3,765
Views
43
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Response of tomato plants to interaction effects of magnetic (Fe3O4) nanoparticles and cadmium stress

, , , &
Pages 474-481 | Received 11 Mar 2019, Accepted 15 May 2019, Published online: 03 Sep 2019

References

  • Askary M, Talebi SM, Amini F, Dousti Balout Bangan A. 2016. Effect of NaCl and iron oxide nanoparticles on Mentha piperita essential oil composition. Environ Exp Bot. 14:27–32. doi: 10.22364/eeb.14.05
  • Askary M, Talebi SM, Amini F, Dousti Balout Bangan A. 2017. Effects of iron nanoparticles on Mentha piperita L. under salinity stress. Biologija. 63(1):65–67. doi: 10.6001/biologija.v63i1.3476
  • Bates LS, Waldren RP, Tears ID. 1975. Rapid determination of free proline in water stress studies. Plant Soil. 39:205–207. doi: 10.1007/BF00018060
  • Bombin S, LeFebvre M, Sherwood J, Xu Y, Bao Y, Ramonell KM. 2015. Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int J Mol Sci. 16:24174–24193. doi: 10.3390/ijms161024174
  • Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi: 10.1016/0003-2697(76)90527-3
  • Chen R, Zhang C, ZhaoY Huang., Liu Z.. 2017. Foliar application with nano-silicon reduced cadmium accumulation in grains by inhibiting cadmium translocation in rice plants. Environ Sci Pollitr. 25(3):2361–2368. doi: 10.1007/s11356-017-0681-z
  • Ci D, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W. 2010. Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiol Plant. 32:365–373. doi: 10.1007/s11738-009-0414-0
  • Fales FW. 1951. The assimilation and degradation of carbohydrates by yeast cells. J Biol Chem. 193:113–124.
  • Farhangi-Abriz S, Torabian SH. 2018. Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma. 255(3):953–962. doi: 10.1007/s00709-017-1202-0
  • Feng J, Shi Q, Wang X, Wei M, Yang F, Xu H. 2010. Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (Cd) toxicity in Cucumis sativus L. Sci Hort. 123:521–530. doi: 10.1016/j.scienta.2009.10.013
  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N. 2013. Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem. 63:254–261. doi: 10.1016/j.plaphy.2012.12.001
  • Gonçalves GF, Antes FG, Maldaner J, Pereira LB, Tabaldi LA, Rauber R, Rossato LV, Bisognin DA, Dressler VL, Flores EMDM, Nicoloso FT. 2009. Cadmium and mineral nutrient accumulation in potato plantlets grown under cadmium stress in two different experimental culture conditions. Plant Physiol Biochem. 47:814–821. doi: 10.1016/j.plaphy.2009.04.002
  • Gratão PL, Monteiro CC, Tezotto T, Carvalho RF, Alves LR, Peters LP, Azevedo RA. 2015. Cadmium stress antioxidant responses and root- to- shoot communication in grafted tomato plants. Bio Metals. 28(5):803–816.
  • Hasan SA, Hayat SH, Ahmad A. 2011. Brassino steroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere. 84:1446–1451. doi: 10.1016/j.chemosphere.2011.04.047
  • Hashem A, Abd_Allah EF, Alqarawi AA, Al Huqail Asma A, Egamberdieva D, Wirth S. 2015. Alleviation of cadmium stress in Solanum lycopersicum L.by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci. 23(2):272–281. doi: 10.1016/j.sjbs.2015.11.002
  • Hwang M, Ederer GM. 1975. Rapid hippurate hydrolysis method for presumptive identification of group B streptococci. J Clin Microbiol. 1:114–117.
  • Iannone MF, Groppa MD, Sousa ME, Raap MBFV, Benavides MP. 2016. Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: Evaluation of oxidative damage. Environ Exper Bot. 131:77–88. doi: 10.1016/j.envexpbot.2016.07.004
  • Jalali M, Ghanati F, Modarres-Sanavi AM. 2016. Effect of Fe3O4 nanoparticles and iron chelate on the antioxidant capacity and nutritional value of soil-cultivated maize (Zea mays) plants. Crop Pasture Sci. 67:621–628. doi: 10.1071/CP15271
  • Kao CH. 2014. Cadmium stress in rice plants: influence of essential elements. Crop Environ Bioinfo. 11:113–118.
  • Konate A, He X, Zhang Z, Ma Y, Zhang P, Alugongo GM, Rui Y. 2017. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability. 9(5):790. doi: 10.3390/su9050790
  • Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B. 2016. Uptake, translocation and physiological effects of magnetic iron oxide (g-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere. 159:326–334. doi: 10.1016/j.chemosphere.2016.05.083
  • Lichtenthaler H. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 148:350–382. doi: 10.1016/0076-6879(87)48036-1
  • Liu Y, Yu X, Feng Y, Zhang C, Wang C, Zeng J, Huang Z, Kang H, Fan X, Sha L, et al. 2017. Physiological and transcriptome response to cadmium in cosmos (Cosmos bipinnatus Cav.) seedlings. Sci. Rep. 7(1):14691. doi: 10.1038/s41598-017-14407-8
  • Nazar R, Iqbal N, Masood A, Khan MIR, Syeed S, Khan NA. 2012. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am J Plant Sci. 3:1476–1489. doi: 10.4236/ajps.2012.310178
  • Ouariti O, Boussama N, Zarrouk M, Cherif A, Gorbal MH. 1997. Cadmium – and copper – induced changes in tomato membrane lipids. Phytochemistry. 45:1343–1350. doi: 10.1016/S0031-9422(97)00159-3
  • Pál M, Horváth E, Janda T, Páldi E, Szalai G. 2006. Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci. 169:239–246. doi: 10.1002/jpln.200520573
  • Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M. 2017. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front Chem. 5:78. doi: 10.3389/fchem.2017.00078
  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S. 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci. 7:815. doi: 10.3389/fpls.2016.00815
  • Sagner S, Kneer R, Wanner G, Cosson JP, Deus-Neumann B, Zenk MH. 1998. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminate. Phytochemistry. 47:339–347. doi: 10.1016/S0031-9422(97)00593-1
  • Sarwar N, Saifullah, Malhi SS, Zia MH, Naeem A, Bibi S, Farid GH. 2010. Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric. 90:925–937.
  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J. 2015. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci. 6(7):983–990. doi: 10.1007/s13204-015-0510-y
  • Sheykhbaglou R, Sedghi M, Fathi-Achachlouie B. 2018. The effect of ferrous nano-oxide particles on physiological traits and nutritional compounds of soybean (glycine max L.) seed. An Acad Bras Cienc. 90(1):485–494. doi: 10.1590/0001-3765201820160251
  • Somogy M. 1952. Notes on sugar determination. J. Biol Chem. 195:19–29.
  • Tripathi DK., Singh VP., Prasad SM., Chauhan DK., Dubey NK.. 2015. Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Bioch. 96:189–198. doi: 10.1016/j.plaphy.2015.07.026
  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK. 2017. Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem. 110:70–81. doi: 10.1016/j.plaphy.2016.06.026
  • Ünyayar S, Keleş Y, Çekiç FÖ. 2006. The antioxidative response of two tomato species with different drought tolerances as a result of drought and cadmium stress combinations. Plant Soil Environ. 51(2):57–64. doi: 10.17221/3556-PSE
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 151:59–66. doi: 10.1016/S0168-9452(99)00197-1
  • Wang M, Liu X, Hu J, Li J, Huang J. 2015. Nano-ferric oxide promotes watermelon growth. J Biomater Nanobiotechnol. 6:160–167. doi: 10.4236/jbnb.2015.63016