2,796
Views
7
CrossRef citations to date
0
Altmetric
Plant-Microorganism interactions

Arbuscular mycorrhizal fungi (AMF) species and abundance exhibit different effects on saline-alkaline tolerance in Leymus chinensis

, , , , , & show all
Pages 266-279 | Received 03 Nov 2019, Accepted 21 Jul 2020, Published online: 07 Aug 2020

References

  • Al-Karaki GN. 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic. 109:1–7.
  • Aliasgharzadeh N, Rastin SN, Towfighi H, Alizadeh A. 2001. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza. 11:119–122.
  • Asmelash F, Bekele T, Birhane E. 2016. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Front Microbiol. 7:1095.
  • Asrar H, Hussain T, Hadi SMS, Gul B, Nielsen BL, Khan MA. 2017. Salinity induced changes in light harvesting and carbon assimilating complexes of Desmostachya bipinnata (L.) staph. Environ Exp Bot. 135:86–95.
  • Biermann B, Linderman RG. 1981. Quantifying vesicular-arbuscular mycorrhizae: A proposed method towards standardization. New Phytol. 87:63–67.
  • Boller T, Wiemken A, Sanders IR. 1998. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology. 79:2082–2091.
  • Bompadre MJ, de Molina MR, Colombo RP, Bidondo LF, Silvani VA, Pardo AG, Ocampo JA, Godeas AM. 2013. Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes. Symbiosis. 61:105–112.
  • Botella MA, Cerdá A, Lips SH. 1994. Kinetics of NO3− and NH4+ uptake by wheat seedlings. effect of salinity and nitrogen source. J Plant Physiol. 144:53–57.
  • Bremner JM. 1965. Organic forms of nitrogen. In: Black CA, editor. Methods of soils analysis. Madison: American Society of Agronomy; p. 1238–1255.
  • Bücking H, Shachar-Hill Y. 2005. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol. 165:899–912.
  • Bui E. 2013. Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ. 92:14–25.
  • Chen J, Zhang H, Zhang X, Tang M. 2017b. Arbuscular mycorrhizal symbiosis alleviates salt stress in black locust through improved photosynthesis, water status, and K+/Na+ homeostasis. Front Plant Sci. 8:1739.
  • Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, Ahammed GJ. 2017a. Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Front Microbiol. 8:2516.
  • Clark RB. 1997. Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil. 192:15–22.
  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fert Soils. 44:501–509.
  • Crossay T, Majorel C, Redecker D, Gensous S, Medevielle V, Durrieu G, Cavaloc Y, Amir H. 2019. Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza. 29(4):325–339.
  • Elhindi KM, El-Din AS, Elgorban AM. 2017. The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci. 24(1):170–179.
  • Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM. 2013b. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci. 201:42–51.
  • Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-Lozano JM. 2013a. Arbuscular mycorrhizal fungi native from a Mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ. 36(10):1771–1782.
  • Evelin H, Devi TS, Gupta S, Kapoor R. 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci. 10:470.
  • Evelin H, Giri B, Kapoor R. 2012. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza. 22(3):203–217.
  • Evelin H, Kapoor R, Giri B. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot. 104:1263–1280.
  • FAO. 2008. Land and plant nutrition management service. http://www.fao.org/ag/agl/agll/spush.
  • Feddermann N, Finlay R, Boller T, Elfstrand M. 2010. Functional diversity in arbuscular mycorrhiza–the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Eco. 3(1):1–8.
  • Gao Y, Wang D, Ba L, Bai Y, Liu B. 2008. Interactions between herbivory and resource availability on grazing tolerance of Leymus chinensis. Environ Exp Bot. 63:113–122.
  • Giri B, Kapoor R, Mukerji KG. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microb Ecol. 54:753–760.
  • Gomathi R, Thandapani TV. 2005. Salt stress in relation to nutrient accumulation and quality of sugarcane genotypes. Sugar Tech. 7:39–47.
  • Gong X, Zhang J, Liu JH. 2014. A stress responsive gene of Fortunella crassifolia FcSISP functions in salt stress resistance. Plant Physiol Bioch. 83:10–19.
  • Graham JH, Eissenstat DM, Drouillard DL. 1991. On the relationship between a plant’s mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Funct Ecol. 5:773–779.
  • Guissou T, Ba AM, Ouadba JM, Guinko S, Duponnois R. 1998. Responses of Parkia biglobosa (Jacq.) Benth, Tamarindus indica L. and Zizyphus mauritiana Lam. to arbuscular mycorrhizal fungi in a phosphorus-deficient sandy soil. Biol Fer Soils. 26:194–198.
  • Harrison MJ, Dewbre GR, Liu J. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell. 14:2413–2429.
  • Heike B, Arjun K. 2015. Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agron J. 5:587–612.
  • Heydari S, Pirzad A. 2020. Mycorrhizal fungi and Thiobacillus co-inoculation improve the physiological indices of Lallemantia iberica under salinity stress. Curr Microbiol. doi:10.1007/s00284-020-02034-y.
  • Hoagland DR, Arnon DI. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular-347.
  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE. 2009. Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem. 41:1233–1244.
  • Kitson RE, Mellon MG. 1944. Colorimetric determination of phosphorus as molybdivanadophosphoric acid. Ind Eng Chem. 16:379–383.
  • Klironomos JN, Hart MM. 2002. Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza. 12:181–184.
  • Kong L, Gong X, Zhang X, Zhang W, Sun J, Chen B. 2020. Effects of arbuscular mycorrhizal fungi on photosynthesis, ion balance of tomato plants under saline-alkali soil condition. J Plant Nutr. 43(5):682–698.
  • Kong D, Wu H, Wang M, Simmons M, Lü X, Yu Q, Han X. 2010. Structural and chemical differences between shoot-and root-derived roots of three perennial grasses in a typical steppe in Inner Mongolia China. Plant Soil. 336:209–217.
  • Lin J, Wang Y, Sun S, Mu C, Yan X. 2017. Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ. 576:234–241.
  • Munns R, Tester M. 2008. Mechanisms of salinity tolerance. Ann Rev Plant Biol. 59:651–681.
  • Muranaka S, Shimizu K, Kato M. 2002. A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. Photosynthetica. 40:505–515.
  • Navarro JM, Pérez-Tornero O, Morte A. 2014. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J Plant Physiol. 171(1):76–85.
  • Oehl F, Laczko E, Bogenrieder A, Stahr K, Bösch R, van der Heijden M, Sieverding E. 2010. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem. 42:724–738.
  • Parvin S, Van Geel M, Yeasmin T, Verbruggen E, Honnay O. 2020. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza. 30:431–444.
  • Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. T Brit Mycol Soc. 55:158–161.
  • Plenchette C, Fortin JA, Furlan V. 1983. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility: II. Soil fumigation induced stunting of plants corrected by reintroduction of the wild endomycorrhizal flora. Plant Soil. 1:211–217.
  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM. 2016. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza. 26(7):673–684.
  • Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM. 2015. Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol. 185:75–83.
  • Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R. 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol. 166(13):1350–1359.
  • Rao PS, Mishra B, Gupta SR. 2013. Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes. Rice Sci. 20:284–291.
  • Reynolds HL, Vogelsang KM, Hartley AE, Bever JD, Schultz PA. 2006. Variable responses of old-field perennials to arbuscular mycorrhizal fungi and phosphorus source. Oecologia. 147:348–358.
  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, de Pascale S, Bonini P, Colla G. 2015. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic. 196:91–108.
  • Rubinigg M, Posthumus F, Ferschke M, Elzenga JTM, Stulen I. 2003. Effects of NaCl salinity on 15N-nitrate fluxes and specific root length in the halophyte Plantago maritima L. Plant Soil. 250:201–213.
  • Santander C, Sanhueza M, Olave J, Borie F, Valentine A, Cornejo P. 2019. Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance. J Soil Sci Plant Nut. 19(2):321–331.
  • Schnepf A, Roose T, Schweiger P. 2008. Impact of growth and uptake patterns of arbuscular mycorrhizal fungi on plant phosphorus uptake-a modelling study. Plant Soil. 312:85–99.
  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 18:287–296.
  • Shi-chu L, Yong J, Ma-bo L, Wen-xu Z, Nan X, Hui-hui Z. 2019. Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings. J Plant Interact. 14(1):482–491.
  • Shrivastava P, Kumar R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 22:123–131.
  • Siebielec G, Ukalska-Jaruga A, Kidd P. 2015. Bioavailability of trace elements in soils amended with high-phosphate materials. In: Phosphate in soils: interaction with micronutrients, radionuclides and heavy metals. Boca Raton: CRC Press; p. 237–260.
  • Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. New York, NY: Academic Press.
  • Tisarum R, Theerawitaya C, Samphumphuang T, Polispitak K, Thongpoem P, Singh HP, Cha-um S. 2020. Alleviation of salt stress in upland rice (Oryza sativa L. ssp. indica cv. Leum Pua) using arbuscular mycorrhizal fungi inoculation. Front Plant Sci. 11:348.
  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A. 1993. In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res. 97:245–250.
  • van der Heijden MGA. 2002. Arbuscular mycorrhizal fungi as a determinant of plant diversity. In: Search of underlying mechanisms and general principles. Berlin: Springer; p. 243–265.
  • Wang D, Ba L. 2008. Ecology of meadow steppe in northeast China. Rangeland J. 30:247–254.
  • Wang D, Du J, Zhang B, Ba L, Hodgkinson KC. 2017. Grazing intensity and phenotypic plasticity in the clonal grass Leymus chinensis. Rangeland Ecol Manag. 70:740–747.
  • Wang C, Li X, Zhou J, Wang G, Dong Y. 2008. Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun Soil Sci Plan. 39:499–509.
  • Wang L, Seki K, Miyazaki T, Ishihama Y. 2009. The causes of soil alkalinization in the Songnen Plain of Northeast China. Paddy Water Environ. 7:259–270.
  • Wang X, Wang J, Liu H, Zou D, Zhao H. 2013. Influence of natural saline-alkali stress on chlorophyll content and chloroplast ultrastructure of two contrasting rice (Oryza sativa L. japonica) cultivars. Aust J Crop Sci. 7:289–292.
  • Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 144:307–313.
  • Wu QS, Liu CY, Zhang DJ, Zou YN, He XH, Wu QH. 2016. Mycorrhiza alters the profile of root hairs in trifoliate orange. Mycorrhiza. 26:237–247.
  • Xu X, Xu H, Wang Y, Wang X, Qiu Y, Xu B. 2008. The effect of salt stress on the chlorophyll level of the main sand-binding plants in the shelterbelt along the Tarim Desert Highway. Chinese Sci Bull. 53:109–111.
  • Yang Y, Tang M, Sulpice R, Chen H, Tian S, Ban Y. 2014. Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Regul. 33:612–625.
  • Yang CW, Wang P, Li CY, Shi DC, Wang DL. 2008. Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. Photosynthetica. 46:107–114.
  • Yang C, Xu H, Wang L, Liu J, Shi D, Wang D. 2009. Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. Photosynthetica. 47:79–86.
  • Zhu XQ, Wang CY, Chen H, Tang M. 2014. Effects of arbuscular mycorrhizal fungi on photosynthesis, carbon content, and calorific value of black locust seedlings. Photosynthetica. 52:247–252.