1,621
Views
3
CrossRef citations to date
0
Altmetric
Plant-Microorganism interactions

Different effects of phytohormones on Fusarium head blight and Fusarium root rot resistance in Brachypodium distachyon

&
Pages 335-344 | Received 28 Jul 2020, Accepted 02 Sep 2020, Published online: 05 Oct 2020

References

  • Abeles FB, Morgan PW, Saltveit Jr ME. 2012. Ethylene in plant biology. San Diego, CA: Academic press.
  • Albrecht T, Argueso CT. 2017. Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth–defence trade-off. Ann Bot. 119:725–735.
  • Ali SS, Kumar GBS, Khan M, Doohan FM. 2013. Brassinosteroid enhances resistance to Fusarium diseases of barley. Phytopathology. 103:1260–1267. doi: 10.1094/PHYTO-05-13-0111-R
  • Ameye M, Audenaert K, De Zutter N, Steppe K, Van Meulebroek L, Vanhaecke L, De Vleesschauwer D, Haesaert G, Smagghe G. 2015. Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant Physiol. 167:1671–1684. doi: 10.1104/pp.15.00107
  • Bari R, Jones JDG. 2009. Role of plant hormones in plant defence responses. Plant Mol Biol. 69:473–488. doi: 10.1007/s11103-008-9435-0
  • Beccari G, Covarelli L, Nicholson P. 2011. Infection processes and soft wheat response to root rot and crown rot caused by Fusarium culmorum. Plant Pathol. 60:671–684. doi: 10.1111/j.1365-3059.2011.02425.x
  • Boddu J, Cho S, Kruger WM, Muehlbauer GJ. 2006. Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant-Microbe Interact. 19:407–417. doi: 10.1094/MPMI-19-0407
  • Brkljacic J, Grotewold E, Scholl R, Mockler T, Garvin DF, Vain P, Brutnell T, Sibout R, Bevan M, Budak H, et al. 2011. Brachypodium as a model for the grasses: today and the future. Plant Physiol. 157:3–13. doi: 10.1104/pp.111.179531
  • Brown NA, Urban M, Van De Meene AML, Hammond-Kosack KE. 2010. The infection biology of Fusarium graminearum: defining the pathways of spikelet to spikelet colonisation in wheat ears. Fungal Biol. 114:555–571. doi: 10.1016/j.funbio.2010.04.006
  • Buhrow LM, Cram D, Tulpan D, Foroud NA, Loewen MC. 2016. Exogenous abscisic acid and gibberellic acid elicit opposing effects on Fusarium graminearum infection in wheat. Phytopathology. 106:986–996. doi: 10.1094/PHYTO-01-16-0033-R
  • Chen Z, Iyer S, Caplan A, Klessig DF, Fan B. 1997. Differential accumulation of salicylic acid and salicylic acid-sensitive catalase in different rice tissues. Plant Physiol. 114:193–201. doi: 10.1104/pp.114.1.193
  • Chen X, Steed A, Travella S, Keller B, Nicholson P. 2009. Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants. New Phytol. 182:975–983. doi: 10.1111/j.1469-8137.2009.02821.x
  • Chochois V, Vogel JP, Watt M. 2012. Application of brachypodium to the genetic improvement of wheat roots. J Exp Bot. 63:3467–3474. doi: 10.1093/jxb/ers044
  • Choi J, Choi D, Lee S, Ryu C-M, Hwang I. 2011. Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci. 16:388–394. doi: 10.1016/j.tplants.2011.03.003
  • Choi J, Huh SU, Kojima M, Sakakibara H, Paek K-H, Hwang I. 2010. The cytokinin-activated transcription factor ARR2 promotes plant Immunity via TGA3/NPR1-dependent salicylic acid signaling in arabidopsis. Dev Cell. 19:284–295. doi: 10.1016/j.devcel.2010.07.011
  • Cohen Y. 2001. The BABA story of induced resistance. Phytoparasitica. 29:375–378. doi: 10.1007/BF02981855
  • Cohen YR. 2002. β-Aminobutyric acid-induced resistance against plant pathogens. Plant Dis. 86:448–457. doi: 10.1094/PDIS.2002.86.5.448
  • Cook RJ. 2001. Management of wheat and barley root diseases in modern farming systems. Australas Plant Pathol. 30:119–126. doi: 10.1071/AP01010
  • Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 13:414–430. doi: 10.1111/j.1364-3703.2011.00783.x
  • De Vleesschauwer D, Yang Y, Vera Cruz C, Höfte M. 2010. Abscisic acid-induced resistance against the brown spot pathogen Cochliobolus miyabeanus in rice involves MAP kinase-mediated repression of ethylene signaling. Plant Physiol. 152:2036–2052. doi: 10.1104/pp.109.152702
  • Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S. 2008. Activation of the indole-3-acetic acid–amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell. 20:228–240. doi: 10.1105/tpc.107.055657
  • Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM. 2001. Brachypodium distachyon. A New model system for Functional Genomics in Grasses. Plant Physiol. 127:1539–1555. doi: 10.1104/pp.010196
  • Foroud NA, Pordel R, Goyal RK, Ryabova D, Eranthodi A, Chatterton S, Kovalchuk I. 2018. Chemical activation of the ethylene signalling pathway promotes Fusarium graminearum resistance in detached wheat heads. Phytopathology. 109:796–803. doi: 10.1094/PHYTO-08-18-0286-R
  • Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 43:205–227. doi: 10.1146/annurev.phyto.43.040204.135923
  • Goddard R, Peraldi A, Ridout C, Nicholson P. 2014. Enhanced disease resistance caused by BRI1 mutation is conserved between brachypodium distachyon and barley (Hordeum vulgare). Mol Plant-Microbe Interact. 27:1095–1106. doi: 10.1094/MPMI-03-14-0069-R
  • Großkinsky D, Edelsbrunner K, Pfeifhofer H, Van Der Graaff E, Roitsch T. 2013. Cis- and trans-zeatin differentially modulate plant immunity. Plant Signal Behav. 8:e24798. doi: 10.4161/psb.24798
  • Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Griebel T, Zeier J, Novák O, Strnad M, Pfeifhofer H. 2011. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol. 157:815–830. doi: 10.1104/pp.111.182931
  • Häffner E, Konietzki S, Diederichsen E. 2015. Keeping control: The role of senescence and development in plant pathogenesis and defense. Plants. 4:449–488. doi: 10.3390/plants4030449
  • Huot B, Yao J, Montgomery BL, He SY. 2014. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant. 7:1267–1287. doi: 10.1093/mp/ssu049
  • Jakab G, Cottier V, Toquin V, Rigoli G, Zimmerli L, Métraux J-P, Mauch-Mani B. 2001. β-Aminobutyric acid-induced resistance in plants. Eur J Plant Pathol. 107:29–37. doi: 10.1023/A:1008730721037
  • Jansen C, Von Wettstein D, Schäfer W, Kogel K-H, Felk A, Maier FJ. 2005. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci U S A. 102:16892–16897. doi: 10.1073/pnas.0508467102
  • Kabbage M, Yarden O, Dickman MB. 2015. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. Plant Sci. 233:53–60. doi: 10.1016/j.plantsci.2014.12.018
  • Kakei Y, Mochida K, Sakurai T, Yoshida T, Shinozaki K, Shimada Y. 2015. Transcriptome analysis of hormone-induced gene expression in Brachypodium distachyon. Sci Rep. 5:14476. doi: 10.1038/srep14476
  • Kazan K, Manners JM. 2009. Linking development to defense: auxin in plant–pathogen interactions. Trends Plant Sci. 14:373–382. doi: 10.1016/j.tplants.2009.04.005
  • Kellogg EA. 2015. Brachypodium distachyon as a genetic model system. Annu Rev Genet. 49:1–20. doi: 10.1146/annurev-genet-112414-055135
  • Koen E, Trapet P, Brule D, Kulik A, Klinguer A, Atauri-Miranda L, Meunier-Prest R, Boni G, Glauser G, Mauch-Mani B, et al. 2014. . beta-Aminobutyric acid (BABA)-induced resistance in Arabidopsis thaliana: link with iron homeostasis. Mol Plant-Microbe Interact. 27:1226–1240. doi: 10.1094/MPMI-05-14-0142-R
  • Li G, Yen Y. 2008. Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Sci. 48:1888–1896. doi: 10.2135/cropsci2008.02.0097
  • Llorente F, Muskett P, Sánchez-Vallet A, López G, Ramos B, Sánchez-Rodríguez C, Jordá L, Parker J, Molina A. 2008. Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic Fungi. Mol Plant. 1:496–509. doi: 10.1093/mp/ssn025
  • Luo K, Rocheleau H, Qi PF, Zheng YL, Zhao HY, Ouellet T. 2016. Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects. Fungal Biol. 120:1135–1145. doi: 10.1016/j.funbio.2016.06.002
  • Lyons R, Stiller J, Powell J, Rusu A, Manners JM, Kazan K. 2015. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLoS one. 10:e0121902. doi: 10.1371/journal.pone.0121902
  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J. 2006. Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant-Microbe Interact. 19:123–129. doi: 10.1094/MPMI-19-0123
  • Makandar R, Nalam V, Chaturvedi R, Jeannotte R, Sparks AA, Shah J. 2010. Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum. Mol Plant-Microbe Interact. 23:861–870. doi: 10.1094/MPMI-23-7-0861
  • Makandar R, Nalam VJ, Lee H, Trick HN, Dong Y, Shah J. 2011. Salicylic acid regulates basal resistance to Fusarium head blight in wheat. Mol Plant-Microbe Interact. 25:431–439. doi: 10.1094/MPMI-09-11-0232
  • Mandal S, Mallick N, Mitra A. 2009. Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol Biochem. 47:642–649. doi: 10.1016/j.plaphy.2009.03.001
  • Marcel S, Sawers R, Oakeley E, Angliker H, Paszkowski U. 2010. Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell. 22:3177–3187. doi: 10.1105/tpc.110.078048
  • Mergoum M, Hill J, Quick J. 1998. Evaluation of resistance of winter wheat to Fusarium acuminatum by inoculation of seedling roots with single, germinated macroconidia. Plant Dis. 82:300–302. doi: 10.1094/PDIS.1998.82.3.300
  • Miedaner T. 1997. Breeding wheat and rye for resistance to Fusarium diseases. Plant Breed. 116:201–220. doi: 10.1111/j.1439-0523.1997.tb00985.x
  • Naseem M, Dandekar T. 2012. The role of auxin-cytokinin antagonism in plant-pathogen interactions. PLoS Pathog. 8:e1003026. doi: 10.1371/journal.ppat.1003026
  • Naseem M, Philippi N, Hussain A, Wangorsch G, Ahmed N, Dandekar T. 2012. Integrated systems view on networking by hormones in Arabidopsis immunity reveals multiple crosstalk for cytokinin. Plant Cell. 24:1793–1814. doi: 10.1105/tpc.112.098335
  • Opanowicz M, Hands P, Betts D, Parker ML, Toole GA, Mills ENC, Doonan JH, Drea S. 2011. Endosperm development in Brachypodium distachyon. J Exp Bot. 62:735–748. doi: 10.1093/jxb/erq309
  • Peraldi A. 2012. Brachypodium distachyon as a genetic model pathosystem to study resistance against fungal pathogens of small grain cereals. (PhD thesis). University of East Anglia, Norwich.
  • Peraldi A, Beccari G, Steed A, Nicholson P. 2011. Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Biol. 11:100. doi: 10.1186/1471-2229-11-100
  • Petti C, Reiber K, Ali SS, Berney M, Doohan FM. 2012. Auxin as a player in the biocontrol of Fusarium head blight disease of barley and its potential as a disease control agent. BMC Plant Biol. 12:224–224. doi: 10.1186/1471-2229-12-224
  • Pieterse CMJ, Does DVD, Zamioudis C, Leon-Reyes A, Wees SCMV. 2012. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 28:489–521. doi: 10.1146/annurev-cellbio-092910-154055
  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA. 2014. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol. 52:347–375. doi: 10.1146/annurev-phyto-082712-102340
  • Powell JJ, Carere J, Sablok G, Fitzgerald TL, Stiller J, Colgrave ML, Gardiner DM, Manners JM, Vogel JP, Henry RJ, Kazan K. 2017. Transcriptome analysis of Brachypodium during fungal pathogen infection reveals both shared and distinct defense responses with wheat. Sci Rep. 7:17212. doi: 10.1038/s41598-017-17454-3
  • Qi P-F, Balcerzak M, Rocheleau H, Leung W, Wei Y-M, Zheng Y-L, Ouellet T. 2016. Jasmonic acid and abscisic acid play important roles in host–pathogen interaction between Fusarium graminearum and wheat during the early stages of fusarium head blight. Physiol Mol Plant Pathol. 93:39–48. doi: 10.1016/j.pmpp.2015.12.004
  • Qi P-F, Johnston A, Balcerzak M, Rocheleau H, Harris LJ, Long X-Y, Wei Y-M, Zheng Y-L, Ouellet T. 2012. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Fungal Biol. 116:413–426. doi: 10.1016/j.funbio.2012.01.001
  • Scholthof K-BG, Irigoyen S, Catalan P, Mandadi KK. 2018. Brachypodium: a monocot grass model genus for plant biology. Plant Cell. 30:1673–1694. doi: 10.1105/tpc.18.00083
  • Sorahinobar M, Niknam V, Ebrahimzadeh H, Soltanloo H, Behmanesh M, Enferadi ST. 2016. Central role of salicylic acid in resistance of wheat against Fusarium graminearum. J Plant Growth Regul. 35:477–491. doi: 10.1007/s00344-015-9554-1
  • Sun Y, Xiao J, Jia X, Ke P, He L, Cao A, Wang H, Wu Y, Gao X, Wang X. 2016. The role of wheat jasmonic acid and ethylene pathways in response to Fusarium graminearum infection. Plant Growth Regul. 80:69–77. doi: 10.1007/s10725-016-0147-1
  • Svoboda T, Parich A, Güldener U, Schöfbeck D, Twaruschek K, Václavíková M, Hellinger R, Wiesenberger G, Schuhmacher R, Adam G. 2019. Biochemical Characterization of the Fusarium graminearum Candidate ACC-Deaminases and Virulence Testing of Knockout Mutant Strains. Frontiers in Plant Science. 10:1072. doi: 10.3389/fpls.2019.01072
  • Thevenet D, Pastor V, Baccelli I, Balmer A, Vallat A, Neier R, Glauser G, Mauch-Mani B. 2017. The priming molecule beta-aminobutyric acid is naturally present in plants and is induced by stress. New Phytol. 213:552–559. doi: 10.1111/nph.14298
  • Ton J, Mauch-Mani B. 2004. β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J. 38:119–130. doi: 10.1111/j.1365-313X.2004.02028.x
  • Van De Poel B, Van Der Straeten D. 2014. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front Plant Sci. 5:640. doi: 10.3389/fpls.2014.00640
  • Van Loon LC, Geraats BPJ, Linthorst HJM. 2006. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci. 11:184–191. doi: 10.1016/j.tplants.2006.02.005
  • Vogel JP, Garvin DF, Leong OM, Hayden DM. 2006. Agrobacterium-mediated transformation and inbred line development in the model grass Brachypodium distachyon. Plant Cell, Tissue Organ Cult. 84:199–211. doi: 10.1007/s11240-005-9023-9
  • Vogel JP, Garvin DF, Mockler TC, Schmutz J, Rokhsar D, Bevan MW, Barry K, Lucas S, Harmon-Smith M, Lail K. 2010. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 463:763–768. doi: 10.1038/463591e
  • Wang Q, Vera Buxa S, Furch A, Friedt W, Gottwald S. 2015. Insights into Triticum aestivum seedling root Rot caused by Fusarium graminearum. Mol Plant-Microbe Interact. 28:1288–1303. doi: 10.1094/MPMI-07-15-0144-R
  • Watt M, Schneebeli K, Dong P, Wilson IW. 2009. The shoot and root growth of Brachypodium and its potential as a model for wheat and other cereal crops. Funct Plant Biol. 36:960–969. doi: 10.1071/FP09214
  • Wu C-C, Singh P, Chen M-C, Zimmerli L. 2010. L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis. J Exp Bot. 61:995–1002. doi: 10.1093/jxb/erp363
  • Zeilinger S, Gupta VK, Dahms TE, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CK-M, Nayak S C. 2016. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev. 40:182–207. doi: 10.1093/femsre/fuv045