1,016
Views
18
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Chloroplastic acyl carrier protein synthase I and chloroplastic 20 kDa chaperonin proteins are involved in wheat (Triticum aestivum) in response to moisture stress

, ORCID Icon, &
Pages 180-187 | Received 09 May 2019, Accepted 23 Aug 2019, Published online: 11 Jun 2020

References

  • Ahmadi M, Farshadfar E, Veisi S. 2012. Evaluation of genetic diversity in land races of bread wheat under irrigated and rain fed conditions. Int J Agric Crop Sci. 4:1627–1636.
  • Bazargani MM, Sarhadi E, Bushehri AAS, Matros A, Mock HP, Naghavi MR, Ehdaie B. 2011. A proteomics view on the role of drought-induced senescence and oxidative stress defense in enhanced stem reserves remobilization in wheat. J Proteomics. 74:1959–1973. doi: 10.1016/j.jprot.2011.05.015
  • Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Fuchs G. 2010. Autotrophic carbon fixation in archaea. Nat Rev Microbiol. 8:447. doi: 10.1038/nrmicro2365
  • Beritognolo I, Harfouche A, Brilli F, Prosperini G, Gaudet M, Brosché M, Salani F, Kuzminsky E, Auvinen P, Paulin L. 2011. Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Tree Physiol. 31:1335–1355. doi: 10.1093/treephys/tpr083
  • Blum H, Beier H, Gross HJ. 1987. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis. 8:93–99. doi: 10.1002/elps.1150080203
  • Boustani A, Fatehi F, Azizinezhad R. 2017. The proteome response of Hordeum marinum to long-term salinity stress. Cereal Res Commun. 45:401–410. doi: 10.1556/0806.45.2017.020
  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, Kay S. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature. 491:705. doi: 10.1038/nature11650
  • Budak H, Akpinar BA, Unver T, Turktas M. 2013. Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI–MS/MS. Plant Mol Biol. 83:89–103. doi: 10.1007/s11103-013-0024-5
  • Caruso G, Cavaliere C, Foglia P, Gubbiotti R, Samperi R, Laganà A. 2009. Analysis of drought responsive proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Sci. 177:570–576. doi: 10.1016/j.plantsci.2009.08.007
  • Caruso G, Cavaliere C, Guarino C, Gubbiotti R, Foglia P, Laganà A. 2008. Identification of changes in Triticum durum L. leaf proteome in response to salt stress by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Anal Bioanal Chem. 391:381–390. doi: 10.1007/s00216-008-2008-x
  • Cheng L, Wang Y, He Q, Li H, Zhang X, Zhang F. 2016. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC Plant Biol. 16:188. doi: 10.1186/s12870-016-0871-8
  • Cheng Z, Dong K, Ge P, Bian Y, Dong L, Deng X, Li X, Yan Y. 2015. Identification of leaf proteins differentially accumulated between wheat cultivars distinct in their levels of drought tolerance. PLoS One. 10:e0125302. doi: 10.1371/journal.pone.0125302
  • Damerval C, De Vienne D, Zivy M, Thiellement H. 1986. Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis. 7:52–54. doi: 10.1002/elps.1150070108
  • De Abreu CEB, dos Santos Araújo G, de Oliveira Monteiro-Moreira AC, Costa JH, de Brito Leite H, Moreno FBMB, Prisco JT, Gomes-Filho E. 2014. Proteomic analysis of salt stress and recovery in leaves of Vigna unguiculata cultivars differing in salt tolerance. Plant Cell Rep. 33:1289–1306. doi: 10.1007/s00299-014-1616-5
  • Faghani E, Gharechahi J, Komatsu S, Mirzaei M, Khavarinejad RA, Najafi F, Farsad LK, Salekdeh GH. 2015. Comparative physiology and proteomic analysis of two wheat genotypes contrasting in drought tolerance. J Proteomics. 114:1–15. doi: 10.1016/j.jprot.2014.10.018
  • Fotovat R, Alikhani M, Valizadeh M, Mirzaei M, Salekdeh GH. 2017. A proteomics approach to discover drought tolerance proteins in wheat Pollen grain at Meiosis stage. Protein Pept Lett. 24:26–36. doi: 10.2174/0929866523666161130143446
  • Ge P, Ma CY, Wang SL, Gao LY, Li XH, Guo GF, Ma WJ, Yan YM. 2012. Comparative proteomic analysis of grain development in two spring wheat varieties under drought stress. Anal Bioanal Chem. 402:1297–1313. doi: 10.1007/s00216-011-5532-z
  • Ghatak A, Chaturvedi P, Weckwerth W. 2017. Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front Plant Sci. 8:757. doi: 10.3389/fpls.2017.00757
  • Görg A, Postel W, Domscheit A, Günther S. 1988. Two-dimensional electrophoresis with immobilized pH gradients of leaf proteins from barley (Hordeum vulgare): method, reproducibility and genetic aspects. Electrophoresis. 9:681–692. doi: 10.1002/elps.1150091103
  • Hameed A, Bibi N, Akhter J, Iqbal N. 2011. Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions. Plant Physiol Biochem. 49:178–185. doi: 10.1016/j.plaphy.2010.11.009
  • Horwich AL, Fenton WA, Chapman E, Farr GW. 2007. Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol. 23:115–145. doi: 10.1146/annurev.cellbio.23.090506.123555
  • Jamshidi Goharrizi K, Baghizadeh A, Kalantar M, Fatehi F. 2020. Combined effects of salinity and drought on physiological and biochemical characteristics of pistachio rootstocks. Sci Hortic. 261:108970. doi: 10.1016/j.scienta.2019.108970
  • Jamshidi Goharrizi K, Moosavi SS, Amirmahani F, Salehi F, Nazari M. 2020. Assessment of changes in growth traits, oxidative stress parameters, and enzymatic and non-enzymatic antioxidant defense mechanisms in Lepidium draba plant under osmotic stress induced by polyethylene glycol. Protoplasma. 257:459–473. doi: 10.1007/s00709-019-01457-0
  • Jamshidi Goharrizi K, Wilde HD, Amirmahani F, Moemeni MM, Zaboli M, Nazari M, Moosavi SS, Jamalvandi M. 2018. Selection and validation of reference genes for normalization of qRT-PCR gene expression in wheat (Triticum durum L.) under drought and salt stresses. J Genet. 97:1433–1444. doi: 10.1007/s12041-018-1042-5
  • Kamal A, Cho K, Choi JS, Jin Y, Park CS, Lee J, Woo S. 2013. Patterns of protein expression in water-stressed wheat chloroplasts. Biol Plant. 57:305–312. doi: 10.1007/s10535-012-0290-0
  • Kamal AHM, Cho K, Kim DE, Uozumi N, Chung KY, Lee SY, Woo SH. 2012. Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Mol Biol Rep. 39:9059–9074. doi: 10.1007/s11033-012-1777-7
  • Kamal AHM, Kim KH, Shin KH, Choi JS, Baik BK, Tsujimoto H, Woo SH. 2010. Abiotic stress responsive proteins of wheat grain determined using proteomics technique. Aust J Crop Sci. 4:196.
  • Keown JR, Griffin MD, Mertens HD, Pearce FG. 2013. Small oligomers of ribulose-bisphosphate carboxylase/oxygenase (rubisco) activase are required for biological activity. J Biol Chem. 288(28):20607–20615. doi: 10.1074/jbc.M113.466383
  • Kuo WY, Huang CH, Liu AC, Cheng CP, Li SH, Chang WC, Jinn TL. 2013. CHAPERONIN 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytol. 197:99–110. doi: 10.1111/j.1469-8137.2012.04369.x
  • Li N, Zhang S, Liang Y, Qi Y, Chen J, Zhu W, Zhang L. 2018. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes. J Proteomics. 172:122–142. doi: 10.1016/j.jprot.2017.09.016
  • Liu H, Sultan MARF, Li Liu X, Zhang J, Yu F, Zhao H. 2015. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum). PLoS One. 10:e0121852. doi: 10.1371/journal.pone.0121852
  • Maleki M, Naghavi M, Alizadeh H, Poostini K, Mishani CA. 2014. Comparison of protein changes in the leaves of two bread wheat cultivars with different sensitivity under salt stress. Ann Res Rev Biol. 4:1784–1797. doi: 10.9734/ARRB/2014/7795
  • Mguis K, Albouchi A, Abassi M, Khadhri A, Ykoubi-Tej M, Mahjoub A, Brahim NB, Ouerghi Z. 2013. Responses of leaf growth and gas exchanges to salt stress during reproductive stage in wild wheat relative Aegilops geniculata Roth. and wheat (Triticum durum Desf.). Acta Physiol Plant. 35:1453–1461. doi: 10.1007/s11738-012-1185-6
  • Nazari M, Jamshidi Goharrizi K, Moosavi SS, Maleki M. 2019. Expression changes in the TaNAC2 and TaNAC69-1 transcription factors in drought stress tolerant and susceptible accessions of Triticum boeoticum. Plant Genet. Resour. 17:471–479. doi: 10.1017/S1479262119000303
  • Nazari M, Moosavi SS, Maleki M. 2018. Morpho-physiological and proteomic responses of Aegilops tauschii to imposed moisture stress. Plant Physiol Biochem. 132:445–452. doi: 10.1016/j.plaphy.2018.09.031
  • Ngara R, Ndimba BK. 2014. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies. Proteomics. 14:611–621. doi: 10.1002/pmic.201300351
  • Nouri MZ, Moumeni A, Komatsu S. 2015. Abiotic stresses: insight into gene regulation and protein expression in photosynthetic pathways of plants. Int J Mol Sci. 16:20392–20416. doi: 10.3390/ijms160920392
  • Pagnotta MA, Mondini L, Atallah MF. 2005. Morphological and molecular characterization of Italian emmer wheat accessions. Euphytica. 146:29–37. doi: 10.1007/s10681-005-8607-0
  • Park SJ, Son WS, Lee BJ. 2012. Structural analysis of hypothetical proteins from helicobacter pylori: an approach to estimate functions of unknown or hypothetical proteins. Int J Mol Sci. 13:7109–7137. doi: 10.3390/ijms13067109
  • Parry MAJ, Andralojc PJ, Mitchell RA, Madgwick PJ, Keys AJ. 2003. Manipulation of rubisco: the amount, activity, function and regulation. J Exp Bot. 54:1321–1333. doi: 10.1093/jxb/erg141
  • Raines CA. 2011. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol. 155:36–42. doi: 10.1104/pp.110.168559
  • Rezaee F, Lahouti M, Maleki M, Ganjeali A. 2018. Comparative proteomics analysis of whitetop (Lepidium draba L.) seedlings in response to exogenous glucose. Int J Biol Macromol. 120:2458–2465. doi: 10.1016/j.ijbiomac.2018.09.016
  • Riccardi F, Gazeau P, de Vienne D, Zivy M. 1998. Protein changes in response to progressive water deficit in maize: quantitative variation and polypeptide identification. Plant Physiol. 117:1253–1263. doi: 10.1104/pp.117.4.1253
  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J. 2002. Proteomic analysis of rice leaves during drought stress and recovery. Proteom Int Ed. 2:1131–1145. doi: 10.1002/1615-9861(200209)2:9<1131::AID-PROT1131>3.0.CO;2-1
  • Schmidt A, Jäger K. 1992. Open questions about sulfur metabolism in plants. Annu Rev Plant Biol. 43:325–349. doi: 10.1146/annurev.pp.43.060192.001545
  • Servaites JC, Torisky RS, Chao SF. 1984. Diurnal changes in ribulose-1,5-bisphosphate carboxylase activity and activation state in leaves of field grown soybeans. Plant Sci Lett. 35:115–121. doi: 10.1016/0304-4211(84)90184-6
  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komatsu S. 2010. Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci. 8:19. doi: 10.1186/1477-5956-8-19
  • Sudhakar P, Latha P, Reddy PV. 2016. Phenotyping crop plants for physiological and biochemical traits. Amsterdam: Elsevier/Academic Press.
  • Upchurch RG. 2008. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett. 30:967–977. doi: 10.1007/s10529-008-9639-z
  • Vítámvás P, Urban MO, Škodáček Z, Kosová K, Pitelková I, Vítámvás J, Renaut J, Prášil IT. 2015. Quantitative analysis of proteome extracted from barley crowns grown under different drought conditions. Front Plant Sci. 6:479. doi: 10.3389/fpls.2015.00479
  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA. 2005. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol. 162:465–472. doi: 10.1016/j.jplph.2004.09.009
  • Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9:244–252. doi: 10.1016/j.tplants.2004.03.006
  • White SW, Zheng J, Zhang YM, Rock CO. 2005. The structural biology of type II fatty acid biosynthesis. Annu Rev Biochem. 74:791–831. doi: 10.1146/annurev.biochem.74.082803.133524
  • Yan L, Fan G, Deng M, Zhao Z, Dong Y, Li Y. 2017. Comparative proteomic analysis of autotetraploid and diploid Paulownia tomentosa reveals proteins associated with superior photosynthetic characteristics and stress adaptability in autotetraploid Paulownia. Physiol Mol Biol Plants. 23:605–617. doi: 10.1007/s12298-017-0447-6
  • Zadražnik T, Hollung K, Egge-Jacobsen W, Meglič V, Šuštar-Vozlič J. 2013. Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics. 78:254–272. doi: 10.1016/j.jprot.2012.09.021
  • Zhang XF, Jiang T, Wu Z, Du SY, Yu YT, Jiang SC, Zhang DP. 2013. Cochaperonin CPN20 negatively regulates abscisic acid signaling in Arabidopsis. Plant Mol Biol. 83:205–218. doi: 10.1007/s11103-013-0082-8
  • Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F, Hu X. 2016. The difference of physiological and proteomic changes in maize leaves adaptation to drought, heat, and combined both stresses. Front Plant Sci. 7:1471.
  • Zhao Z, Assmann SM. 2011. The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. J Exp Bot. 62:5179–5189. doi: 10.1093/jxb/err223