Guerts R, Bisseling T. 1999. Legume nodulation and mycorrhizae formation ; two extremes in host specificity meet. EMBO J. 18:281–288.10.1093/emboj/18.2.281
  • Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP, Maillet F, Rosenberg C, Cook D, Gough C, Dénarié J. 2000. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell. 12:1647–1666.10.1105/tpc.12.9.1647
  • Chabaud M, Genre A, Sieberer BJ, Faccio A, Fournier J, Novero M, Barker DG, Bonfante P. 2011. Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol. 189:347–355.10.1111/j.1469-8137.2010.03464.x
  • Charpentier M, Bredemeier R, Wanner G, Takeda N, Schleiff E, Parniske M. 2008. Lotus japonicus CASTOR and POLLUX are ion channels essential for perinuclear calcium spiking in legume root endosymbiosis. Plant Cell. 20:3467–3479.10.1105/tpc.108.063255
  • Chen H-M, Chen L-T, Patel K, Li Y-H, Baulcombe DC, Wu S-H. 2010. 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA. 107:15269–15274.
  • Colard A, Angelard C, Sanders IR. 2011. Genetic exchange in an arbuscular mycorrhizal fungus results in increased rice growth and altered mycorrhiza-specific gene transcription. Appl Environ Microbiol. 77:6510–6515.
  • Combier JP, de Billy F, Gamas P, Niebel A, Rivas S. 2008. Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development. Genes Dev. 22:1549–1559.10.1101/gad.461808
  • Coppo M, Damiani F, Drocco M, Grassi E, Guether M, Troina A. 2011. Modelling ammonium transporters in arbuscular mycorrhiza symbiosis. Trans Comput Syst Biol XIII. 6575:85–109.10.1007/978-3-642-19748-2_5
  • Czarnecki O, Yang J, Weston DJ, Tuskan GA, Chen J-G. 2013. A dual role of strigolactones in phosphate acquisition and utilization in plants. Int J Mol Sci. 14:7681–7701.10.3390/ijms14047681
  • Dahiya P, Kardailsky IV, Brewin NJ. 1997. Immunolocalization of PsNLEC-1, a lectin-like glycoprotein expressed in developing pea nodules. Plant Physiol. 115:1431–1442.
  • Delaux P, Guillaume B. 2013. Rapid report NSP1 is a component of the Myc signaling pathway. New Phytol. 11:59–65.
  • Delaux P-M, Séjalon-Delmas N, Bécard G, Ané J-M. 2013. Evolution of the plant–microbe symbiotic ‘toolkit’. Trends Plant Sci. 18:298–304.10.1016/j.tplants.2013.01.008
  • Devers EA, Branscheid A, May P, Krajinski F. 2011. Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol. 156:1990–2010.10.1104/pp.111.172627
  • Devers EA, Teply J, Reinert A, Gaude N, Krajinski F. 2013. An endogenous artificial microRNA system for unraveling the function of root endosymbioses related genes in Medicago truncatula. BMC Plant Biol. 13:82.
  • Djuranovic S, Nahvi A, Green R. 2012. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science. 336:237–240.10.1126/science.1215691
  • Domagalska MA, Leyser O. 2011. Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol. 12:211–221.10.1038/nrm3088
  • Dumas-Gaudot E, Valot B, Bestel-Corre G, Recorbet G, St-Arnaud M, Fontaine B, Dieu M, Raes M, Saravanan RS, Gianinazzi S. 2004. Proteomics as a way to identify extra-radicular fungal proteins from Glomus intraradices – RiT-DNA carrot root mycorrhizas. FEMS Microbiol Ecol. 48:401–411.10.1016/j.femsec.2004.02.015
  • Dun EA, Brewer PB, Beveridge CA. 2009. Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci. 14:364–372.
  • Ellerbeck M, Schüßler A, Brucker D, Dafinger C, Loos F, Brachmann A. 2013. Characterization of three ammonium transporters of the glomeromycotan fungus Geosiphon pyriformis. Eukaryot Cell. 12:1554–1562.10.1128/EC.00139-13
  • Ferrol N, Benabdellah K. 2000. Alterations in the plasma membrane polypeptide pattern of tomato roots (Lycopersicon esculentum) during the development of arbuscular mycorrhiza. J Exp Bot. 51:747–754.10.1093/jexbot/51.345.747
  • Fester T, Kiess M, Strack D. 2002. A mycorrhiza-responsive protein in wheat roots. Mycorrhiza. 12:219–222.
  • Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ. 2013. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA. 110:E5025–E5034.10.1073/pnas.1308973110
  • Foo E. 2013. Auxin influences strigolactones in pea mycorrhizal symbiosis. J Plant Physiol. 170:523–528.
  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C. 2005. The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in Pea. Plant Cell. 17:464–474.10.1105/tpc.104.026716
  • Foo E, Ross JJ, Jones WT, Reid JB. 2013. Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot. 111:769–779.
  • Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB. 2013. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant. 6:76–87.10.1093/mp/sss115
  • Franzini VI, Azcón R, Méndes FL, Aroca R. 2013. Different interaction among Glomus and Rhizobium species on Phaseolus vulgaris and Zea mays plant growth, physiology and symbiotic development under moderate drought stress conditions. Plant Growth Regul. 70:265–273.10.1007/s10725-013-9798-3
  • Frühling M, Roussel H, Gianinazzi P, Pühler A, Perlick A. 1997. The Vicia faba leghemoglobin gene VfLb29 is induced in root nodules and in roots colonized by the arbuscular mycorrhizal fungus Glomus fasciculatum. Mol Plant Microbe Interact. 10:124–131.10.1094/MPMI.1997.10.1.124
  • Gallou A, Declerck S, Cranenbrouck S. 2012. Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization. Funct Integr Genomics. 12:183–198.10.1007/s10142-011-0241-4
  • Garrido JMG, Morcillo RJL, Rodríguez JAM, Bote JAO. 2010. Variations in the mycorrhization characteristics in roots of wild-type and ABA-deficient tomato are accompanied by specific transcriptomic alterations. Mol Plant Microbe Interact. 23:651–64.
  • Genre A, Bonfante P. 2010. The making of symbiotic cells in arbuscular mycorrhizal roots. Arbuscular mycorrhiza: physiology and function. In: Koltai H, Kapulnik Y, editors. Springer; p. 57–71.
  • Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG. 2013. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol. 198:190–202.10.1111/nph.12146
  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG. 2005. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell. 17:3489–3499.10.1105/tpc.105.035410
  • Geurts R, Vleeshouwers VGAA. 2012. Mycorrhizal symbiosis: ancient signalling mechanisms co-opted. Curr Biol. 22:R997–R999.10.1016/j.cub.2012.10.021
  • Gianinazzi-Pearson V. 1996. Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell. 8:1871–1883.10.1105/tpc.8.10.1871
  • Gobbato E, Marsh JF, Vernié T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P, et al. 2012. A GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol. 22:2236–2241.10.1016/j.cub.2012.09.044
  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ. 2009. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol. 9:10.
  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C. 2008. Strigolactone inhibition of shoot branching. Nature. 455:189–194.10.1038/nature07271
  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ, Shachar-Hill Y. 2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature. 435:819–823.10.1038/nature03610
  • Groth M, Takeda N, Perry J, Uchida H, Dräxl S, Brachmann A, Sato S, Tabata S, Kawaguchi M, Wang TL, Parniske M. 2010. NENA, a Lotus japonicus homolog of Sec13, is required for rhizodermal infection by arbuscular mycorrhiza fungi and rhizobia but dispensable for cortical endosymbiotic development. Plant Cell. 22:2509–2526.10.1105/tpc.109.069807
  • Grunwald U, Nyamsuren O, Tamasloukht MB, Lapopin L, Becker A, Mann P, Gianinazzi-Pearson V, Krajinski F, Franken P.. 2004. Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. Plant Mol Biol. 55:553–566.
  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P. 2009. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol. 150:73–83.10.1104/pp.109.136390
  • Güimil S, Chang H-S, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci USA. 102:8066–8070.
  • Gutjahr C, Banba M, Croset V, An K, Miyao A, An G, Hirochika H, Imaizumi-Anraku H, Paszkowski U. 2008. Arbuscular mycorrhiza-specific signaling in rice transcends the common symbiosis signaling pathway. Plant Cell. 20:2989–3005.10.1105/tpc.108.062414
  • Gutjahr C, Parniske M. 2013. Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol. 29:593–617.
  • Gutjahr C, Paszkowski U. 2013. Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front Plant Sci. 4:204.
  • Gutjahr C, Radovanovic D, Geoffroy J, Zhang Q, Siegler H, Chiapello M, Casieri L, An K, An G, Guiderdoni E. 2012. The half-size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant J. 69:906–920.
  • Gutjahr C. 2014. Phytohormone signaling in arbuscular mycorhiza development. Curr Opin Plant Biol. 20:26–34.10.1016/j.pbi.2014.04.003
  • Hanlon MT, Coenen C. 2011. Genetic evidence for auxin involvement in arbuscular mycorrhiza initiation. New Phytol. 189:701–709.10.1111/j.1469-8137.2010.03567.x
  • Harrier L. 2001. The arbuscular mycorrhizal symbiosis: a molecular review of the fungal dimension. J Exp Bot. 52:469–478.10.1093/jexbot/52.suppl_1.469
  • Harrison M. 1996. A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. Plant J. 9:491–503.10.1046/j.1365-313X.1996.09040491.x
  • Harrison MJ, van Buuren ML. 1995. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature. 378:626–629.
  • Harrison MJ, Dewbre GR, Liu J, Samuel T, Noble R, Parkway SN. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell. 14:2413–2429.
  • Hause B, Maier W, Miersch O, Kramell R, Strack D. 2002. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol. 130:1213–1220.10.1104/pp.006007
  • Hayashi S, Gresshoff PM, Ferguson BJ. 2014. Mechanistic action of gibberellins in legume nodulation. J Integr Plant Biol. 56:971–978.
  • Hayashi T, Shimoda Y, Sato S, Tabata S, Imaizumi-Anraku H, Hayashi M. 2014. Rhizobial infection does not require cortical expression of upstream common symbiosis genes responsible for the induction of Ca2+ spiking. Plant J. 77:146–159.10.1111/tpj.12374
  • Heidstra R, Nilsen G, Martinez-Abarca F, van Kammen A, Bisseling T. 1997. Nod factor-induced expression of leghemoglobin to study the mechanism of NH4NO3 inhibition on root hair deformation. Mol Plant Microbe Interact. 10:215–220.
  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N. 2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell. 23:3812–3823.
  • Herrbach V, Remblière C, Gough C, Bensmihen S. 2014. Lateral root formation and patterning in Medicago truncatula. J Plant Physiol. 171:301–310.10.1016/j.jplph.2013.09.006
  • Herre E, Knowlton N, Mueller U, Rehner S. 1999. The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol. 14:49–53.
  • Herrera Medina M, Gagnon H, Piché Y, Ocampo JA, García Garrido JM, Vierheilig H. 2003. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci. 164:993–998.
  • Hodge A, Campbell CD, Fitter AH. 2001. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature. 413:297–299.10.1038/35095041
  • Horváth B, Yeun LH, Domonkos A, Halász G, Gobbato E, Ayaydin F, Miró K, Hirsch S, Sun J, Tadege M. 2011. Medicago truncatula IPD3 is a member of the common symbiotic signaling pathway required for rhizobial and mycorrhizal symbioses. Mol Plant Microbe Interact. 24:1345–1358.
  • Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ. 2010. Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants. Nat Commun. 1:103.
  • Isayenkov S, Mrosk C, Stenzel I, Strack D, Hause B. 2005. Suppression of allene oxide cyclase in hairy roots of Medicago truncatula reduces jasmonate levels and the degree of mycorrhization with Glomus intraradices. Plant Physiol. 139:1401–1410.
  • Ivanov S, Fedorova EE, Limpens E, De Mita S, Genre A, Bonfante P, Bisseling T. 2012. Rhizobium-legume symbiosis shares an exocytotic pathway required for arbuscule formation. Proc Natl Acad Sci USA. 109:8316–8321.10.1073/pnas.1200407109
  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ. 2007. A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA. 104:1720–1725.
  • Jin H, Liu J, Liu J, Huang X. 2012. Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review. Sci China. 55:474–482.
  • Johnson X, Brcich T, Dun EA, Goussot M, Haurogné K, Beveridge CA, Rameau C. 2006. Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol. 142:1014–1026.
  • Kagiyama M, Hirano Y, Mori T, Kim S-Y, Kyozuka J, Seto Y, Yamaguchi S, Hakoshima T. 2013. Structures of D14 and D14L in the strigolactone and karrikin signaling pathways. Genes cells. 18:147–160.10.1111/gtc.12025
  • Kaldorf M, Ludwig-Müller J. 2000. AM fungi might affect the root morphology of maize by increasing indole-3-butyric acid biosynthesis. Physiol Plant. 109:58–67.
  • Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, et al. 2006. A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci USA. 103:359–364.10.1073/pnas.0508883103
  • Kanchiswamy CN, Mohanta TK, Capuzzo A, Occhipinti A, Verrillo F, Maffei ME, Malnoy M. 2013. Differential expression of CPKs and cytosolic Ca2+ variation in resistant and susceptible apple cultivars (Malus × domestica) in response to the pathogen Erwinia amylovora and mechanical wounding. BMC Genomics. 14:760.
  • Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M. 2005. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell. 17:2217–2229.10.1105/tpc.105.032714
  • Karandashov V, Bucher M. 2005. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci. 10:22–29.
  • Kardailsky V, Sherrier OJ, Brewin NJ. 1994. Identification of a new pea gene, PsNlecl, encoding a lectin-like clycoprotein isolated from the symbiosomes of root nodules. Plant Physiol. 115:49–60.
  • Kim W, Ahn HJ, Chiou T-J, Ahn JH. 2011. The role of the miR399-PHO2 module in the regulation of flowering time in response to different ambient temperatures in Arabidopsis thaliana. Mol Cells. 32:83–88.
  • Koegel S, Ait Lahmidi N, Arnould C, Chatagnier O, Walder F, Ineichen K, Boller T, Wipf D, Wiemken A, Courty P-E. 2013. The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phytol. 198:853–865.10.1111/nph.12199
  • Kosuta S, Chabaud M, Gough C, De J, Barker DG. 2003. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol. 131:952–962.
  • Krajinski F, Courty P-E, Sieh D, Franken P, Zhang H, Bucher M, Gerlach N, Kryvoruchko I, Zoeller D, Udvardi M, Hause B. 2014. The H+-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. Plant Cell. 26:1808–1817.
  • Kranabetter JM. 2014. Ectomycorrhizal fungi and the nitrogen economy of conifers—implications for genecology and climate change mitigation. Botany. 92:417–423.10.1139/cjb-2013-0198
  • Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E. 2012. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature. 483:341–344.
  • Lamoureux G, Javelle A, Baday S, Wang S, Bernèche S. 2010. Transport mechanisms in the ammonium transporter family. Transfus Clin Biol. 17:168–175.
  • Landgraf R, Schaarschmidt S, Hause B. 2012. Repeated leaf wounding alters the colonization of Medicago truncatula roots by beneficial and pathogenic microorganisms. Plant Cell Environ. 35:1344–1357.10.1111/j.1365-3040.2012.02495.x
  • Lauressergues D, Delaux P-M, Formey D, Lelandais-Brière C, Fort S, Cottaz S, Bécard G, Niebel A, Roux C, Combier J-P. 2012. The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2. Plant J. 72:512–522.
  • Lefebvre V, North H, Frey A, Sotta B, Seo M, Okamoto M, Nambara E, Marion-Poll A. 2006. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. Plant J. 45:309–319.10.1111/j.1365-313X.2005.02622.x
  • Li L, Li C, Lee GI, Howe GA. 2002. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA. 99:6416–6421.
  • Lingua G, Bona E, Todeschini V, Cattaneo C, Marsano F, Berta G, Cavaletto M. 2012. Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: a time course analysis. PLoS One. 7:e38662.
  • Liu W, Kohlen W, Lillo A, Op den Camp R, Ivanov S, Hartog M, Limpens E, Jamil M, Smaczniak C, Kaufmann K. 2011. Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2. Plant Cell. 23:3853–65.
  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, Vanden Bosch KA, Harrison MJ. 2003. Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of the arbuscular mycorrhizal symbiosis. Plant Cell. 15:2106–2123.
  • López-Ráez J, Kohlen W, Charnikhova T, Mulder P, Undas AK, Sergeant MJ, Verstappen F, Bugg TDH, Thompson AJ, Ruyter-Spira C, Bouwmeester H. 2010. Does abscisic acid affect strigolactone biosynthesis? New Phytol. 187:343–354.
  • López-ráez JA, Bouwmeester H. 2008. Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation. Plant Signal Behav. 3:963–965.
  • Loth-Pereda V, Orsini E, Courty P-E, Lota F, Kohler A, Diss L, Blaudez D, Chalot M, Nehls U, Bucher M, Martin F. 2011. Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol. 156:2141–2154.
  • Ludwig-Müller J, Güther M. 2007. Auxins as signals in arbuscular mycorrhiza formation. Plant Signal Behav. 2:194–196.
  • Ludwig-Müller J, Kaldorf M, Sutter EG, Epstein E. 1997. Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plant Sci. 125:153–162.10.1016/S0168-9452(97)00064-2
  • Maillet F, Poinsot V, Andre O, Puech-Pages V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature. 469:58–63.
  • Martin HC, Wani S, Steptoe AL, Krishnan K, Nones K, Nourbakhsh E, Vlassov A, Grimmond SM, Cloonan N. 2014. Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biol. 15:R51.
  • Matsumura A, Taniguchi S, Yamawaki K, Hattori R, Tarui A. 2013. Nitrogen uptake from amino acids in maize through arbuscular mycorrhizal symbiosis. Am J Plant Sci. 4:2290–2294.
  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ. 2005. The strigolactone germination stimulants of the plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway. Plant Physiol. 139:920–934.
  • Meixner C, Ludwig-Müller J, Miersch O, Gresshoff P, Staehelin C, Vierheilig H. 2005. Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007. Planta. 222:709–715.10.1007/s00425-005-0003-4
  • Messinese E, Mun J-H, Yeun LH, Jayaraman D, Rougé P, Barre A, Lougnon G, Schornack S, Bono J-J, Cook DR, Ané J-M. 2007. A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant Microbe Interact. 20:912–921.
  • Mica E, Piccolo V, Delledonne M, Ferrarini A, Pezzotti M, Casati C, Del Fabbro C, Valle G, Policriti A, Morgante M, et al. 2009. High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics. 10:558.10.1186/1471-2164-10-558
  • Miller JB, Pratap A, Miyahara A, Zhou L, Bornemann S, Morris RJ, Oldroyd GED. 2013. Calcium/Calmodulin-dependent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling. Plant Cell. 25:5053–5066.
  • Miransari M, Abrishamchi A, Khoshbakht K, Niknam V. 2014. Plant hormones as signals in arbuscular mycorrhizal symbiosis. Crit Rev Biotechnol. 34:123–133.
  • Miransari M. 2010. Contribution of arbuscular mycorrhizal symbiosis to plant growth under different types of soil stress. Plant Biol. 12:563–569.
  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M. 2005. The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J. 42:236–250.
  • Nakamura H, Xue Y-L, Miyakawa T, Hou F, Qin H-M, Fukui K, Shi X, Ito E, Ito S, Park S-H. 2013. Molecular mechanism of strigolactone perception by DWARF14. Nat. Commun. 4:2613.10.1038/ncomms3613
  • Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P. 2007. A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol. 144:673–681.
  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, Alves da Silva G. 2011. Advances in Glomeromycota taxonomy and classification. IMA Fungus. 2:191–199.
  • Ortu G, Balestrini R, Pereira PA, Becker JD, Küster H, Bonfante P. 2012. Plant genes related to gibberellin biosynthesis and signaling are differentially regulated during the early stages of AM fungal interactions. Mol Plant. 5:951–954.
  • Ossowski S, Schwab R, Weigel D. 2008. Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J. 53:674–690.10.1111/j.1365-313X.2007.03328.x
  • Paszkowski U, Kroken S, Roux C, Briggs SP. 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA. 99:13324–13329.
  • Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N. 2011. GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol. 48:1044–1055.
  • Perotto S, Rodda M, Benetti A, Sillo F, Ercole E, Rodda M, Girlanda M, Murat C, Balestrini R. 2014. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant-fungus relationship. Planta. 239:1337–1349.
  • Prandi C, Occhiato EG, Tabasso S, Bonfante P, Novero M, Scarpi D, Bova ME, Miletto I. 2011. New potent fluorescent analogues of strigolactones: synthesis and biological activity in parasitic weed germination and fungal branching. European J Org Chem. 2011:3781–3793.10.1002/ejoc.201100616
  • Pumplin N, Harrison MJ. 2009. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol. 151:809–819.
  • Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS, Harrison MJ. 2010. Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J. 61:482–494.
  • Quain MD, Makgopa ME, Márquez-García B, Comadira G, Fernandez-Garcia N, Olmos E, Schnaubelt D, Kunert KJ, Foyer CH. 2014. Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits. Plant Biotechnol J.12:903–913.
  • Rath AC, Kang I-K, Park C-H, Yoo W-J, Byun J-K. 2006. Foliar application of aminoethoxyvinylglycine (AVG) delays fruit ripening and reduces pre-harvest fruit drop and ethylene production of bagged “Kogetsu” apples. Plant Growth Regul. 50:221–227.
  • Ravnskov S, Wu Y, Graham JH. 2003. Arbuscular mycorrhizal fungi differentially affect expression of genes coding for sucrose synthases in maize roots. New Phytol. 157:539–545.10.1046/j.1469-8137.2003.00692.x
  • Recorbet G, Valot B, Robert F, Gianinazzi-Pearson V, Dumas-Gaudot E. 2010. Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Fungal Genet Biol.47:608–618.
  • Regvar M, Gogala N, Zalar P. 1996. Effects of jasmonic acid on mycorrhizal Allium sativum. New Phytol. 134:703–707.
  • Remy W, Taylor T, Hass H, Kerp H. 1994. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA. 91:11841–11843.10.1073/pnas.91.25.11841
  • Repetto O, Bestel-corre G, Dumas-gaudot E, Berta G, Gianinazzi-pearson V, Gianinazzi S. 2003. Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol. 157:555–567.
  • Requena N, Mann P, Franken P. 2000. A homologue of the cell cycle check point TOR2 from Saccharomyces cerevisiae exists in the arbuscular mycorrrhizal fungus Glomus mosseae. Protoplasma. 212:89–98.10.1007/BF01279350
  • Requena N, Mann P, Hampp R, Franken P. 2002. Early developmentally regulated genes in the arbuscular mycorrhizal fungus Glomus mosseae : identification of GmGIN1, a novel gene with homology to the C-terminus of metazoan hedgehog proteins. Plant Soil. 244:129–139.
  • Rhody D, Stommel M, Roeder C, Mann P, Franken P. 2003. Differential RNA accumulation of two β-tubulin genes in arbuscular mycorrhizal fungi. Mycorrhiza. 13:137–142.
  • Rich MK, Schorderet M, Reinhardt D. 2014. The role of the cell wall compartment in mutualistic symbioses of plants. Front Plant Sci. 5:238.
  • Riely BK, Lougnon G, Ané J-M, Cook DR. 2007. The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J. 49:208–216.10.1111/j.1365-313X.2006.02957.x
  • Roberts NJ, Morieri G, Kalsi G, Rose A, Stiller J, Edwards A, Xie F, Gresshoff PM, Oldroyd GED, Downie JA, Etzler ME. 2013. Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signaling. Plant Physiol. 161:556–567.
  • Saito K., Yoshikawa M., Yano K., Miwa H., Uchida H., Asamizu E., Sato S., Tabata S., Imaizumi-Anraku H., Umehara Y., et al. 2007. NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell. 19:610–624.10.1105/tpc.106.046938
  • Sanders I, Croll D. 2010. Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner. Annu Rev Genet. 44:271–292.10.1146/annurev-genet-102108-134239
  • Scaffidi A, Waters M, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti G, Smith S. 2014. Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol. 165:1221–1232.
  • Schuszler A, Martin H, Cohen D, Fitz M, Wipf D. 2006. Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature. 444:933–936.
  • Selosse M, Le Tacon F. 1998. The land flora: a phototroph-fungus partnership? Trends Ecol Evol. 13:15–20.
  • Seo M, Koshiba T. 2002. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci. 7:41–48.
  • Shaul-keinan O, Gadkar V, Ginzberg I, Grunzweig JM, Chet I, Elad Y, Wininger S, Belausov E, Eshed Y, Atzmon N, et al. 2002. Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol. 154:501–507.10.1046/j.1469-8137.2002.00388.x
  • Siciliano V, Genre A, Balestrini R, Cappellazzo G, DeWit PJGM, Bonfante P. 2007. Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus. Plant Physiol. 144:1455–1466.
  • Sieberer BJ, Chabaud M, Timmers AC, Monin A, Fournier J, Barker DG. 2009. A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors. Plant Physiol. 151:1197–1206.
  • Singh S, Katzer K, Lambert J, Cerri M, Parniske M. 2014. CYCLOPS, A DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe. 15:139–152.
  • Slewinski TL. 2011. Diverse functional roles of monosaccharide transporters and their homologs in vascular plants: a physiological perspective. Mol Plant. 4:641–662.10.1093/mp/ssr051
  • Smith S, Smith F. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol. 62:227–250.
  • Smith SE, Smith FA. 2012. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia. 104:1–13.10.3852/11-229
  • Stacey G, Bickley C, Alvin M, Kim S, Olivares J, Soto M. 2006. Effects of endogenous salicylic acid on nodulation in the model legumes Lotus japonicus. Plant Physiol. 141:1473–1481.
  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M. 2002. A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature. 417:959–962.
  • Symons GM, Ross JJ, Murfet IC. 2002. The bushy pea mutant is IAA-deficient. Physiol Plant. 116:389–397.10.1034/j.1399-3054.2002.1160315.x
  • Takeda N, Sato S, Asamizu E, Tabata S, Parniske M. 2009. Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. Plant J. 58:766–777.
  • Tamura Y, Kobae Y, Mizuno T, Hata S. 2014. Identification and expression analysis of arbuscular mycorrhiza-inducible phosphate transporter genes of soybean. Biosci Biotechnol Biochem. 76:309–313.10.1271/bbb.110684
  • Tan BC, Schwartz SH, Zeevaart JA, McCarty DR. 1997. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA. 94:12235–12240.
  • Tejeda-Sartorius M, Martínez-gallardo NA, Olalde-portugal V, Délano-frier JP, Fitopatología RM De, Olalde- V, Investigación C De, Estudios D, Irapuato U, Carr N. 2007. Jasmonic acid accelerates the expression of a pathogen-specific lipoxygenase (POTLX-3) and delays foliar late blight development in potato (Solanum tuberosum L.). Rev Mex Fitopatol. 25:18–25.
  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A. 1993. In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res. 97:245–250.
  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, et al. 2012. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol. 193:755–769.10.1111/j.1469-8137.2011.03948.x
  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, et al. 2013. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci. USA. 110:20117–20122.10.1073/pnas.1313452110
  • Torelli A, Trotta A, Acerbi L, Arcidiacono G, Berta G, Branca C. 2000. IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development Plant Soil. 226:29–35.10.1023/A:1026430019738
  • van Buuren ML, Maldonado-Mendosa IE, Trieu AT, Blaylock LA, Harrison MJ. 1999. Novel genes induced during an arbuscular mycorrhizal symbiosis formed between Medicago truncatula and Glomus versiforme. Mol Plant Microbe Interact. 12:171–181.
  • Veiga RS, Faccio A, Genre A, Pieterse CMJ, Bonfante P, van der Heijden MGA. 2013. Arbuscular mycorrhizal fungi reduce growth and infect roots of the non-host plant Arabidopsis thaliana. Plant Cell Environ. 36:1926–1937.
  • Venkateshwaran M, Cosme A, Han L, Banba M, Satyshur KA, Schleiff E, Parniske M, Imaizumi-Anraku H, Ané J-M. 2012. The recent evolution of a symbiotic ion channel in the legume family altered ion conductance and improved functionality in calcium signaling. Plant Cell. 24:2528–2545.
  • Waldie T, McCulloch H, Leyser O. 2014. Strigolactones and the control of plant development: lessons from shoot branching. Plant J. 79:607–622.10.1111/tpj.12488
  • Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P, Schultze M, Kamoun S, Oldroyd GED. 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr Biol. 22: 2242–2246.
  • Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P. 2008. Highly specific gene silencing by artificial miRNAs in rice. PLoS One. 3:e1829.
  • Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA. 2012. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol.159:1073–1085.
  • Willmann M, Gerlach N, Buer B, Polatajko A, Nagy R, Koebke E, Jansa J, Flisch R, Bucher M. 2013. Mycorrhizal phosphate uptake pathway in maize: vital for growth and cob development on nutrient poor agricultural and greenhouse soils. Front Plant Sci. 4:533.
  • Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Küster H, Krajinski F. 2003a. Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact. 16:306–314.10.1094/MPMI.2003.16.4.306
  • Wulf A, Manthey K, Doll J, Perlick AM, Linke B, Bekel T, Meyer F, Franken P, Küster H, Krajinski F. 2003b. Transcriptional changes in response to arbuscular mycorrhiza development in the model plant Medicago truncatula. Mol Plant Microbe Interact. 16:306–314.
  • Xie X, Kusumoto D, Takeuchi Y, Yoneyama K, Yamada Y, Yoneyama K. 2007. 2’-epi-orobanchol and solanacol, two unique strigolactones, germination stimulants for root parasitic weeds, produced by tobacco. J Agric Food Chem. 55:8067–8072.
  • Xie X, Yoneyama K, Kisugi T, Uchida K, Ito S, Akiyama K, Hayashi H, Yokota T, Nomura T, Yoneyama K. 2013. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol Plant. 6:153–163.
  • Yamada Y, Furusawa S, Nagasaka S, Shimomura K, Yamaguchi S, Umehara M. 2014. Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta. 240:399–408.
  • Yano K, Yoshida S, Müller J, Singh S, Banba M, Vickers K, Markmann K, White C, Schuller B, Sato S, et al. 2008. CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci USA. 105:20540–20545.10.1073/pnas.0806858105
  • Yoneyama K, Awad AA, Xie X, Yoneyama K, Takeuchi Y. 2010. Strigolactones as germination stimulants for root parasitic plants. Plant Cell Physiol. 51:1095–1103.10.1093/pcp/pcq055
  • Yoneyama K, Xie X, Yoneyama K, Takeuchi Y. 2009. Strigolactones: structures and biological activities. Pest Manag Sci. 65:467–470.
  • Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K. 2012. The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol. 196:1208–1216.
  • Yu N, Luo D, Zhang X, Liu J, Wang W, Jin Y, Dong W, Liu J, Liu H, Yang W, et al. 2014. A DELLA protein complex controls the arbuscular mycorrhizal symbiosis in plants. Cell Res. 24:130–133.10.1038/cr.2013.167
  • Zampieri E, Murat C, Cagnasso M, Bonfante P, Mello A. 2010. Soil analysis reveals the presence of an extended mycelial network in a Tuber magnatum truffle-ground. FEMS Microb Ecol. 71:43–49.
  • Zhang Q, Blaylock LA, Harrison MJ. 2010. Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell. 22:1483–1497.
  • Zhang R-Q, Zhu H-H, Zhao H-Q, Yao Q. 2013. Arbuscular mycorrhizal fungal inoculation increases phenolic synthesis in clover roots via hydrogen peroxide, salicylic acid and nitric oxide signaling pathways. J Plant Physiol. 170:74–79.
  • Zheng L, Kostrewa D, Bernèche S, Winkler FK, Li X-D. 2004. The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci USA. 101:17090–17095.
  • Zhou F, Lin Q, Zhu L, Ren Y, Zhou K, Shabek N, Wu F, Mao H, Dong W, Gan L, et al. 2013. D14–SCFD3-dependent degradation of D53 regulates strigolactone signalling. Nature. 504:406–410.10.1038/nature12878