1,675
Views
8
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

AIW1 and AIW2, two ABA-induced WD40 repeat-containing transcription repressors function redundantly to regulate ABA and salt responses in Arabidopsis

, , , , , , , , , , , & ORCID Icon show all
Pages 196-206 | Received 17 Mar 2020, Accepted 28 May 2020, Published online: 17 Jun 2020

References

  • Ahmad R, Liu Y, Wang TJ, Meng Q, Yin H, Wang X, Wu Y, Nan N, Liu B, Xu ZY. 2019. GOLDEN2-LIKE transcription factors regulate WRKY40 expression in response to abscisic acid. Plant Physiol. 179:1844–1860. doi: 10.1104/pp.18.01466
  • Ananieva EA, Gillaspy GE, Ely A, Burnette RN, Erickson FL. 2008. Interaction of the WD40 domain of a myoinositol polyphosphate 5-phosphatase with SnRK1 links inositol, sugar, and stress signaling. Plant Physiol. 148:1868–1882. doi: 10.1104/pp.108.130575
  • Bouyer D, Geier F, Kragler F, Schnittger A, Pesch M, Wester K, Balkunde R, Timmer J, Fleck C, Hülskamp M. 2008. Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol. 6:e141. doi: 10.1371/journal.pbio.0060141
  • Chen JG, Ullah H, Temple B, Liang J, Guo J, Alonso JM, Ecker JR, Jones AM. 2006. RACK1 mediates multiple hormone responsiveness and developmental processes in Arabidopsis. J Exp Bot. 57:2697–2708. doi: 10.1093/jxb/erl035
  • Chen S, Zhang N, Zhang Q, Zhou G, Tian H, Hussain S, Ahmed S, Wang T, Wang S. 2019. Genome editing to integrate seed size and abiotic stress tolerance traits in Arabidopsis reveals a role for DPA4 and SOD7 in the regulation of inflorescence architecture. Int J Mol Sci. 20. 2695. doi: 10.3390/ijms20112695
  • Chen YT, Liu HX, Stone S, Callis J. 2013. ABA and the ubiquitin E3 ligase KEEP ON GOING affect proteolysis of the Arabidopsis thaliana transcription factors ABF1 and ABF3. Plant J. 75:965–976. doi: 10.1111/tpj.12259
  • Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735–743. doi: 10.1046/j.1365-313x.1998.00343.x
  • Collins J, O'Grady K, Chen S, Gurley W. 2019. The C-terminal WD40 repeats on the TOPLESS co-repressor function as a protein-protein interaction surface. Plant Mol Biol. 100:47–58. doi: 10.1007/s11103-019-00842-w
  • Dai X, Zhou L, Zhang W, Cai L, Guo H, Tian H, Schieflbein J, Wang S. 2016. A single amino acid substitution in the R3 domain of GLABRA1 leads to inhibition of trichome formation in Arabidopsis without affecting its interaction with GLABRA3. Plant Cell Environ. 39:897–907. doi: 10.1111/pce.12695
  • Ding ZJ, Yan JY, Li GX, Wu ZC, Zhang SQ, Zheng SJ. 2014. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA. Plant J. 79:810–823. doi: 10.1111/tpj.12597
  • Feng R, Zhang C, Ma R, Cai Z, Lin Y, Yu M. 2019. Identification and characterization of WD40 superfamily genes in peach. Gene . pii: S0378-1119(19)30558-X.
  • Fujii H, Verslues PE, Zhu JK. 2007. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell. 19:485–494. doi: 10.1105/tpc.106.048538
  • Fujii H, Zhu JK. 2009. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc Natl Acad Sci USA. 106:8380–8385. doi: 10.1073/pnas.0903144106
  • Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, Tran L-SP, Yamaguchi-Shinozaki K, Shinozaki K. 2004. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39:863–876. doi: 10.1111/j.1365-313X.2004.02171.x
  • Fujita Y, Nakashima K, Yoshida T, Katagiri T, Kidokoro S, Kanamori N, Umezawa T, Fujita M, Maruyama K, Ishiyama K, et al. 2009. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant Cell Physiol. 50:2123–2132. doi: 10.1093/pcp/pcp147
  • Galway ME, Masucci JD, Lloyd AM, Walbot V, Davis RW, Schiefelbein JW. 1994. The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev Biol. 166:740–754. doi: 10.1006/dbio.1994.1352
  • Gao X, Chen J, Dai X, Zhang D, Zhao Y. 2016. An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by RISPR/Cas9-mediated genome editing. Plant Physiol. 171:1794–1800. doi: 10.1104/pp.16.00663
  • Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM. 1992. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell. 4:1251–1261.
  • Gosti F, Beaudoin N, Serizet C, Webb AA, Vartanian N, Giraudat J. 1999. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell. 11:1897–1909. doi: 10.1105/tpc.11.10.1897
  • Guo J, Chen JG. 2008. RACK1 genes regulate plant development with unequal genetic redundancy in Arabidopsis. BMC Plant Biol. 8:108. doi: 10.1186/1471-2229-8-108
  • Guo J, Wang J, Xi L, Huang WD, Liang J, Chen JG. 2009. RACK1 is a negative regulator of ABA responses in Arabidopsis. J Exp Bot. 60:3819–3833. doi: 10.1093/jxb/erp221
  • Guo J, Wang S, Valerius O, Hall H, Zeng Q, Li JF, Weston DJ, Ellis BE, Chen JG. 2011. Involvement of Arabidopsis RACK1 in protein translation and its regulation by abscisic acid. Plant Physiol. 155:370–383. doi: 10.1104/pp.110.160663
  • Hajdukiewicz P, Svab Z, Maliga P. 1994. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol. 25:989–994. doi: 10.1007/BF00014672
  • He Y, Zhu M, Wang L, Wu J, Wang Q, Wang R, Zhao Y. 2018. Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol Plant. 11:1210–1213. doi: 10.1016/j.molp.2018.05.005
  • Hsiao YC, Hsu YF, Chen YC, Chang YL, Wang CS. 2016. A WD40 protein, AtGHS40, negatively modulates abscisic acid degrading and signaling genes during seedling growth under high glucose conditions. J Plant Res 129:1127–1140. doi: 10.1007/s10265-016-0849-5
  • Jain BP, Pandey S. 2018. WD40 repeat proteins: signalling scaffold with diverse functions. Protein J. 37:391–406. doi: 10.1007/s10930-018-9785-7
  • Janda L, Tichy P, Spízek J, Petrícek M. 1996. A deduced Thermomonospora curvata protein containing serine/threonine protein kinase and WD-repeat domains. J Bacteriol. 178:1487–1489. doi: 10.1128/JB.178.5.1487-1489.1996
  • Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O’Shea C, Skriver K. 2010. The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J. 426:183–196. doi: 10.1042/BJ20091234
  • Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong J-J. 2008. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol. 146:623–635. doi: 10.1104/pp.107.110981
  • Lee JH, Terzaghi W, Deng XW. 2011. DWA3, an Arabidopsis DWD protein, acts as a negative regulator in ABA signal transduction. Plant Sci. 180:352–357. doi: 10.1016/j.plantsci.2010.10.008
  • Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai M, Li J, Byun MO, Deng XW. 2010. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. Plant Cell. 22:1716–1732. doi: 10.1105/tpc.109.073783
  • Lee YJ, Kim DH, Kim Y-W, Hwang I. 2001. Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell. 13:2175–2190. doi: 10.1105/tpc.010232
  • Liu H, Stone SL. 2010. Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation. Plant Cell. 22:2630–2641. doi: 10.1105/tpc.110.076075
  • Liu S, Hu Q, Luo S, Yang X, Wang X, Wang S. 2015. Expression of wild-type PtrIAA14.1, a polpar Aux/IAA gene causes morphological changes in Arabidopsis. Front Plant Sci. 6:388.
  • Liu WC, Zheng SQ, Yu ZD, Gao X, Shen R, Lu YT. 2018. WD40-REPEAT 5a represses root meristem growth by suppressing auxin synthesis through changes of nitric oxide accumulation in Arabidopsis. Plant J. 93:883–893. doi: 10.1111/tpj.13816
  • Lu HP, Liu SM, Xu SL, Chen WY, Zhou X, Tan YY, Huang JZ, Shu QY. 2017. CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants. Plant Biotechnol. J. 15:1371–1373. doi: 10.1111/pbi.12788
  • Ma Q, Xia Z, Cai Z, Li L, Cheng Y, Liu J, Nian H. 2019. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Front Plant Sci. 9(9):1979. doi: 10.3389/fpls.2018.01979
  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y, et al. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant. 8:1274–1284. doi: 10.1016/j.molp.2015.04.007
  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science. 324:1064–1068.
  • Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, et al. 2017. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucl Acids Res. 45:D200–D203. doi: 10.1093/nar/gkw1129
  • Mehdi S, Derkacheva M, Ramström M, Kralemann L, Bergquist J, Hennig L. 2016. The WD40 domain protein MSI1 functions in a histone deacetylase complex to fine-tune abscisic acid signaling. Plant Cell. 28:42–54. doi: 10.1105/tpc.15.00763
  • Neer EJ, Schmidt CJ, Nambudripad R, Smith TF. 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature. 371:297–300. doi: 10.1038/371297a0
  • Ouyang Y, Huang X, Lu Z, Yao J. 2012. Genomic survey, expression profile and co-expression network analysis of OsWD40 family in rice. BMC Genomics. 13:100. doi: 10.1186/1471-2164-13-100
  • Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, et al. 2009. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 324:1068–1071.
  • Park SY, Peterson FC, Mosquna A, Yao J, Volkman BF, Cutler SR. 2015. Agrochemical control of plant water use using engineered abscisic acid receptors. Nature. 520:545–548. doi: 10.1038/nature14123
  • Pesch M, Hülskamp M. 2004. Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Curr Opin Genet Dev. 14:422–427. doi: 10.1016/j.gde.2004.06.007
  • Ramsay NA, Glover BJ. 2005. MYB–bHLH–WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci. 10:63–70. doi: 10.1016/j.tplants.2004.12.011
  • Rodriguez PL, Leube MP, Grill E. 1998. Molecular cloning in Arabidopsis thaliana of a new protein phosphatase 2C (PP2C) with homology to ABI1 and ABI2. Plant Mol Biol. 38:879–883. doi: 10.1023/A:1006012218704
  • Rushton DL, Tripathi P, Rabara RC, Lin J, Ringler P, Boken AK, Langum TJ, Smidt L, Boomsma DD, Emme NJ, et al. 2012. WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J. 10:2–11. doi: 10.1111/j.1467-7652.2011.00634.x
  • Santiago J, Rodrigues A, Saez A, Rubio S, Antoni R, Dupeux F, Park SY, Marquez JA, Cutler SR, Rodriguez PL. 2009. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J. 60:575–588. doi: 10.1111/j.1365-313X.2009.03981.x
  • Schiefelbein J. 2003. Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol. 6:74–78. doi: 10.1016/S136952660200002X
  • Shang Y, Yan L, Liu Z-Q, Cao Z, Mei C, Xin Q, Wu F-Q, Wang X-F, Du S-Y, Jiang T, et al. 2010. The Mg-chelatase H subunit of arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell. 22:1909–1935. doi: 10.1105/tpc.110.073874
  • Song L, Huang SC, Wise A, Castanon R, Nery JR, Chen H, Watanabe M, Thomas J, Bar-Joseph Z, Ecker JR. 2016. A transcription factor hierarchy defines an environmental stress response network. Science. 354. pii: aag1550. doi: 10.1126/science.aag1550
  • Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J. 2006. Keep on going, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell. 18:3415–3428. doi: 10.1105/tpc.106.046532
  • Tian H, Chen S, Yang W, Wang T, Zheng K, Wang Y, Cheng Y, Zhang N, Liu S, Li D, et al. 2017. A novel family of transcription factors conserved in angiosperms is required for ABA signalling. Plant Cell Environ. 40:2958–2971. doi: 10.1111/pce.13058
  • Tian H, Guo H, Dai X, Cheng Y, Zheng K, Wang X, Wang S. 2015. An ABA down-regulated bHLH transcription repressor gene, bHLH129 regulates root elongation and ABA response when overexpressed in Arabidopsis. Sci Rep. 5:17587. doi: 10.1038/srep17587
  • Tiwari SB, Hagen G, Guilfoyle TJ. 2003. The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell. 15:533–543. doi: 10.1105/tpc.008417
  • Tran L-SP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. 2004. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell. 16:2481–2498. doi: 10.1105/tpc.104.022699
  • Umezawa T, Nakashima K, Miyakawa T, Kuromori T, Tanokura M, Shinozaki K, Yamaguchi-Shinozaki K. 2010. Molecular basis of the core regulatory network in aba responses: sensing, signaling and transport. Plant Cell Physiol. 51:1821–1839. doi: 10.1093/pcp/pcq156
  • van Nocker S, Ludwig P. 2003. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics. 4:50. doi: 10.1186/1471-2164-4-50
  • Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC. 1999. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell. 11:1337–1349. doi: 10.1105/tpc.11.7.1337
  • Wang P, Xue L, Batelli G, Lee S, Hou Y-J, Van Oosten MJ, Zhang H, Tao WA, Zhu J-K. 2013. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci USA. 110:11205–11210. doi: 10.1073/pnas.1308974110
  • Wang S, Barron C, Schiefelbein J, Chen J-G. 2010. Distinct relationships between GLABRA2 and single-repeat R3 MYB transcription factors in the regulation of trichome and root hair patterning in Arabidopsis. New Phytol. 185:387–400. doi: 10.1111/j.1469-8137.2009.03067.x
  • Wang S, Chang Y, Guo J, Chen JG. 2007. Arabidopsis Ovate family protein 1 is a transcriptional repressor that suppresses cell elongation. Plant J. 50:858–872. doi: 10.1111/j.1365-313X.2007.03096.x
  • Wang S, Chen JG. 2014. Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis. Front Plant Sci. 5:133.
  • Wang S, Tiwari SB, Hagen G, Guilfoyle TJ. 2005. Auxin Response Factor7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Plant Cell. 17:1979–1993. doi: 10.1105/tpc.105.031096
  • Wang X, Hou C, Zheng K, Li Q, Chen S, Wang S. 2017. Overexpression of ERF96, a small ethylene response factor gene enhances salt tolerance in Arabidopsis. Biol Plantarum. 61:693–701. doi: 10.1007/s10535-017-0734-7
  • Wang X, Wang X, Hu Q, Dai X, Tian H, Zheng K, Wang X, Mao T, Chen JG, Wang S. 2015a. Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis. Plant J. 83:300–311. doi: 10.1111/tpj.12887
  • Wang ZP, Xing HL, Dong L, Zhang HY, Han CY, Wang XC, Chen QJ. 2015b. Egg cell-specific promoter-controlled CRPSPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16:144. doi: 10.1186/s13059-015-0715-0
  • Xu ZY, Kim SY, Hyeon do Y, Kim DH, Dong T, Park Y, Jin JB, Joo SH, Kim SK, Hong JC, et al. 2013. The Arabidopsis NAC transcription factor ANAC096 cooperates with bZIP-type transcription factors in dehydration and osmotic stress responses. Plant Cell. 25:4708–4724. doi: 10.1105/tpc.113.119099
  • Yamaguchi-Shinozaki K, Shinozaki K. 1993. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet. 238:17–25. doi: 10.1007/BF00279525
  • Yi C, Deng XW. 2005. COP1 – from plant photomorphogenesis to mammalian tumorigenesis. Trends Cell Biol. 15:618–625. doi: 10.1016/j.tcb.2005.09.007
  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K. 2014. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Curr Opin Plant Biol. 21:133–139. doi: 10.1016/j.pbi.2014.07.009
  • Zhao M, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. 2008. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development. 135:1991–1999. doi: 10.1242/dev.016873
  • Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, Hu Y, You J, Shi H, Zhu Y, et al. 2016. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci USA. 113:1949–1954. doi: 10.1073/pnas.1522840113
  • Zheng K, Wang Y, Wang S. 2019. The non-DNA binding bHLH transcription factor PACLOBUTRAZOL RESISTANCES are involved in the regulation of ABA and salt responses in Arabidopsis. Plant Physiol Biochem. 139:239–245. doi: 10.1016/j.plaphy.2019.03.026
  • Zhong R, Burk DH, Morrison WH, Ye Z-H. 2004. FRAGILE FIBER3, an Arabidopsis gene encoding a type II inositol polyphosphate 5-phosphatase, is required for secondary wall synthesis and actin organization in fiber cells. Plant Cell. 16:3242–3259. doi: 10.1105/tpc.104.027466