4,690
Views
96
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Arbuscular mycorrhizal fungi enhances salinity tolerance of Panicum turgidum Forssk by altering photosynthetic and antioxidant pathways

, , , &
Pages 230-242 | Received 24 Feb 2015, Accepted 13 May 2015, Published online: 27 Aug 2015

References

  • Abdel Latef AAH, Chaoxing H. 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hort. 127:228–233.
  • Ahanger MA, Hashem A, Abd Allah EF, Ahmad P. 2014a. Arbuscular mycorrhiza in crop improvement under environmental stress. In: Ahmad P, Rasool S, editors. Emerging technologies and management of crop stress tolerance; Vol. 2. Waltham, MA: Elsevier; p. 69–95. Available from: http://dx.doi.org/10.1016/B978-0-12-800875-1.00003-X
  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P. 2014b. Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Ahmad P, Wani MR, editors. Physiological mechanisms and adaptation strategies in plants under changing environment; Vol. 1. New York, NY: Springer; p. 25–55.
  • Ahmad P. 2010. Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch. Agro. Soil Sci. 56(5):575–588.
  • Ahmad P, Ashraf M, Azooz MM, Rasool S, Akram NA. 2014. Potassium starvation induced oxidative stress and antioxidant defense responses in Brassica juncea. J. Plant Int. 9(1):1–9.
  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA. 2012. Salt induced changes in photosynthetic activity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr. J. Biotechnol. 11(11):2694–2703.
  • Ahmad P, Jaleel CA, Sharma S. 2010. Antioxidant defense system, lipid peroxidation, proline metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian J. Plant Physiol. 57(4):509–517.
  • Ahmad P, Sharma S. 2008. Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ. 54(3):89–99.
  • Alqarawi AA, Abd Allah EF, Hashem A. 2014. Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J. Plant Interact. 9(1):802–810.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol. 24:1–15.
  • Aroca R, Ruiz-Lozano JM, Zamarreno A, Paz JA, Garcia-Mina JM, Pozo MJ, Lopez-Raez JA. 2013. Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 170:47–55.
  • Asghari HR, Marschner P, Smith SE, Smith FA. 2005. Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant Soil. 273:245–256.
  • Azooz MM, Youssef AM, Ahmad P. 2011. Evaluation of salicylic acid (SA) application on growth, osmotic solutes and antioxidant enzyme activities on broad bean seedlings grown under diluted seawater. Int. J. Plant Physiol. Biochem. 3(14):253–264.
  • Bartwal A, Mall R, Lohani P, Guru SK, Arora S. 2013. Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. J. Plant Growth Regul. 32:216–232.
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water stress studies. Plant Sci. 39:205–207.
  • Bradford MM. 1976. A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Carlberg I, Mannervik B. 1985. Glutathione-reductase. Methods Enzymol. 113:484–490.
  • Carmak I, Horst JH. 1991. Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. 83:463–468.
  • Casati P, Drincovich MF, Edwards GE, Andreo CS. 1999. Malate metabolism by NADP-malic enzyme in plant defense. Photosynth. Res. 61:99–105.
  • Chance M, Maehly AC. 1955. Assay of catalases and peroxidases. Methods Enzymol. 2:764–775.
  • Cheng Y, Long M. 2007. A cytosolic NADP-malic enzyme gene from rice (Oryza sativa L.) confers salt tolerance in transgenic Arabidopsis. Biotechnol. Lett. 29:1129–1134.
  • Daniels BA, Skipper HD. 1982. Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC, editor. Methods and principles of mycorrhizal research. St. Paul, MN: The American Phytopathological Society; p. 29–36.
  • Dawood MG, Taie HAA, Nassar RMA, Abdelhamid M, Schmidhalter U. 2014. The changes induced in the physiological, biochemical and anatomical characteristics of Vicia faba by the exogenous application of proline under seawater stress. South Afr. J. Bot. 93:54–63.
  • Doganlar ZB, Demir K, Basak H, Gul I. 2010. Effects of salt stress on pigment and total soluble protein contents of the three different tomato cultivars. Afr. J. Agri. 5(15):2056–2065.
  • Doubnerova V, Ryslava H. 2011. What can enzymes of C4 photosynthesis do for C3 plants under stress. Plant Sci. 180:575–583.
  • Du YC, Nose A, Kawamitsu Y, Murayama S, Wasano K, Uchida Y. 1996. An improved spectrophotometric determination of the activity of ribulose 1,5-bisphosphate carboxylase. Jpn J. Crop Sci. 65:714–721.
  • El-Tayeb MA. 2005. Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul. 45:215–224.
  • Fang XJ, Wen ZX, Hao YN, Zhou Z, Li MS, Tao DM, Dong XU, Lai MJ. 2013. Activities of principal photosynthetic enzymes in green macroalga Ulva linza: functional implication of C4 pathway in CO2 assimilation. Sci. China Life Sci. 56(6):571–580.
  • Fatma M, Masood MAA, Khan NA. 2014. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ. Exp. Bot. 107:55–63.
  • Fukayama H, Tsuchida H, Agarie S, Nomura M, Onodera H, Ono K, Lee BH, Hirose S, Toki S, Ku MSB et al. Significant accumulation of C4-specific Pyruvate, orthophosphate dikinase in a C3 plant, rice. Plant Physiol. 127:1136–1146.
  • Ghazi N, Al-Karaki. 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza. 10:51–54.
  • Ghorbanli M, Ebrahimzadeh H, Sharifi M. 2004. Effects of NaCl and mycorrhizal fungi on antioxidative enzymes in soybean. Biol. Plant. 48(4):575–581.
  • Giannopolitis CN, Ries SK. 1977. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 59:309–314.
  • Grieve CM, Grattan SR. 1983. Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70(2):303–307.
  • Hajiboland R, Aliasgharzadeh A, Laiegh SF, Poschenrieder C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil. 331:313–327.
  • Hameed A, Egamberdieva D, Abd-Allah EF, Hashem A, Kumar A, Ahmad P. 2014. Salinity stress and arbuscularmycorrhizal symbiosis in plants. In: Miransari M, editor. Use of microbes for the alleviation of soil stresses; Vol. 1. New York, NY: Springer; p. 139–159.
  • Hashem A, Abd-Allah EF, Alqarawi AA, El-Didamony G, Alwhibi Mona S, Egamberdieva D, Ahmad P. 2014. Alleviation of adverse impact of salinity on faba bean (Vicia faba L.) by arbuscular mycorrhizal fungi. Pak. J. Bot. 46(6):2003–2013.
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. Calif. Agric. Exp. Station Circular. 347:1–32.
  • Hodge A, Storer K. 2015. Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil. 386:1–19.
  • Hossain MA, Fujita M. 2010. Evidence for a role of exogenous glycine betaine and proline in antioxidant defense and methylglyoxal detoxification systems in mung bean seedlings under salt stress. Physiol. Mol. Biol. Plants. 16:19–29.
  • Jackson ML. 1962. Soil sampling. In: Jackson ML, editor. Soil chemical analysis. Soil chemical analysis. New York, NY: Prentice Hall; p. 263–268.
  • Jaleel CA, Gopi R, Sankar B, Manivannan P, Kishorekumar A, Sridharan R, Panneerselvam R. 2007. Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South Afr. J. Bot. 73:190–195.
  • Jindal V, Atwal A, Sekhon BS, Rattan S, Singh R. 1993. Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity. Plant Physiol. Biol. 31:475–481.
  • Julkenen-Titto R. 1985. Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. J. Agric. Food Chem. 33:213–217.
  • Kanai R, Edwards GE. 1973. Separation of mesophyll protoplasts and bundle sheath cells from maize leaves for photosynthetic studies. Plant Physiol. 51:1133–1137.
  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna LA, Cullu AM. 2009. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci. Hort. 121:1–6.
  • Khan MA, Ansari R, Ali H, Gul B, Nielsen BL. 2009. Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas. Agric. Ecosyst. Environ. 129:542–546.
  • Khan MA, Qaiser M. 2006. Halophytes of Pakistan: characteristics, distribution and potential economic usages. In: Khan MA, Boer B, Kust GS, Barth HJ, editors. Sabkha ecosystems, tasks for vegetation science; Vol. 34. Dordrecht: Springer, p. 129–153.
  • Khan MIR, Asgher M, Khan NA. 2014. Alleviation of salt-induced photosynthesis and growth inhibition by salicylic acid involves glycine betaine and ethylene in mungbean (Vigna radiata L.). Plant Physiol. Biol. 80:67–74.
  • Khattab H. 2007. Role of glutathione and polyadenylic acid on the oxidative defense systems of two different cultivars of canola seedlings grown under saline conditions. Aust. J. Basic Appl. Sci. 1:323–334.
  • Koca M, Bor M, Ozdemir F, Turkan I. 2007. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. Exp. Bot. 60:344–351.
  • Kohler J, Hernandez JA, Caravaca F, Roldan A. 2009. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ. Exp. Bot. 65:245–252.
  • Koyro HW, Hussain T, Huchzermeyer B, Khan MA. 2013. Photosynthetic and growth responses of a perennial halophytic grass Panicum turgidum to increasing NaCl concentrations. Environ. Exp. Bot. 91:22–29.
  • Levitt J. 1980. Responses of plants to environmental stresses; Vol. 2. New York, NY: Academic Press.
  • Liu L, Sun H, Chen J, Zhang Y, Li D, Li C. 2014. Effects of cadmium (Cd) on seedling growth traits and photosynthesis parameters in cotton. Plant Omic. J. 7(4):284–290.
  • Liu S, Cheng Y, Zhang X, Guan Q, Nishiuchi S, Hase K, Takano T. 2007. Expression of an NADP-malic enzyme gene in rice (Oryza sativa L) is induced by environmental stresses; over-expression of the gene in Arabidopsis confers salt and osmotic stress tolerance. Plant Mol. Biol. 64:49–58.
  • Mehr ZS, Khajeh H, Bahabadi SE, Sabbagh SK. 2012. Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens L. under salt stress. Int. J. Agron. Plant Prod. 3:710–715.
  • Michalak A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol. J. Environ. Stud. 15(4):523–530.
  • Miranda D, Fischer G, Ulrichs C. 2011. The influence of arbuscular mycorrhizal colonization on the growth parameters of cape gooseberry (Physalis peruviana L.) plants grown in a saline soil. J. Soil Sci. Plant Nutr. 11(2):18–30.
  • Mittal S, Kumari N, Sharma V. 2012. Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol. Biochem. 54:17–26.
  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405–410.
  • Naguib MI. 1964. Effect of seivn on the carbohydrate and nitrogen metabolism during the germination of cotton seeds. Ind. J. Agric. Sci. 35:179–185.
  • Nell M, Votsch M, Vierheilig H, Steinkellner S, Zitterl-Eglseer K, Franza C, Novaka J. 2009. Effect of phosphorus uptake on growth and secondary metabolites of garden sage (Salvia officinalis L.). J. Sci. Food Agric. 89:1090–1096.
  • Nelson N. 1944. Photometric adaptation of Somagi method for the determination of glucose. J. Biol. Chem. 153:375–380.
  • Noctor G, Foyer CH. 1998. Simultaneous measurement of foliar glutathione, γ-glutamyl cysteine and amino acids by high-performance liquid chromatography: comparison with two other assay methods for glutathione. Anal. Biochem. 264:98–110.
  • Omoto E, Taniguchi M, Miyake H. 2012. Adaptation responses in C4 photosynthesis of maize under salinity. J. Plant Physiol. 169:469–477.
  • Papageorgion GC, Murata N. 1995. The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth. Res. 44:243–252.
  • Porcel R, Aroca R, Ruiz-Lozano JM. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi: a review. Agron. Sust. Dev. 32:181–200.
  • Qun HZ, Xing HC, Bin ZZ, Rong ZZ, Song WH. 2007. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress Coll Sur B. Biointerfaces 59:128–133.
  • Rasool S, Ahmad A, Siddiqi TO. 2012. Differential response of Chickpea genotypes under salt stress. J. Funct. Environ. Bot. 2(1):59–64.
  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P. 2013. Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol. Plant. 35:1039–1050.
  • Ruiz-Lozano JM, Collados C, Barea J, Azcon MR. 2001. Arbuscular mycorrhizal symbiosis can alleviate drought induced nodule senescence in soybean plants. Plant Physiol. 82:346–350.
  • Ruiz-Lozano JM, Porcel R, Azcon R, Aroca R. 2012. Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants. New challenges in physiological and molecular studies. J. Exp. Bot. 63:4033–4044.
  • Said A, Naguib MI, Ramzy MA. 1964. Sucrose determination as a means of the “Darw back tax” exported Halawa Tehinia. Bull. Fac. Sci. Cairo. Univ. 39:209–214.
  • Scheibe R, Stitt M. 1988. Comparison of NADP-malate dehydrogenase activation, QA reduction and O2 evolution in spinach leaves. Plant Physiol. Biochem. 26:473–481.
  • Seeman JR, Critchley C. 1985. Effects of salt stress on growth, ion content, stomatal behaviour and photosynthetic capacity of salt-sensitive species Phaseolus vulgaris (L). Planta. 164:151–62.
  • Shekoofeh E, Sepideh H, Roya R. 2012. Role of mycorrhizal fungi and salicylic acid in salinity tolerance of Ocimum basilicum resistance to salinity. J. Biot. 11(9):2223–2235.
  • Sheng M, Tang M, Chan H, Yang B, Zhang F, Huang Y. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 18:287–296.
  • Sherstha YH, Ishii T, Kadoya K. 1995. Effect of vesicular–arbuscular mycorrhizal fungi on the growth, photosynthesis, transpiration and the distribution of photosynthates of bearing Satsuma mandarin trees. J. Jpn. Soc. Hortic. Sci. 64:517–525.
  • Soussi M, Ocana A, Lluch C. 1998. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J. Exp. Bot. 49(325):1329–1337.
  • Sultana N, Ikeda T, Itoh R. 1999. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environ. Exp. Bot. 42:211–220.
  • Tang M, Chen H, Huang JC, Tian ZQ. 2009. AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biol. Biochem. 41:936–940.
  • Thakur M, Sharma AD. 2005. Salt stress induced proline accumulation in germinating embryos: evidence suggesting a role of proline in seed germination. J. Arid Environ. 62:517–523.
  • Tomar NS, Agarwal RM. 2013. Influence of treatment of Jatropha curcas L. leachates and potassium on growth and phytochemical constituents of wheat (Triticum aestivum L.). Am. J. Plant Sci. 4:1134–1150.
  • Tuna AL, Kaya C, Dikilitas M, Higgs D. 2008. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ. Expt. Bot. 62:1–9.
  • Utobo EB, Ogbodo EN, Nwogbaga AC. 2011. Techniques for extraction and quantification of arbuscular mycorrhizal fungi. Libyan Agric. Res. Cent. Int. 2:68–78.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Protective role of exogenous polyamines. Plant Sci. 151:59–66.
  • Wada KC, Mizuuchi K, Koshio A, Kaneko K, Mitsui T, Takeno K. 2014. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in Pharbitis. J. Plant Physiol. 171:895–902.
  • Winter K. 1974. Effect of water stress on phosphoenolpyruvate carboxylase activity in Mesembryanthemum crystallinum (L.). Planta 121(2):147–153.
  • Wolf B. 1982. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Comm. Soil Sci. Plant Anal. 13:1035–1059.
  • Wu QS, Zou YN, He XH. 2010. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis, root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiol. Plant. 32:297–304.