9,368
Views
81
CrossRef citations to date
0
Altmetric
Plant-Microorganism interactions

Characterization of actinomycetes isolates for plant growth promoting traits and their effects on drought tolerance in maize

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 93-105 | Received 09 Mar 2019, Accepted 14 Aug 2019, Published online: 23 Apr 2020

References

  • Adegboye MF, Babalola OO. 2013. Actinomycetes: a yet inexhaustive source of bioactive secondary metabolites. In: Mendez-Vilas A, editor. Microbial pathogens and strategies for combating them: science, technology and education. Microbiology Book Series - 4, Vol. 2. December 2013 ed. Spain: Formatex Research Center. p. 786-795. ISBN-13. 978-84-942134-0-3.
  • Adegboye MF, Babalola OO. 2015. Evaluation of antibiotic biosynthetic potential of actinomycete isolates to produce antimicrobial agents. British Microbiol Res J. 7(5):243–254. doi:10.9734/BMRJ/2015/14627.
  • Alexander D, Zuberer D. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils. 12:39–45. doi: 10.1007/BF00369386
  • Ali SZ, Sandhya V, Venkateswar Rao L. 2014. Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas spp. Ann Microbiol. 64:493–502. doi: 10.1007/s13213-013-0680-3
  • Arshad M, Shaharoona B, Mahmood T. 2008. Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere. 18:611–620. doi: 10.1016/S1002-0160(08)60055-7
  • Ashraf M. 2010. Inducing drought tolerance in plants: recent advances. Biotechnol Adv. 28:169–183. doi: 10.1016/j.biotechadv.2009.11.005
  • Babalola OO. 2010. Beneficial bacteria of agricultural importance. Biotechnol Lett. 32(11):1559–1570. ISSN: 0141-5492 E-ISSN: 1573-6776. doi:10.1007/s10529-010-0347-0.
  • Babalola OO, Glick BR. 2012. The use of microbial inoculants in African agriculture: current practice and future prospects. J Food Agric Environ (Finland). 10(3 & 4):540–549. (ISSN: 1459-0263).
  • Bakker AW, Schippers B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp-mediated plant growth-stimulation. Soil Biol Biochem. 19:451–457. doi: 10.1016/0038-0717(87)90037-X
  • Bardi L, Malusà E. 2012. Drought and nutritional stresses in plant: alleviating role of rhizospheric microorganisms. In: Haryana Nikhil, Punj Shreya, editors. Abiotic stress: new research. Hauppauge, NY, USA: Nova Science; p. 1–57.
  • Bashan Y, De-Bashan LE. 2010. How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. In: Sparks Donald L., editor. Advances in Agronomy. Vol. 108. Academic Press; p. 77–136.
  • Begum M, Rai VR, Lokesh S. 2012. Effect of plant growth promoting rhizobacteria on seed borne fungal pathogens in okra. Indian Phytopathol. 56:156–158.
  • Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ. 2009. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol. 181:413–423. doi: 10.1111/j.1469-8137.2008.02657.x
  • Brimecombe MJ, De Leij FA, Lynch JM, Pinton R, Varanini Z, Nannipieri P. 2000. The effect of root exudates on rhizosphere microbial populations. Biochemistry and organic substances at the soil-plant interface. In: Pinton R, Varaninin Z, Nannipieri P, editors. The Rhizosphere, biochemistry and organic substances at the soil-plant interface. New York: Marcel Dekker. p. 95–140.
  • Cassán F, Vanderleyden J, Spaepen S. 2014. Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul. 33:440–459. doi: 10.1007/s00344-013-9362-4
  • Chabot R, Antoun H, Cescas MP. 1993. Stimulation de la croissance du maïs et de la laitue romaine par des microorganismes dissolvant le phosphore inorganique. Can J Microbiol. 39:941–947. doi: 10.1139/m93-142
  • Chen Y, Rekha P, Arun A, Shen F, Lai W-A, Young C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol. 34:33–41. doi: 10.1016/j.apsoil.2005.12.002
  • Chukwuneme CF. 2018. Actinomycetes impacts on drought stress in maize [Dissertation - Masters]. South Africa: North-West University..
  • Coleman-Derr D, Tringe SG. 2014. Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance. Front Microbiol. 5:283–296. doi:10.3389/fmicb.2014.00283.
  • Compant S, Duffy B, Nowak J, Clément C, Barka EA. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol. 71:4951–4959. doi: 10.1128/AEM.71.9.4951-4959.2005
  • Creus CM, Sueldo RJ, Barassi CA. 2004. Water relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Can J Botany. 82:273–281. doi: 10.1139/b03-119
  • Delcour JA, Poutanen K, editors. 2013. Fibre-rich and wholegrain foods: improving quality. Woodhead, Cambridge. p. 1–459.
  • Dimkpa C, Weinand T, Asch F. 2009. Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 32:1682–1694. doi: 10.1111/j.1365-3040.2009.02028.x
  • Duarah I, Deka M, Saikia N, Deka Boruah HP. 2011. Phosphate solubilizers enhance NPK fertilizer use efficiency in rice and legume cultivation. Biotechnol. 1:227–238.
  • Duca D, Lorv J, Patten CL, Rose D, Glick BR. 2014. Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek. 106:85–125. doi:10.1007/s10482-013-0095-y.
  • Dworkin M, Foster J. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol. 75:592–603. doi: 10.1128/JB.75.5.592-603.1958
  • Eisenstein M. 2013. Discovery in a dry spell. Nature. 501:S7–S9. doi:10.1038/501S7a.
  • El-Tarabily KA. 2008. Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil. 308:161–174. doi: 10.1007/s11104-008-9616-2
  • Elegba M, Rennie R. 1984. Effect of different inoculant adhesive agents on rhizobial survival, nodulation, and nitrogenase (acetylene-reducing) activity of soybeans (Glycine max (L.) Merrill). Can J Soil Sci. 64:631–636. doi: 10.4141/cjss84-063
  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S. 2009. Plant drought stress: effects, mechanisms and management. Agron Sustainable Dev. 29:185–212. doi: 10.1051/agro:2008021
  • Figueiredo MV, Burity HA, Martínez CR, Chanway CP. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol. 40:182–188. doi: 10.1016/j.apsoil.2008.04.005
  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci. 176:20–30. doi: 10.1016/j.plantsci.2008.09.014
  • Ghorbanpour M, Hatami M. 2014. Biopriming of salvia officinalis seed with growth promoting rhizobacteria affects invigoration and germination indices. J. Biol Environ Sci. 8:29–36.
  • Glick BR. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett. 251:1–7. doi: 10.1016/j.femsle.2005.07.030
  • Glick BR. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 169:30–39. doi: 10.1016/j.micres.2013.09.009
  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. 2007. Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci. 26:227–242. doi: 10.1080/07352680701572966
  • Gong H, Zhu X, Chen K, Wang S, Zhang C. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Sci. 169:313–321. doi: 10.1016/j.plantsci.2005.02.023
  • Gusain YS, Singh U, Sharma A. 2015. Bacterial mediated amelioration of drought stress in drought tolerant and susceptible cultivars of rice (Oryza sativa L.). Afr J Biotechnol. 14:764–773. doi: 10.5897/AJB2015.14405
  • Ibarra VG, Sendón R, de Quirós AR-B. 2016. Antimicrobial food packaging based on biodegradable materials. In: Barros-Velazques Jorge, editor. Antimicrobial food packaging. San Diego, USA: Academic Press; p. 363–384.
  • Idris EE, Iglesias DJ, Talon M, Borriss R. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact. 20:619–626. doi: 10.1094/MPMI-20-6-0619
  • Islam MR, Madhaiyan M, Deka Boruah HP, Yim W, Lee G, Saravanan VF, Fu Q, Hu H, Sa T. 2009. Characterization of plant growth-promoting traits of free-living diazotrophic bacteria and their inoculation effects on growth and nitrogen uptake of crop plants. J Microbiol Biotechnol. 19(10):1213–1222. doi:10.4014/jmb.0903.3028.
  • Jongdee B, Pantuwan G, Fukai S, Fischer K. 2006. Improving drought tolerance in rainfed lowland rice: an example from Thailand. Agric Water Manag. 80:225–240. doi: 10.1016/j.agwat.2005.07.015
  • Khamna S, Yokota A, Peberdy JF, Lumyong S. 2010. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. EurAsian J. BioSci. 4:23–32. doi: 10.5053/ejobios.2010.4.0.4
  • Khantsi M, Adegboye MF, Babalola OO. 2013. 1-Aminocyclopropane-1-carboxylate deaminase activity as a marker for identifying plant-growth promoting rhizobacteria in cultivated soil. Asian Life Sci. 9:199–211. ISSN 0117-3375.
  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R. 2008. Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem. 283:34197–34203. doi: 10.1074/jbc.M806337200
  • Langridge P, Reynolds MP. 2015. Genomic tools to assist breeding for drought tolerance. Curr Opin Biotechnol. 32:130–135. doi: 10.1016/j.copbio.2014.11.027
  • Laslo É, György É, Mara G, Tamás É, Ábrahám B, Lányi S. 2012. Screening of plant growth promoting rhizobacteria as potential microbial inoculants. Crop Prot. 40:43–48. doi: 10.1016/j.cropro.2012.05.002
  • Lucy M, Reed E, Glick BR. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie Van Leeuwenhoek. 86:1–25. doi: 10.1023/B:ANTO.0000024903.10757.6e
  • Maazou A-RS, Tu J, Qiu J, Liu Z. 2016. Breeding for drought tolerance in maize (Zea mays L.). Am J Plant Sci. 7:1858–1870. doi: 10.4236/ajps.2016.714172
  • Madhaiyan M, Poonguzhali S, Sa T. 2007. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere. 69:220–228. doi: 10.1016/j.chemosphere.2007.04.017
  • Matsukawa E, Nakagawa Y, Iimura Y, Hayakawa M. 2007. Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp. Actinomycetologica. 21:32–39. doi: 10.3209/saj.SAJ210105
  • Naseem H, Bano A. 2014. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact. 9:689–701. doi: 10.1080/17429145.2014.902125
  • Ndeddy Aka RJ, Babalola OO. 2016. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Int J Phytorem. 18:200–209. doi: 10.1080/15226514.2015.1073671
  • Ndeddy Aka RJ, Babalola OO. 2017. Identification and characterization of Cr-, Cd- and Ni- tolerant bacteria isolated from mine tailings. Biorem J. 21:1–19. doi:10.1080/10889868.2017.1282933.
  • Ng L, Sariah M, Sariam O, Radziah O, Zainal Abidin M. 2012. Rice seed bacterization for promoting germination and seedling growth under aerobic cultivation system. Austr J Crop Sci. 6:170–175.
  • Omar M, Osman M, Kasim W, El-Daim IA. 2009. Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense. In: Ashraf M, Ozturk M, Habib-ur-Rehman A, editors. Salinity and water stress improving crop efficiency. Netherlands: Springer. p. 133–147.
  • Passari AK, Mishra VK, Saikia R, Gupta VK, Singh BP. 2015. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential. Front Microbiol. 6:273. doi:10.3389/fmicb.2015.00273.
  • Patten CL, Glick BR. 2002. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Can J Microbiol. 48:635–642. doi: 10.1139/w02-053
  • Penrose DM, Glick BR. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant. 118:10–15. doi: 10.1034/j.1399-3054.2003.00086.x
  • Pereyra M, Garcia P, Colabelli M, Barassi C, Creus C. 2012. A better water status in wheat seedlings induced by Azospirillum under osmotic stress is related to morphological changes in xylem vessels of the coleoptile. Appl Soil Ecol. 53:94–97. doi: 10.1016/j.apsoil.2011.11.007
  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 11:789–799. doi: 10.1038/nrmicro3109
  • Quan C, Wang X, Fan S. 2010. Antifungal compounds of plant growth promoting rhizobacteria and its action mode. In: Maheshwari DK, editor. Plant growth and health promoting bacteria. Berlin-Heidelberg: Springer, Verlag. p. 117–156.
  • Rashid S, Charles TC, Glick BR. 2012. Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol. 61:217–224. doi: 10.1016/j.apsoil.2011.09.011
  • Rashid M, Khalil S, Ayub N, Alam S, Latif F. 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak J Biol Sci. 7:187–196. doi: 10.3923/pjbs.2004.187.196
  • Reddy AR, Chaitanya KV, Vivekanandan M. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol. 161:1189–1202. doi: 10.1016/j.jplph.2004.01.013
  • Renn, AL. 2013. Bioinformatic and functional analysis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase homologues in strains of sinorhizobium. Minnesota: Hamline University. Departmental Honors Projects. 4. https://digitalcommons.hamline.edu/dhp/4
  • Richardson AE. 2001. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol. 28:897–906. doi: 10.1071/PP01093
  • Rincón A, Valladares F, Gimeno TE, Pueyo JJ. 2008. Water stress responses of two Mediterranean tree species influenced by native soil microorganisms and inoculation with a plant growth promoting rhizobacterium. Tree Physiol. 28:1693–1701. doi: 10.1093/treephys/28.11.1693
  • Rodríguez H, Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv. 17:319–339. doi: 10.1016/S0734-9750(99)00014-2
  • SAS. 2014. SAS 9.4 output delivery system: user guide. Cary (NC): SAS institute.
  • Sathya A, Vijayabharathi R, Gopalakrishnan S. 2017. Plant growth-promoting actinobacteria: a new strategy for enhancing sustainable production and protection of grain legumes. 3 Biotechnol. 7:102–112. Springer-Verlag Berlin, Heidelberg.
  • Schwyn B, Neilands J. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 160:47–56. doi: 10.1016/0003-2697(87)90612-9
  • Selvakumar G, Mohan M, Kundu S, Gupta A, Joshi P, Nazim S, Gupta H. 2008. Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol. 46:171–175. doi: 10.1111/j.1472-765X.2007.02282.x
  • Shakir MA, Asghari B, Muhammad A. 2012. Rhizosphere bacteria containing ACC-deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ. 31:108–112.
  • Sreevidya M, Gopalakrishnan S, Kudapa H, Varshney R. 2016. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Braz J Microbiol. 47:85–95. doi: 10.1016/j.bjm.2015.11.030
  • Taiz L, Zeiger E. 2002. Plant physiology. 5th ed. Massachusetts: Sinauer Associates, Inc.
  • Vijayabharathi R, Sathya A, Gopalakrishnan S. 2016. A Renaissance in plant growth-promoting and biocontrol agents by endophytes. In: Singh Dhananjaya P., Singh Harikesh P., Prabha Ratna, editors. Microbial inoculants in sustainable agricultural productivity. New Delhi: Springer; p. 37–60. doi:10.1007/978-81-322-2647-5.
  • Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res. 184:13–24. doi: 10.1016/j.micres.2015.12.003
  • Wahid A, Gelani S, Ashraf M, Foolad MR. 2007. Heat tolerance in plants: an overview. Environ Exp Bot. 61:199–223. doi: 10.1016/j.envexpbot.2007.05.011
  • Wang Z, Huang B. 2004. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Sci. 44:1729–1736. doi: 10.2135/cropsci2004.1729
  • Wang C-J, Yang W, Wang C, Gu C, Niu D-D, Liu H-X, Wang Y-P, Guo J-H. 2012. Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PLoS One. 7:e52565–e52577. doi: 10.1371/journal.pone.0052565
  • Williams P, Phillips G. 2004. Effect of hydrocolloids on emulsion stability, In Gums and Stabilizer’s for the food industry. J Agric Food Chem. 53:3594–4040.
  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK. 2012. Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul. 68:411–420. doi: 10.1007/s10725-012-9730-2
  • Yang J, Kloepper JW, Ryu C-M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1–4. doi: 10.1016/j.tplants.2008.10.004
  • Zahid M. 2015. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol. 6:207. doi: 10.3389/fmicb.2015.00207
  • Zhang H, Kim M-S, Sun Y, Dowd SE, Shi H, Paré PW. 2008. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant- Microbe Interact. 21:737–744. doi: 10.1094/MPMI-21-6-0737