1,119
Views
2
CrossRef citations to date
0
Altmetric
Research Article

In-depth investigation on abiotic stress-responsive differentially expressed genes in Arabidopsis roots through GEO database

, , , , , & show all
Pages 294-302 | Received 25 May 2020, Accepted 16 Aug 2020, Published online: 07 Sep 2020

References

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK. 2006. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem. 281:37636–37645. doi: 10.1074/jbc.M605895200
  • Baniwal SK, Chan KY, Scharf KD, Nover L. 2007. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J Biol Chem. 282:3605–3613. doi: 10.1074/jbc.M609545200
  • Carrera DÁ, Oddsson S, Grossmann J, Trachsel C, Streb S. 2018. Comparative Proteomic analysis of plant Acclimation to Six different Long-Term environmental changes. Plant Cell Physiol. 59(3):510–526. doi: 10.1093/pcp/pcx206
  • Chan C, Lam HM. 2014. A putative lambda class glutathione S-transferase enhances plant survival under salinity stress. Plant Cell Physiol. 55(3):570–579. doi: 10.1093/pcp/pct201
  • Dong MA, Farré EM, Thomashow MF. 2011. Circadian clockassociated 1 and late elongated hypocotyl regulate expression of the Crepeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci USA. 108:7241–7246. doi: 10.1073/pnas.1103741108
  • Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, et al. 2020. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci. 63(5):635–674.
  • Guo ML, Li H, Li L, Cheng XM, Gao WX, Xu YL, Zhou CX, Liu FJ, Liu X. 2014a. Comparative proteomic analysis of Arabidopsis thaliana roots between wild type and its salt-tolerant mutant. J Plant Interact. 9(1):330–337. doi: 10.1080/17429145.2013.833653
  • Guo ML, Liu X, Wang JH, Li L, Zhang WD, Gong BJ, Zhang CL, Zhou CX. 2019. Investigation on salt-response mechanisms in Arabidopsis thaliana from UniProt protein knowledgebase. J Plant Interact. 14(1):21–29. doi: 10.1080/17429145.2018.1551581
  • Hahn A, Bublak D, Schleiff E, Scharf KD. 2011. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell. 23:741–755. doi: 10.1105/tpc.110.076018
  • He F, Yoo S, Wang DF, Kumari S, Gerstein M, Ware D, Maslov S. 2016. Large-scale atlas of microarray data reveals the distinct expression landscape of different tissues in Arabidopsis. Plant J. 86:472–480. doi: 10.1111/tpj.13175
  • Islam T, Manna M, Reddy MK. 2015. Glutathione peroxidase of Pennisetum glaucum (PgGPx) Is a functional Cd2+ Dependent Peroxiredoxin that Enhances tolerance against salinity and drought stress. PLoS One. 10(11):1–18. doi: 10.1371/journal.pone.0143344
  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D'Angelo C, Bornberg-Bauer E, Kudla J, Harter K. 2007. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 50(2):347–363. doi: 10.1111/j.1365-313X.2007.03052.x
  • Kinoshita N, Wang H, Kasahara H, Liu J, Macpherson C, Machida Y, Kamiya Y, Hannah MA, Chua NH. 2012. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell. 24(9):3590–3602. doi: 10.1105/tpc.112.097006
  • Li ZQ, Li JT, Bing J, Zhang GF. 2019. The role analysis of APX gene family in the growth and developmental processes and in response to abiotic stresses in Arabidopsis thaliana. Yi Chuan. 41(6):534–547.
  • Li SH, Li N, Zhu P, Wang YW, Tian YJ, Wang XT. 2015. Decreased β-catenin expression in first-trimester villi and decidua of patients with recurrent spontaneous abortion. J Obstet Gynaecol Res. 41(6):904–911. doi: 10.1111/jog.12647
  • López-Martín MC, Becana M, Romero LC, Gotor C. 2008. Knocking out cytosolic cysteine synthesis compromises the antioxidant capacity of the cytosol to maintain discrete concentrations of hydrogen peroxide in Arabidopsis. Plant Physiol. 147(2):562–572. doi: 10.1104/pp.108.117408
  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33(4):453–467. doi: 10.1111/j.1365-3040.2009.02041.x
  • Niu C, Jiang M, Li N, Cao J, Hou M, Ni DA, Chu Z. 2019. Integrated bioinformatics analysis of As, Au, Cd, Pb and Cu heavy metal responsive marker genes through Arabidopsis thaliana GEO datasets. PeerJ. 7:1–25.
  • Pandey N, Ranjan A, Pant P, Tripathi RK, Ateek F, Pandey HP, Patre UV, Sawant SV. 2013. CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics. 14:1–23. doi: 10.1186/1471-2164-14-216
  • Tuteja N. 2007. Abscisic Acid and abiotic stress signaling. Plant Signal Behav. 2(3):135–8. doi: 10.4161/psb.2.3.4156
  • Wang P, Cui X, Zhao C, Shi L, Zhang G, Sun F, Cao X, Yuan L, Xie Q, Xu X. 2017. COR27 and COR28 encode nighttime repressors integrating Arabidopsis circadian clock and cold response. J Integr Plant Biol. 59:78–85. doi: 10.1111/jipb.12512
  • Zhang S, Yang R, Huo Y, Liu S, Yang G, Huang J, Zheng C, Wu C. 2018. Expression of cotton PLATZ1 in transgenic Arabidopsis reduces sensitivity to osmotic and salt stress for germination and seedling establishment associated with modification of the abscisic acid, gibberellin, and ethylene signalling pathways. BMC Plant Biol. 18(1):1–11. doi: 10.1186/s12870-019-1719-9
  • Zhang LY, Zhang XJ, Fan SJ. 2017. Meta-analysis of salt-related gene expression profiles identifies common signatures of salt stress responses in Arabidopsis. Plant Syst Evol. 303:757–774. doi: 10.1007/s00606-017-1407-x