3,514
Views
2
CrossRef citations to date
0
Altmetric
Plant-Insect Interactions

Bottom-up effects of fertilization and jasmonate-induced resistance independently affect the interactions between tomato plants and an insect herbivore

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2154864 | Received 21 Sep 2022, Accepted 30 Nov 2022, Published online: 29 Dec 2022

References

  • Acevedo FE, Rivera-Vega LJ, Chung SH, Ray S, Felton G. 2015. Cues from chewing insects – the intersection of DAMPs, HAMPs, MAMPs and effectors. Curr Opin Plant Biol. 26:80–86.
  • Adams P. 1986. Mineral nutrition. In: Atherton JG, Rudich J, editors. The tomato crop. Dordrecht: Springer; p. 281–334.
  • Ainsworth EA, Gillespie KM. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat Protoc. 2(4):875–877.
  • Alba JM, Glas JJ, Schimmel CJ, Kant MR. 2011. Avoidance and suppression of plant defenses by herbivores and pathogens. J Plant Interact. 6(4):221–227.
  • Amtmann A, Troufflard S, Armengaud P. 2008. The effect of potassium nutrition on pest and disease resistance in plants. Physiol Plant. 133(4):682–691.
  • Anastasaki E, Drizou F, Milonas PG. 2018. Electrophysiological and oviposition responses of Tuta absoluta females to herbivore-induced volatiles in tomato plants. J Chem Ecol. 44(3):288–298.
  • Awmack CS, Leather SR. 2002. Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol. 47(1):817–844.
  • Ayelo PM, Yusuf AA, Pirk CW, Chailleux A, Mohamed SA, Deletre E. 2021. Terpenes from herbivore-induced tomato plant volatiles attract Nesidiocoris tenuis (Hemiptera: Miridae), a predator of major tomato pests. Pest Manag Sci. 77(11):5255–5267.
  • Becker C, Han P, deCampos MR, Béarez P, Thomine E, L Bot, Adamowicz J, Brun S, Fernandez R, Desneux X, et al. 2021. Feeding guild determines strength of top-down forces in multitrophic system experiencing bottom-up constraints. Sci Total Environ. 793:148544.
  • Bezemer TM, Van Dam NM. 2005. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol. 20(11):617–624.
  • Blazhevski S, Kalaitzaki AP, Tsagkarakis AE. 2018. Impact of nitrogen and potassium fertilization regimes on the biology of the tomato leaf miner Tuta absoluta. Entomol Gen. 37(2):157–174.
  • Bray HG, Thorpe WV. 1954. Analysis of phenolic compounds of interest in metabolism. Methods Biochem Anal. 1:27–52.
  • Cao HH, Wang SH, Liu TX. 2014. Jasmonate-and salicylate-induced defenses in wheat affect host preference and probing behavior but not performance of the grain aphid, Sitobion avenae. Insect Sci. 21(1):47–55.
  • Chan C, Liao YY, Chiou TJ. 2021. The impact of phosphorus on plant immunity. Plant Cell Physiol. 62(4):582–589.
  • Chapin FS, Bloom AJ, Field CB, Waring RH. 1987. Plant responses to multiple environmental factors. Bioscience. 37(1):49–57.
  • Chen H, Wilkerson CG, Kuchar JA, Phinney BS, Howe GA. 2005. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proc Nat Acad Sci. 102(52):19237–19242.
  • Chen Y, Olson DM, Ruberson JR. 2010. Effects of nitrogen fertilization on tritrophic interactions. Arthropod Plant Interact. 4(2):81–94.
  • Chen Y, Schmelz EA, Wäckers F, Ruberson JR. 2008. Cotton plant, Gossypium hirsutum L., defense in response to nitrogen fertilization. J Chem Ecol. 34:1553–1564.
  • Cipollini D, Bergelson J. 2001. Plant density and nutrient availability constrain constitutive and wound-induced expression of trypsin inhibitors in Brassica napus. J Chem Ecol. 27(3):593–610.
  • Coley PD. 1987. Interspecific variation in plant anti-herbivore properties: the role of habitat quality and rate of disturbance. New Phytol. 106:251–263.
  • Dale JE. 1988. The control of leaf expansion. Annu Rev Plant Physiol. 39(1):267–295.
  • de Lange ES, Kyryczenko-Roth V, Johnson-Cicalese J, Davenport J, Vorsa N, Rodriguez-Saona C. 2019. Increased nutrient availability decreases insect resistance in cranberry. Agric Forest Entomol. 21(3):326–335.
  • De Moraes CM, Mescher MC, Tumlinson JH. 2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature. 410(6828):577–580.
  • Desneux N, Wajnberg E, Wyckhuys KA, Burgio G, Arpaia S, Narváez-Vasquez CA, Gonzáles-Cabrera J, Ruescas DC, Tabone E, Frandon J, et al. 2010. Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci. 83(3):197–215.
  • Desneux N, Han P, Mansur R, Arnó J, Brévault T, Campos MR, Chailleux A, Guedes RNC, Karimi J, Lavoir AV, et al. 2022. Integrated pest management of Tuta absoluta: practical implementations across different world regions. J Pest Sci. 95:17–39.
  • Erb M, Meldau S, Howe GA. 2012. Role of phytohormones in insect-specific plant reactions. Trends Plant Sci. 17(5):250–259.
  • Eyles A, Bonello P, Ganley R, Mohammed C. 2010. Induced resistance to pests and pathogens in trees. New Phytol. 185(4):893–908.
  • Gershenzon J. 1994. Metabolic costs of terpenoid accumulation in higher plants. J Chem Ecol. 20(6):1281–1328.
  • Hahn PG, Maron JL. 2016. A framework for predicting intraspecific variation in plant defense. Trends Ecol Evol. 31(8):646–656.
  • Han P, Bayram Y, Shaltiel-Harpaz L, Sohrabi F, Saji A, Esenali UT, Jalilov A, Ali A, Shashank PR, Ismoilov K, et al. 2019. Tuta absoluta continues to disperse in Asia: damage, ongoing management and future challenges. J Pest Sci. 92(4):1317–1327.
  • Han P, Becker C, Sentis A, Rostás M, Desneux N, Lavoir AV. 2019. Global change-driven modulation of bottom–up forces and cascading effects on biocontrol services. Curr Opin Insect Sci. 35:27–33.
  • Han P, Desneux N, Amiens-Desneux E, Le Bot J, Bearez P, Lavoir AV. 2016. Does plant cultivar difference modify the bottom-up effects of resource limitation on plant-insect herbivore interactions? J Chem Ecol. 42:1293–1303.
  • Han P, Lavoir AV, Le Bot J, Amiens-Desneux E, Desneux N. 2014. Nitrogen and water availability to tomato plants triggers bottom-up effects on the leafminer Tuta absoluta. Sci Rep. 4(1):1–8.
  • Han P, Lavoir AV, Rodriguez-Saona C, Desneux N. 2022. Bottom-up forces in agroecosystems and their potential impact on arthropod pest management. Annu Rev Entomol. 67:239–259.
  • Herms D, Mattson W. 1992. The dilemma of plants: to grow or defend. Q Rev Biol. 67:283–335.
  • Herms DA. 2002. Effects of fertilization on insect resistance of woody ornamental plants: reassessing an entrenched paradigm. Environ Entomol. 31(6):923–933.
  • Hou W, Tränkner M, Lu J, Yan J, Huang S, Ren T, Cong R, Li X. 2019. Interactive effects of nitrogen and potassium on photosynthesis and photosynthetic nitrogen allocation of rice leaves. BMC Plant Biol. 19(1):1–13.
  • Howe GA, Jander G. 2008. Plant immunity to insect herbivores. Annu Rev Plant Biol. 59(1):41–66.
  • Hunter MD, Price PW. 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology. 73:724–732.
  • Islam MN, Hasanuzzaman ATM, Zhang ZF, Zhang Y, Liu TX. 2017. High level of nitrogen makes tomato plants releasing less volatiles and attracting more Bemisia tabaci (Hemiptera: Aleyrodidae). Front Plant Sci. 8:466.
  • Jaenike J. 1978. On optimal oviposition behavior in phytophagous insects. Theor Popul Biol. 14:350–356.
  • Joern A, Provin T, Behmer ST. 2012. Not just the usual suspects: insect herbivore populations and communities are associated with multiple plant nutrients. Ecology. 93(5):1002–1015.
  • Karban R, Myers JH. 1989. Induced plant responses to herbivory. Annu Rev Ecol Evol Syst. 20:331–348.
  • Kessler A, Baldwin IT. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science. 291(5511):2141–2144.
  • Kessler A, Baldwin IT. 2002. Plant responses to insect herbivory. Annu Rev Plant Biol. 53:299–328.
  • Knolhoff LM, Heckel DG. 2014. Behavioral assays for studies of host plant choice and adaptation in herbivorous insects. Ann Rev Entomol. 59(1):263–278.
  • Kofalvi SA, Nassuth A. 1995. Influence of wheat streak mosaic virus infection on phenylpropanoid metabolism and the accumulation of phenolics and lignin in wheat. Physiol Mol. 47(6):365–377.
  • Larbat R, Adamowicz S, Robin C, Han P, Desneux N, Le Bot J. 2016. Interrelated responses of tomato plants and the leaf miner Tuta absoluta to nitrogen supply. Plant Biol. 18(3):495–504.
  • Li Z, Xu B, Du T, Ma Y, Tian X, Wang F, Wang W. 2021. Excessive nitrogen fertilization favors the colonization, survival, and development of Sogatella furcifera via bottom-up effects. Plants. 10(5):875.
  • Lou Y, Baldwin IT. 2004. Nitrogen supply influences herbivore-induced direct and indirect defenses and transcriptional responses in Nicotiana attenuata. Plant Physiol. 135(1):496–506.
  • Mansour R, Brévault T, Chailleux A, Cherif A, Grissa-Lebdi K, Haddi K, Sa M, Nofemela RS, Oke A, Sylla S. 2018. Occurrence, biology, natural enemies and management of Tuta absoluta in Africa. Entomol Gen. 38(2):83–112.
  • Marschner H. 1983. General introduction to the mineral nutrition of plants. In: Läuchli A, Bieleski RL, editors. Inorganic plant nutrition. Berlin: Springer; p. 5–60.
  • Mason CJ, Ray S, Davidson-Lowe E, Ali JG, Luthe DS, Felton G. 2022. Plant Nutrition influences resistant maize defense responses to the fall armyworm (Spodoptera frugiperda). Front Ecol Evol. 10:844274.
  • Minitab. 2013. Minitab computer software. State College (PA): Minitab Inc.
  • Nelson DW, Sommers LE. 1980. Total nitrogen analysis of soil and plant tissues. J Assoc Off Anal Chem. 63:770–778.
  • Paudel S, Rajotte EG, Felton GW. 2014. Benefits and costs of tomato seed treatment with plant defense elicitors for insect resistance. Arthropod Plant Interact. 8(6):539–545.
  • Poelman EH. 2015. From induced resistance to defence in plant-insect interactions. Entomol Exp Appl. 157(1):11–17.
  • Power ME. 1992. Top-down and bottom-up forces in food webs: do plants have primacy. Ecology. 73(3):733–746.
  • Proffit M, Birgersson G, Bengtsson M, Reis R Jr, Witzgall P, Lima E. 2011. Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J Chem Ecol. 37:565–574.
  • Queiroz RB, Lopes MC, Costa TL, da Silva RS, Galdino TV, Gontijo PDC, Martinez HEP, Picanço MC. 2022. Influence of tomato plants nutritional status on the fitness and damage of Tuta absoluta (Lepidoptera: Gelechiidae). Agric Forest Entomol. 24(2):260–266.
  • R Core Team. 2022. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. [accessed 2022 August]. https://www.r-project.org/.
  • Redman AM, Cipollini DF, Schultz JC. 2001. Fitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum. Oecologia. 126(3):380–385.
  • Rodriguez-Saona C, Crafts-Brandner SJ, Paré PW, Henneberry TJ. 2001. Exogenous methyl jasmonate induces volatile emissions in cotton plants. J Chem Ecol. 27(4):679–695.
  • Schmelz EA, Alborn HT, Engelberth J, Tumlinson JH. 2003. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol. 133(1):295–306.
  • Schoonhoven LM, Van Loon B, van Loon JJ, Dicke M. 2005. Insect-plant biology. New York (NY): Oxford University Press Inc.
  • Sétamou M, Schulthess F, Bosque-Pérez NA, Thomas-Odjo A. 1993. Effect of plant nitrogen and silica on the bionomics of Sesamia calamistis (Lepidoptera: Noctuidae). Bull Entomol Res. 83(3):405–411.
  • Shah TH. 2017. Plant nutrients and insects development. Int J Entomol Res. 2(6):54–57.
  • Silva DB, Hanel A, Franco FP, de Castro Silva-Filho M, Bento JMS. 2022. Two in one: the neotropical mirid predator Macrolophus basicornis increases pest control by feeding on plants. Pest Manag Sci. 78(8):3314–3323.
  • Silva GA, Queiroz EA, Arcanjo LP, Lopes MC, Araújo TA, Galdino TS, Samuels RI, Rodrigues-Silva N, Picanço MC. 2021. Biological performance and oviposition preference of tomato pinworm Tuta absoluta when offered a range of Solanaceous host plants. Sci Rep. 11(1):1–10.
  • Smart LE, Martin JL, Limpalaër M, Bruce TJ, Pickett JA. 2013. Responses of herbivore and predatory mites to tomato plants exposed to jasmonic acid seed treatment. J Chem Ecol. 39(10):1297–1300.
  • Stella de Freitas TF, Stout MJ, Sant'Ana J. 2019. Effects of exogenous methyl jasmonate and salicylic acid on rice resistance to Oebalus pugnax. Pest Manag Sci. 75(3):744–752.
  • Stout MJ, Brovont RA, Duffey SS. 1998. Effect of nitrogen availability on expression of constitutive and inducible chemical defenses in tomato, Lycopersicon esculentum. J Chem Ecol. 24(6):945–963.
  • Strapasson P, Pinto-Zevallos DM, Paudel S, Rajotte EG, Felton GW, Zarbin PH. 2014. Enhancing plant resistance at the seed stage: low concentrations of methyl jasmonate reduce the performance of the leaf miner Tuta absoluta but do not alter the behavior of its predator Chrysoperla externa. J Chem Ecol. 40(10):1090–1098.
  • Summers CB, Felton GW. 1994. Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem Mol Biol. 24(9):943–953.
  • Sylla S, Brévault T, Monticelli LS, Diarra K, Desneux N. 2019. Geographic variation of host preference by the invasive tomato leaf miner Tuta absoluta: implications for host range expansion. J Pest Sci. 92(4):1387–1396.
  • Tan CW, Chiang SY, Ravuiwasa KT, Yadav J, Hwang SY. 2012. Jasmonate-induced defenses in tomato against Helicoverpa armigera depend in part on nutrient availability, but artificial induction via methyl jasmonate does not. Arthropod-Plant Interact. 6(4):531–541.
  • Thaler JS. 1999. Induced resistance in agricultural crops: effects of jasmonic acid on herbivory and yield in tomato plants. Environ Entomol. 28(1):30–37.
  • Thaler JS, Stout MJ, Karban R, Duffey SS. 2001. Jasmonate-mediated induced plant resistance affects a community of herbivores. Ecol Entomol. 26(3):312–324.
  • Throop HL, Lerdau MT. 2004. Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystems. 7:109–133.
  • Tortorici S, Biondi A, Pérez-Hedo M, Larbat R, Zappalà L. 2022. Plant defences for enhanced integrated pest management in tomato. Ann Appl Biol. 180(3):328–337.
  • Wallis CM, Galarneau ERA. 2020. Phenolic compound induction in plant-microbe and plant-insect interactions: a meta-analysis. Front Plant Sci. 11:580753.
  • Wang W, Wang X, Liao H, Feng Y, Guo Y, Shu Y, Wang J. 2022. Effects of nitrogen supply on induced defense in maize (Zea mays) against fall armyworm (Spodoptera frugiperda). Int J Mol Sci. 23:10457.
  • War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC. 2012. Mechanisms of plant defense against insect herbivores. Plant Signal Behav. 7(10):1306–1320.
  • Webster B, Cardé RT. 2017. Use of habitat odour by host-seeking insects. Biol Rev. 92(2):1241–1249.
  • Wei X, Vrieling K, Kim HK, Mulder PP, Klinkhamer PG. 2021. Application of methyl jasmonate and salicylic acid lead to contrasting effects on the plant’s metabolome and herbivory. Plant Sci. 303:110784.
  • Yu H, Zhang Y, Li Y, Lu Z, Li X. 2018. Herbivore-and MeJA-induced volatile emissions from the redroot pigweed Amaranthus retroflexus Linnaeus: their roles in attracting Microplitis mediator (Haliday) parasitoids. Arthropod Plant Interact. 12(4):575–589.
  • Zarcinas BA, Cartwright B, Spouncer LR. 1987. Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. Commun Soil Sci Plant Anal. 18:131–146.