2,017
Views
8
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

OsRuvB transgene induces salt tolerance in pigeon pea

ORCID Icon, , , &
Pages 17-26 | Received 30 Aug 2019, Accepted 20 Jan 2020, Published online: 10 Feb 2020

References

  • Aebi H. 1984. [13] Catalase in vitro. Methods Enzymol. 105:121–126. doi: 10.1016/S0076-6879(84)05016-3
  • Ahmad P, Jaleel CA, Sharma S. 2010. Antioxidant defense system, lipid peroxidation, proline-metabolizing enzymes, and biochemical activities in two Morus alba genotypes subjected to NaCl stress. Russian J Plant Physiol. 57:509–517. doi: 10.1134/S1021443710040084
  • Anjaneyulu E, Reddy PS, Sunita MS, Kishor PBK, Meriga B. 2014. Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H+-pyrophosphatase gene (SbVPPase) from Sorghumbicolor. J Plant Physiol. 171:789–798. doi: 10.1016/j.jplph.2014.02.001
  • Araújo SS, Beebe SE, Crespi MD, González B, Gruber EM, Lejeune-Henaut V, Link I, Monteros W, Prats MJ, Rao E, et al. 2015. Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci. 34(1–3):237–280. doi:10.1080/07352689.2014.898450.
  • Augustine SM, Cherian AV, Syamaladevi DP, Subramonian N. 2015. Erianthus arundinaceus HSP70 (EaHSP70) acts as a key regulator in the formation of anisotropic interdigitation in sugarcane (Saccharum spp. hybrid) in response to drought stress. Plant Cell Physiol. 56:2368–2380. doi: 10.1093/pcp/pcv142
  • Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil. 39:205–207. doi: 10.1007/BF00018060
  • Beebe S. 2012. 5 common bean breeding in the tropics. Plant Breed Rev. 36(36):357–426.
  • Bhatnagar-Mathur P, Rao JS, Vadez V, Dumbala SR, Rathore A, Yamaguchi-Shinozaki K, Sharma KK. 2014. Transgenic peanut overexpressing the DREB1A transcription factor has higher yields under drought stress. Mol Breed. 33:327–340. doi: 10.1007/s11032-013-9952-7
  • Birch RG. 1997. Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol. 48:297–326. doi: 10.1146/annurev.arplant.48.1.297
  • Boyer JS. 1982. Plant productivity and environment. Science. 218:443–448. doi: 10.1126/science.218.4571.443
  • Chaves MM. 1991. Effects of water deficits on carbon assimilation. J Exp Bot. 42:1–16. doi: 10.1093/jxb/42.1.1
  • Chaves MM, Flexas J, Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 103:551–560. doi: 10.1093/aob/mcn125
  • Heath RL, Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 125(1):189–198. doi: 10.1016/0003-9861(68)90654-1
  • Hernandez JA, Ferrer MA, Jimenez A, Barcelo AR, Sevilla F. 2001. Antioxidant systems and O2−/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127:817–831. doi:10.1104/pp.010188.
  • Holt BF, Boyes DC, Ellerström M, Siefers N, Wiig A, Kauffman S, Grant MR, Dangl JL. 2002. An evolutionarily conserved mediator of plant disease resistance gene function is required for normal Arabidopsis development. Devel Cell. 2:807–817. doi: 10.1016/S1534-5807(02)00174-0
  • Isayenkov SV. 2012. Physiological and molecular aspects of salt stress in plants. Cytol Genet. 46:302–318. doi:10.3103/S0095452712050040.
  • Isayenkov SV, Maathuis FJM. 2019. Plant salinity stress: many unanswered questions remain. Front Plant Sci. 10:80. doi:10.3389/fpls.2019.00080.
  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature Biotechnol. 17:287–291. doi: 10.1038/7036
  • Lawrence PK, Koundal KR. 2001. Agrobacterium tumefaciens-mediated transformation of pigeon pea (Cajanus cajan L. Millsp.) and molecular analysis of regenerated plants. Curr Sci. 80:1428–1432.
  • Leonforte A, Sudheesh S, Cogan NO, Salisbury PA, Nicolas ME, Materne M,  Kaur S. 2013. SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Bio. 13(1):161. doi: 10.1186/1471-2229-13-161
  • Li C, Wei Z, Liang D, Zhou S, Li Y, Liu C, Ma F. 2013. Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+ antiporter gene is associated with differences in stomatal behavior and photosynthesis. Plant Physiol Biochem. 70:164–173. doi: 10.1016/j.plaphy.2013.05.005
  • Li H, Wang Z, Ke Q, Ji CY, Jeong JC, Lee HS, Lim YP, Xu B, Deng XP, Kwak SS. 2014. Overexpression of codA gene confers enhanced tolerance to abiotic stresses in alfalfa. Plant Physiol Biochem. 85:31–40. doi: 10.1016/j.plaphy.2014.10.010
  • Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z, Jin Z, Chen S, Liu G. 2008. Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing VTE1 for increased tocopherol production from Arabidopsis thaliana. Biotech Lett. 30:1275–1280. doi: 10.1007/s10529-008-9672-y
  • Lu Y, Li Y, Zhang J, Xiao Y, Yue Y, Duan L, Zhang M, Li Z. 2013. Overexpression of Arabidopsis molybdenum cofactor sulfurase gene confers drought tolerance in maize (Zea mays L.). PLoS ONE. 8.
  • Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Arch Biochem Biophys. 444:139–158. doi: 10.1016/j.abb.2005.10.018
  • Munns R, Passioura JB. 1984. Hydraulic resistance of plants. Effects of NaCl in barley and lupin. Aust J Plant Physiol. 11:351–359. doi:10.1071/PP9840351.
  • Munns R, Termaat A. 1986. Whole-plant responses to salinity. Aust J Plant Physiol. 13:143–160. doi:10.1071/PP9860143.
  • Nemati I, Moradi F, Gholizadeh S, Esmaeili MA, Bihamta MR. 2011.  The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) seedlings. Plant Soil Environ. 57(1):26–33. doi: 10.17221/71/2010-PSE
  • de Paiva Rolla AA, de Fátima Corrêa Carvalho J, Fuganti-Pagliarini R, Engels C, do Rio A, Marin SRR, de Oliveira MCN, Beneventi MA, Marcelino-Guimarães FC, Farias JRB, et al. 2014.  Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field. Transgenic Res. 23:75–87. doi: 10.1007/s11248-013-9723-6
  • Preeti. 2018. Development and characterization of transgenic chickpea (Cicer arietinum L.) plants with OsRuvB gene for salt stress tolerance [thesis]. https://krishikosh.egranth.ac.in/handle/1/5810089618.
  • Rai AC, Singh M, Shah K. 2013. Engineering drought tolerant tomato plants over-expressing BcZAT12 gene encoding a C2H2 zinc finger transcription factor. Phytochemistry. 85:44–50. doi: 10.1016/j.phytochem.2012.09.007
  • Rao IM, Beebe SE, Polania J, Ricaurte J, Cajiao C, Garćıa R, Rivera M. 2013. Can tepary bean be a model for improvement of drought resistance in common bean. Afr Crop Sci J. 21:265–281.
  • Rasool S, Hameed A, Azooz MM, Rehman M-U, Siddiqi TO, Ahmad P. 2013. Salt stress: causes, types and responses of plants, chapter 1: soil and water management for sustained agriculture in alluvial plains and flood plains exposed to salinity: a case of Neretva river valley (pp. 1–24).
  • Ravikumar G, Manimaran P, Voleti SR, Subrahmanyam D, Sundaram RM, Bansal KC, Viraktamath BC, Balachandran SM. 2014. Stress-inducible expression of AtDREB1A transcription factor greatly improves drought stress tolerance in transgenic indica rice. Transgenic Res. 23:421–439. doi: 10.1007/s11248-013-9776-6
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. 1984. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Nat Acad Sci. 81:8014–8018. doi: 10.1073/pnas.81.24.8014
  • Saifi SK, Passricha N, Tuteja R, Tuteja N. 2018a. Stress-induced Oryza sativa RuvBL1a is DNA-independent ATPase and unwinds DNA duplex in 3′ to 5′ direction. Protoplasma. 255:669–684. doi: 10.1007/s00709-017-1178-9
  • Saifi S, Passricha N, Tuteja N, Swain D. 2018b. Prediction of cis-regulatory elements for a detailed insight of RuvB family genes from Oryza sativa. ORYZA - Int J Rice. 54. doi:10.5958/2249-5266.2017.00019.4.
  • Sawhney V, Singh DP. 2002. Effect of chemical desiccation at the post-anthesis stage on some physiological and biochemical changes in the flag leaf of contrasting wheat genotypes. Field Crops Res. 77(1):1–6. doi: 10.1016/S0378-4290(01)00192-7
  • Siegel BZ. 1993. Plant peroxidases-an organismic perspective. Plant Growth Regul. 12:303–312. doi: 10.1007/BF00027212
  • Singh N, Mishra A, Jha B. 2014. Over-expression of the peroxisomal ascorbate peroxidase (SbpAPX) gene cloned from halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Marine Biotechnol. 16:321–332. doi: 10.1007/s10126-013-9548-6
  • Smart RE, Bingham GE. 1974. Rapid estimates of relative water content. Plant Physiol. 53(2):258–260. doi: 10.1104/pp.53.2.258
  • Sullivan CY. 1972. Mechanisms of heat and drought resistance in grain sorghum and methods of measurement. Sorghum in Seventies. New Delhi: Oxford & IBH Pub. Co.
  • Surekha C, Beena MR, Arundhati A, Singh PK, Tuli R, Dutta-Gupta A, Kirti PB. 2005. Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.) using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Sci. 169:1074–1080. doi: 10.1016/j.plantsci.2005.07.011
  • Surekha C, Kumari KN, Aruna LV, Suneetha G, Arundhati A, Kavi Kishor PB. 2014. Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell Tissue Organ Cul. 116:27–36. doi: 10.1007/s11240-013-0378-z
  • Surender Reddy P, Jogeswar G, Rasineni GK, Maheswari M, Reddy AR, Varshney RK, Kavi Kishor PB. 2015. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem. 94:104–113. doi: 10.1016/j.plaphy.2015.05.014
  • Tang L, Cai H, Ji W, Luo X, Wang Z, Wu J, Wang X, Cui L, Wang Y, Zhu Y, Bai X. 2013. Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol Biochem. 71:22–30. doi: 10.1016/j.plaphy.2013.06.024
  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H. 1999. A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell. 11:1195–1206. doi:10.2307/3870742. doi: 10.1105/tpc.11.7.1195
  • Tuteja N, Tuteja R. 2004a. Prokaryotic and eukaryotic DNA helicases: essential molecular motor proteins for cellular machinery. Eur J Biochem. 271:1835–1848. doi: 10.1111/j.1432-1033.2004.04093.x
  • Tuteja N, Tuteja R. 2004b. Unraveling DNA helicases Motif, structure, mechanism and function. Eur J Biochem. 271:1849–1863. doi: 10.1111/j.1432-1033.2004.04094.x
  • Vaid N, Pandey P, Srivastava VK, Tuteja N. 2015. Pea lectin receptor-like kinase functions in salinity adaptation without yield penalty, by alleviating osmotic and ionic stresses and upregulating stress-responsive genes. Plant Mol Bio. 88:193–206. doi: 10.1007/s11103-015-0319-9
  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G. 2003. Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.): differential response in high yielding and sensitive varieties. Plant Sci. 165:1411–1418. doi: 10.1016/j.plantsci.2003.08.005
  • Wang C-W, Chen W-C, Lin L-J, Lee C-T, Tseng T-H, Leu W-M. 2011. OIP30, a RuvB-like DNA helicase 2, is a potential substrate for the pollen-predominant OsCPK25/26 in rice. Plant Cell Physiol. 52:1641–1656. doi: 10.1093/pcp/pcr094
  • Wang W, Vinocur B, Altman A. 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta. 218:1–14. doi: 10.1007/s00425-003-1105-5
  • Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B. 2012. The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Bio. 12:188. doi:10.1186/1471-2229-12-188.
  • Yang ZB, Rao IM, Horst WJ. 2013. Interaction of aluminium and drought stress on root growth and crop yield on acid soils. Plant Soil. 372(1–2):3–25. doi: 10.1007/s11104-012-1580-1
  • Yemm EW, Willis AJ. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochem J. 57:508–514.
  • Zhang H, Dong H, Li W, Sun Y, Chen S, Kong X. 2009. Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines. Mol Breed. 23:289–298. doi: 10.1007/s11032-008-9233-z
  • Zhao X, Wei P, Liu Z, Yu B, Shi H. 2017. Soybean Na+/H+ antiporter GmsSOS1 enhances antioxidant enzyme activity and reduces Na+ accumulation in Arabidopsis and yeast cells under salt stress. Acta Physiol Plant. 39:19. doi: 10.1007/s11738-016-2323-3