1,404
Views
8
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions

Formate dehydrogenase takes part in molybdenum and iron homeostasis and affects dark-induced senescence in plants

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 386-397 | Received 20 Jul 2020, Accepted 08 Oct 2020, Published online: 06 Nov 2020

References

  • Abdel-Ghany SE, Ye H, Garifullina GF, Zhang L, Pilon-Smits EAH, Pilon M. 2005. Iron-sulfur cluster biogenesis in chloroplasts. Involvement of the scaffold protein CpIscA. Plant Physiol. 138:161–172.
  • Achkor H, Diaz M, Fernandez MR, Biosca JA, Pares X, Martinez MC. 2003. Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol. 132:2248–2255.
  • Alberty RA, Cornish-Bowden A, Goldberg RN, Hammes GG, Tipton K, Westerhoff HV. 2011. Recommendations for terminology and databases for biochemical thermodynamics. Biophys Chem. 155:89–103.
  • Alekseeva AA, Savin SS, Tishkov VI. 2011. NAD+-dependent formate dehydrogenase from plants. Acta Naturae. 3:38–54.
  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al. 2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 301:653–657.
  • Balk J, Pilon M. 2011. Ancient and essential: the assembly of the Fe-S clusters in plants. Trends Plant Sci. 16:218–226.
  • Barth C, Moeder W, Klessig DF, Conklin PL. 2004. The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vitamin c-1. Plant Physiol. 134:1784–1792.
  • Baxter I. 2009. Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol. 12:381–386.
  • Baxter I, Muthukumar B, Park HC, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford MJ, Guerinot ML, et al. 2008a. Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet. 4:e1000004.
  • Baxter I, Vitek O, Lahner B, Muthukumar B, Borghi M, Morrissey J, Guerinot ML, Salt DE. 2008b. The leaf ionome as a multivariable system to detect a plant’s physiological status. Proc Natl Acad Sci USA. 105:12081–12086.
  • Binder BM, Walker JM, Gagne JM, Emborg TJ, Hemmann G, Bleecker AB, Vierstrab RD. 2007. The Arabidopsis EIN3 binding F-box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signalling. Plant Cell. 19:509–523.
  • Bittner F. 2014. Molybdenum metabolism in plants and crosstalks to iron. Front Plant Sci. 5:28.
  • Bittner F, Mendel RR. 2010. Cell biology of molybdenum. In: Hell R, Mendel RR, editors. Cell biology of metals and nutrients. Plant Cell Monographs, 17. Berlin, Heidelberg: Springer-Verlag; p. 119–143.
  • Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F. 2010. New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot. 105:811–822.
  • Burkhart SE, Lingard MJ, Bartel B. 2013. Genetic dissection of peroxisome-associated matrix protein degradation in Arabidopsis thaliana. Genetics. 193:125–141.
  • Bussell JD, Reichelt M, Wiszniewski AA, Gershenzon J, Smith SM. 2014. Peroxisomal ATP-binding cassette transporter COMATOSE and the multifunctional protein ABNORMAL INFLORESCENCE MERISTEM are required for the production of benzoylated metabolites in Arabidopsis seeds. Plant Physiol. 164:48–54.
  • Chen H, Li S, Li L, Hu H, Zhao J. 2018. Arabidopsis EMB1990 encoding a plastid-targeted YlmG protein is required for chloroplast biogenesis and embryo development. Front Plant Sci. 16(9):181. doi:10.3389/fpls.2018.00181.
  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem loading. Science. 335:207–211.
  • Choi DS, Kim NH, Hwang BK. 2014. Pepper mitochondrial formate dehydrogenase1 regulates cell death and defence responses against bacterial pathogen. Plant Physiol. 166:1298–1311.
  • Cotton CAR, Edlich-Muth C, Bar-Even A. 2018. Reinforcing carbon fixation: CO2 reduction replacing and supporting carboxylation. Curr Opin Biotechnol. 49:49–56.
  • Couturier J, Touraine B, Briat JF, Gaymard F, Rouhier N. 2013. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions. Front Plant Sci. 4:259. doi:10.3389/fpls.2013.00259.
  • Cui MH, Ok SH, Yoo KS, Jung KW, Yoo SD, Shin JS. 2013. An Arabidopsis cell growth defect factor-related protein, CRS, promotes plant senescence by increasing the production of hydrogen peroxide. 2013. Plant Cell Physiology. 54:155–167. doi:10.1093/pcp/pcs161.
  • Dong T, Xu ZY, Park Y, Kim DH, Lee Y, Hwang I. 2014. Abscisic acid uridine diphosphate glucosyltransferases play a crucial role in abscisic acid homeostasis in Arabidopsis. Plant Physiol. 165:277–289.
  • Douglas SE, Penny SL. 1999. The plastid genome of the cryptophyte alga Guillarda theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol. 48:236–244.
  • Elorza A, Leon G, Gomez I, Mouraz A, Holuigue L, Araya A, Jordana X. 2004. Nuclear SDH2-1 and SDH2-2 genes, encoding the iron-sulfur subunit of mitochondrial complex II in Arabidopsis, have distinct cell-specific expression patterns and promoter activities. Plant Physiol. 136:4072–4087.
  • Foster J, Kim HU, Nakata PA, Browse J. 2012. A previously unknown oxalyl-CoA synthetase is important for oxalate catabolism in Arabidopsis. Plant Cell. 24:1217–1229.
  • Fukusaki EI, Ikeda T, Shiraishi T, Nishizawa T, Kobayashi A. 2000. Formate dehydrogenase gene of Arabidopsis thaliana is induced by formaldehyde and not by formic acid. J Biosci Bioeng. 90:691–693.
  • Herman PL, Ramberg H, Baack RD, Markwell J, Osterman JC. 2002. Formate dehydrogenase in Arabidopsis thaliana: overexpression and subcellular localization in leaves. Plant Sci. 163:1137–1145.
  • Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A. 2009. Participation of chlorophyll b reductase in the initial step of the degradation of light-harvesting chlorophyll a/b-protein complexes in Arabidopsis. J Biol Chem. 284:17449–17456.
  • Hörtensteiner S. 2013. Update on the biochemistry of chlorophyll breakdown. Plant Mol Biol. 82:505–517.
  • Hörtensteiner S, Kräutler B. 2011. Chlorophyll breakdown in higher plants. Biochim Biophys Acta. 1807:977–988.
  • Hourton-Cabassa C, Ambard-Bretteville F, Moreau F, Davy de Virville J, Remy R, Colas des Francs-Small C. 1998. Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol. 116:627–635.
  • Islam M, Maffei EM, Vigani G. 2020. The geomagnetic field is a contributing factor for an efficient Fe uptake in Arabidopsis thaliana. Front Plant Sci. 11:325. doi:10.3389/fpls.2020.00325.
  • Itai RN, Ogo Y, Kobayashi T, Nakanishi H, Nishizawa NK. 2013. Rice genes involved in phytosiderophore biosynthesis are synchronously regulated during the early stages of iron deficiency in roots. Rice. 6:16. doi:10.1186/1939-8433-6-16.
  • Jia T, Ito H, Hu X, Tanaka A. 2015. Accumulation of the NON-YELLOW COLORING1 protein of the chlorophyll cycle requires chlorophyll b in Arabidopsis thaliana. Plant J. 81:586–596.
  • Jibran R, Sullivan KL, Crowhurst R, Erridge ZA, Chagnè D, McLachlan ARG, Brummell DA, Dijkwel PP, Hunter DA. 2015. Staying green postharvest: how three mutations in the Arabidopsis chlorophyll b reductase gene NYC1 delay degreening by distinct mechanisms. J Exp Bot. 66:6849–6862.
  • Kabeya Y, Nakanishi H, Suzuki K, Ichikawa T, Kondou Y, Matsui M, Miyagishima S. 2010. The Ylm G protein has a conserved function related to the distribution of nucleoids in chloroplasts and cyanobacteria. BCM Plant Biology. 10:57.
  • Kobayashi T, Nishizawa NK. 2012. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol. 63:131–152.
  • Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK. 2005. Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot. 56:1305–1316.
  • Kräutler B. 2016. Breakdown of chlorophyll in higher plants-Phyllobilins as abundant, yet hardly visible signs of ripening, senescence and cell death. Angew Chem. 55:4882–4907.
  • Le Hir R, Spinner L, Klemens PAW, Chakraborti D, de Marco F, Vilaine F, Wolff N, Lemoine R, Porcheron B, Géry C, et al. 2015. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Mol Plant. 8:1687–1690.
  • Li R, Bonham-Smith PC, King J. 2001. Molecular characterization and regulation of formate dehydrogenase in Arabidopsis thaliana. Can J Bot. 79:796–804. doi:10.1139/b01-056.
  • Liebsch D, Keech O. 2016. Dark-induced leaf senescence: new insights into a complex light-dependent regulatory pathway. New Phytol. 212:563–570.
  • Lou HQ, Gong YL, Fan W, Xu JM, Liu Y, Cao MJ, Wang MH, Yang JL, Zheng SJ. 2016. A formate dehydrogenase confers tolerance to aluminum and low pH. Plant Physiol. 171:294–305.
  • Luschin-Ebengreuth N, Zechmann B. 2016. Compartment-specific investigations of antioxidants and hydrogen peroxide in leaves of Arabidopsis thaliana during dark-induced senescence. Acta Physiol Plant. 38:133. doi:10.1007/s11738-016-2150-6.
  • Maia LB, Fonseca L, Moura I, Moura JJ. 2016. Reduction of carbon dioxide by a molybdenum-containing formate dehydrogenase: a kinetic and mechanistic study. J Am Chem Soc. 138:8834–8846.
  • Majeran W, Friso G, Asakura Y, Qu X, Huang M, Ponnala L, Watkins KP, Barkan A, van Wijk KJ. 2012. Nucleoid-enriched proteome in developing plastids and chloroplasts from maize leaves: a new conceptual framework for nucleoid functions. Plant Physiol. 158:156–189.
  • Martin-Sanchez L, Ariotti C, Garbeva P, Vigani G. 2020. Investigating the effect of below ground microbial volatiles on plant nutrient status: perspective and limitations. J Plant Interact. 5(1):188–195. doi:10.1080/17429145.2020.1776408.
  • McNeilly D, Schofield A, Stone SL. 2018. Degradation of the stress-responsive enzyme formate dehydrogenase by the RING-type E3 ligase Keep on Going and the ubiquitin 26S proteasome system. Plant Mol Biol. 96:265–278. doi:10.1007/s11103-017-0691-8.
  • Menges M, Dóczi R, Ökrész L, Morandini P, Mizzi L, Soloviev M, Murray JAH, Bögre L. 2008. Comprehensive gene expression atlas for the Arabidopsis MAP kinase signalling pathways. New Phytol. 179:643–662.
  • Mishra B, Sun Y, Ahmed H, Liu X, Mukhtar MS. 2017. Global temporal dynamic landscape of pathogen-mediated subversion of Arabidopsis innate immunity. Sci Rep. 7:7849. doi:10.1038/s41598-017-08073-z.
  • Miyazaki JH, Yang SF. 1987. The methionine salvage pathway in relation to ethylene and polyamine biosynthesis. Physiol Plant. 69:366–370.
  • Murata N, Allakhverdiev SI, Nishiyama Y. 2012. The mechanism of photoinhibition in vivo: Re-evaluation of the roles of catalase, α-tocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta. 1817:1127–1133.
  • Murgia I, Giacometti S, Balestrazzi A, Paparella S, Pagliano C, Morandini P. 2015. Analysis of the transgenerational iron deficiency stress memory in Arabidopsis thaliana plants. Front Plant Sci. 6:745. doi:10.3389/fpls.2015.00745.
  • Murgia I, Morandini P, Moroni A, Soave C. 1998. A non-destructive selection method for resistance to fusicoccin in Arabidopsis thaliana. Plant Cell Rep. 18:255–259. doi:10.1007/s002990050567.
  • Murgia I, Tarantino D, Soave C, Morandini P. 2011. Arabidopsis CYP82C4 expression is dependent on Fe availability and circadian rhythm, and correlates with genes involved in the early Fe deficiency response. J Plant Physiol. 168:894–902. doi:10.1016/j.jplph.2010.11.020.
  • Murgia I, Vazzola V, Tarantino D, Cellier F, Ravet K, Briat JF, Soave C. 2007. Knock-out of the ferritin AtFer1 causes earlier onset of age-dependent leaf senescence in Arabidopsis. Plant Physiol Biochem. 45:898–907.
  • Murgia I, Vigani G. 2015. Analysis of Arabidopsis thaliana atfer4-1, atfh and atfer4-1/atfh mutants uncovers frataxin and ferritin contributions to leaf ionome homeostasis. Plant Physiol Biochem. 94:65–72.
  • Oldenburg DJ, Bendich AJ. 2015. DNA maintenance in plastids and mitochondria of plants. Front Plant Sci. 6:883.
  • Pfalz J, Pfanneschmidt T. 2013. Essential nucleoid proteins in early chloroplast development. Trends Plant Sci. 18:186–194.
  • Prabhu V, Chatson KB, Lui H, Abrams GD, King J. 1996. 13C nuclear magnetic resonance detection of interaction of serine hydroxymethyltransferase with C1-tetrahydrofolate synthase and glycine decarboxylase complex activities in Arabidopsis. Plant Physiol. 112:8713–8719.
  • Rajniak J, Giehl RF, Chang E, Murgia I, von Wirén N, Sattely ES. 2018. Biosynthesis of redox-active metabolites as a general strategy for iron acquisition in plants. Nature Chem Biol. 14(5):442–450. doi:10.1038/s41589-018-0019-2.
  • Ramirez L, Simontacchi M, Murgia I, Zabaleta E, Lamattina L. 2011. Nitric oxide, Nitrosyl iron complexes, ferritin and frataxin: a well-equipped team to preserve plant iron homeostasis. Plant Sci. 181:582–592.
  • Sakuraba Y, Park SY, Kim YS, Wang SH, Yoo SC, Hoertensteiner S, Paek NC. 2014. Arabidopsis STAY-GREEN2 is a negative regulator of chlorophyll degradation during leaf senescence. Mol Plant. 7:1288–1302.
  • Sakuraba Y, Schelbert S, Park SY, Han SH, Lee BD, Besagni Andres C, Kessler S, Paek NC. 2012. STAY-GREEN and chlorophyll catabolic enzymes interact at light-harvesting complex II for chlorophyll detoxification during leaf senescence in Arabidopsis. Plant Cell. 24:507–518.
  • Schuler MA, Duan H, Bilgin M, Ali S. 2006. Arabidopsis cytochrome P450s through the looking glass: a window on plant biochemistry. Phytochem Rev. 5:205–237.
  • Schwacke R, Schneider A, Van Der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flügge UI, Kunze R. 2003. ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131:16–26.
  • Shiraishi T, Fukusaki E, Miyake C, Yokota A, Kobayashi A. 2000. Formate protects photosynthetic machinery from photoinhibition. J Biosci Bioeng. 89:564–568.
  • Song ZB, Xiao SQ, You L, Wang SS, Tan H, Zhi K, Chen LM. 2013. C1 metabolism and the Calvin cycle function simultaneously and independently during HCHO metabolism and detoxification in Arabidopsis thaliana treated with HCHO solutions. Plant Cell Environ. 36:1490–1506.
  • Sugliani M, Abdelkefi H, Ke H, Bouveret E, Robaglia C, Caffarri S, Field B. 2016. An ancient bacterial signaling pathway regulates chloroplast function to influence growth and development in Arabidopsis. Plant Cell. 28:661–679.
  • Tarantino D, Petit JM, Lobreaux S, Briat JF, Soave C, Murgia I. 2003. Differential involvement of the IDRS cis-element in the developmental and environmental regulation of the AtFer1 ferritin gene from Arabidopsis. Planta. 217:709–716. doi:10.1007/s00425-003-1038-z.
  • Tarantino D, Vannini C, Bracale M, Campa M, Soave C, Murgia I. 2005. Antisense reduction of thylakoidal ascorbate peroxidase in Arabidopsis enhances Paraquat-induced photooxidative stress and nitric oxide-induced cell death. Planta. 221:757–765. doi:10.1007/s00425-005-1485-9.
  • Tyystjärvi E, Aro EM. 1996. The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA. 93:2213–2218.
  • Urzica EI, Casero D, Yamasaki H, Hsieh SI, Adler LN, Karpowicz SJ, Blaby-Haas CE, Clarke SG, Loo JA, Pellegrini M, Merchant SS. 2012. Systems and trans-system level analysis identifies conserved iron deficiency responses in the plant lineage. Plant Cell. 24:3921–3948.
  • van der Biezen EA, Sun J, Coleman M, Bibb MJ, Jones JDG. 2000. Arabidopsis rela/SpoT homologs implicate (p)ppGpp in plant signaling. Proc Natl Acad Sci USA. 97:3747–3752.
  • Vigani G, Di Silvestre D, Agresta AM, Donnini S, Mauri P, Gehl C, Bittner F, Murgia I. 2017. Molybdenum and iron mutually impact their homeostasis in cucumber (Cucumis sativus L.) plants. New Phytol. 213:1222–1241.
  • Vigani G, Murgia I. 2018. Iron-Requiring enzymes in the Spotlight of Oxygen. Trends Plant Sci. 23:874–882. doi:10.1016/j.tplants.2018.07.005.
  • Wang P, Richter AS, Kleeberg JRW, Geimer S, Grimm B. 2020. Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development. Nat Commun. 11:1254. doi:10.1038/s41467-020-14992-9.
  • Weber P, Fulgosi H, Piven I, Müller I, Krupinska K, Duong VH, Herrmann RG, Sokolenkno A. 2006. TCP34, a nuclear-encoded response regulator-like TPR protein of higher plant chloroplasts. J Mol Biol. 357:535–549. doi:10.1016/j.jmb.2005.12.079.
  • Woo HR, Masclaux-Daubresse C, Lim PO. 2018. Plant senescence: how plants know when and how to die. J Exp Bot. 69:715–718. doi:10.1093/jxb/ery011.
  • Yabe T, Nakai M. 2006. Arabidopsis AtIscA-I is affected by deficiency of Fe-S cluster biosynthetic scaffold AtCnfU-V. Biochem Biophys Res Commun. 340:1047–1052.