2,806
Views
5
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

Finding optimal microorganisms to increase crop productivity and sustainability under drought – a structured reflection

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2178680 | Received 03 Oct 2022, Accepted 06 Feb 2023, Published online: 12 Mar 2023

References

  • Abedini D, Jaupitre S, Bouwmeester H, Dong L. 2021. Metabolic interactions in beneficial microbe recruitment by plants. Curr Opin Biotechnol. 70:241–247.
  • Abuelsoud W, Hirschmann F, Papenbrock J. 2016. Sulfur metabolism and drought stress tolerance in plants. In: Hossain M, Wani S, Bhattacharjee S, Burritt D, Tran LS, editors. Drought stress tolerance in plants. Vol. 1. Cham: Springer; p. 227–249. doi: 10.1007/978-3-319-28899-4_9.
  • Acosta-Martínez V, Cotton J, Gardner T, Moore-Kucera J, Zak J, Wester D, Cox S. 2014. Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling. Appl Soil Ecol. 84:69–82.
  • Adedeji AA, Max A, Häggblomb MM, Babalola OO. 2020. Sustainable agriculture in Africa: plant growth-promoting rhizobacteria (PGPR) to the rescue. Sci African. 9:e00492. doi: 10.1016/j.sciaf.2020.e00492.
  • Adesemoye AO, Torbert HA, Kloepper JW. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol. 58:921–929.
  • Akhtar SS, Amby DB, Hegelund JN, Fimognari L, Großkinsky DK, Westergaard JC, Müller R, Moelbak L, Liu F, Roitsch T. 2020. Bacillus licheniformis FMCH001 increases water use efficiency via growth stimulation in both normal and drought conditions. Front Plant Sci. 11:297. doi: 10.3389/fpls.2020.00297.
  • Alami Y, Achouak W, Marol C, Heulin T. 2000. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol. 66:3393–3398.
  • Amaya-Gómez CV, Porcel M, Mesa-Garriga L, Gómez-Álvarez MI. 2020. A framework for the selection of plant growth promoting rhizobacteria based on bacterial competence mechanisms. Appl Environ Microbiol. 86:e00760–20. doi: 10.1128/AEM.00760-20.
  • Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S. 2012. Effect of Pseudomonas fluorescens on proline and phytohormonal status of maize (Zea mays L.) under water deficit stress. Annal Biol Res. 3:1054–1062.
  • Armada E, Leite MFA, Medina A, Azcón R, Kuramae EE. 2018. Native bacteria promote plant growth under drought stress condition without impacting the rhizomicrobiome. FEMS Microbiol Ecol. 94(7):1–13. doi: 10.1093/femsec/fiy092.
  • Armstrong A, Valverde A, Ramond J-B, Makhalanyane TP, Jansson JK, Hopkins DW, Aspray TJ, Seely M, Trindade MI, Cowan DA. 2016. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input. Sci Rep. 6:34434. doi: 10.1038/srep34434.
  • Bachar A, Al-Ashhab A, Soares MIM, Sklarz MY, Angel R, Ungar ED, Gillor O. 2010. Soil microbial abundance and diversity along a low precipitation gradient. Microb Ecol. 60:453–461.
  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 9:1473. doi: 10.3389/fpls.2018.01473.
  • Barnard RL, Osborne CA, Firestone MK. 2013. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 7:2229–2241.
  • Barr M, East AK, Leonard M, Mauchline TH, Poole PS. 2008. In vivo expression technology (IVET) selection of genes of Rhizobium leguminosarum biovar viciae A34 expressed in the rhizosphere. FEMS Microbiol Lett. 282:219–227.
  • Barret M, Frey-Klett P, Guillerm-Erckelboudt AY, Boutin M, Guernec G, Sarniguet A. 2009. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Mol Plant Microbe Interact. 22:1611–1623.
  • Barret M, Morrissey JP, O’Gara F. 2011. Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils. 47:729–743.
  • Barriuso J, Pereyra MT, García JAL, Megías M, Mañero FJG, Ramos B. 2005. Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus-pinus sp. Microb Ecol. 50:82–89.
  • Barriuso J, Solano BR, Lucas JA, Lobo AP, García-Villaraco A, Mañero FJG. 2008. Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). In: Ahmad I, Pichtel J, Hayat S, editors. Plant-bacteria interactions:strategies and techniques to promote plant growth. Weinheim: Wiley-VCH Verlag GmbH and Co. KGaA; p. 1–17.doi: 10.1002/9783527621989.ch1.
  • Basílio F, Dias T, Santana MM, Melo J, Carvalho L, Correia P, Cruz C. 2022. Multiple modes of action are needed to unlock soil phosphorus fractions unavailable for plants: The example of bacteria- and fungi-based biofertilizers. Appl Soil Ecol. 178:104550. doi: 10.1016/j.apsoil.2022.104550.
  • Batool T, Ali S, Seleiman MF, Naveed NH, Ali A, Ahmed K, Abid M, Rizwan M, Shahid MR, Alotaibi M, et al. 2020. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Sci Rep. 10(1):16975. doi: 10.1038/s41598-020-73489-z.
  • Baudoin E, Nazaret S, Mougel C, Ranjard L, Moënne-Loccoz Y. 2009. Impact of inoculation with the phytostimulatory PGPR Azospirillum lipoferum CRT1 on the genetic structure of the rhizobacterial community of field-grown maize. Soil Biol Biochem.41:409–413.
  • Becker J, Eisenhauer N, Scheu S, Jousset A. 2012. Increasing antagonistic interactions cause bacterial communities to collapse at high diversity. Ecol Lett. 15:468–474.
  • Berg G, Kusstatscher P, Abdelfattah A, Cernava T, Smalla K. 2021. Microbiome modulation-toward a better understanding of plant microbiome response to microbial inoculants. Front Microbiol. 12:650610. doi: 10.3389/fmicb.2021.650610.
  • Bhaskar PV, Bhosle NB. 2005. Microbial extracellular polymeric substances in marine biogeochemical processes. Curr Sci. 88:45–53.
  • Bouasria A, Mustafa T, De Bello F, Zinger L, Lemperiere G, Geremia RA, Choler P. 2012. Changes in root-associated microbial communities are determined by species-specific plant growth responses to stress and disturbance. Eur J Soil Biol. 52:59–66.
  • Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL, Brodie EL. 2013. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 7:384–394.
  • Bouskill NJ, Wood TE, Baran R, Ye Z, Bowen BP, Lim H, Zhou Z, Van Nostrand JD, Nico P, Northern TR, et al. 2016. Belowground response to drought in a tropical forest soil. I. changes in microbial functional potential and metabolism. Front. Microbiol. 7:525. doi: 10.3389/fmicb.2016.00525.
  • Calvo OC, Franzaring J, Schmid I, Müller M, Brohon N, Fangmeier A. 2016. Atmospheric CO2 enrichment and drought stress modify root exudation of barley. Glob Change Biol. 23:1292–1304.
  • Canarini A, Merchant A, Dijkstra FA. 2016. Drought effects on Helianthus annuus and glycine max metabolites: from phloem to root exudates. Rhizosphere. 2:85–97.
  • Carlström CI, Field CM, Bortfeld-Miller M, Müller B, Sunagawa S, Vorholt JA. 2019. Synthetic microbiota reveal priority effects and keystone strains in the Arabidopsis phyllosphere. Nat Ecol Evol. 3:1445–1454.
  • Chaves MM, Flexas J, Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 103:551–560.
  • Chen Y, Gozzi K, Yan F, Chai Y. 2015. Acetic acid acts as a volatile signal to stimulate bacterial biofilm formation. mBio. 6(3):e00392. doi: 10.1128/mBio.00392-15.
  • Cheng ZY, Duan J, Hao YA, McConkey BJ, Glick BR. 2009. Identification of bacterial proteins mediating the interactions between Pseudomonas putida UW4 and Brassica napus (canola). Mol Plant Microbe Interact. 22:686–694.
  • Cherif H, Marasco R, Rolli E, Ferjani R, Fusi M, Soussi A, Mapelli F, Bilou I, Borin S, Boudabous A, et al. 2015. Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. Environ Microbiol. Rep. 7:668–678.
  • Chiappero J, Cappellari LR, Alderete LGS, Palermo TB, Banchio E. 2019. Plant growth promoting rhizobacteria improve the antioxidant status in Mentha piperita grown under drought stress leading to an enhancement of plant growth and total phenolic content. Ind Crops Prod. 139:111553.
  • Cho SM, Kang BR, Han SH, Anderson AJ, Park JY, Lee YH, Cho BH, Yang KY, Ryu CM, Kim YC. 2008. 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact. 21:1067–1075.
  • Chodak M, Gołebiewski M, Morawska-Płoskonka J, Kuduk K, Niklinska M. 2015. Soil chemical properties affect the reaction of forest ´soil bacteria to drought and rewetting stress. Ann Microbiol. 65:1627–1637.
  • Clarke SF, Guy PL, Burritt DJ, Jameson PE. 2002. Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol Plant. 114:157–164.
  • Clements LD, Miller BS, Streips UN. 2002. Comparative growth analysis of the facultative anaerobes Bacillus subtilis, Bacillus licheniformis, and Escherichia coli. Syst Appl Microbiol. 25:284–286.
  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN. 2009. Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany. 87:455–462.
  • Colaianni NR, Parys K, Lee HS, Conway JM, Kim NH, Edelbacher N, Mucyn TS, Madalinski M, Law TF, Jones CD, et al. 2021. A complex immune response to flagellin epitope variation in commensal communities. Cell Host Microbe. 29(4):635–649. doi: 10.1016/j.chom.2021.02.006.
  • Cole BJ, Feltcher ME, Waters RJ, Wetmore KM, Mucyn TS, Ryan EM, Wang G, Ul-Hasan S, McDonald M, Yoshikuni Y, et al. 2017. Genome-wide identification of bacterial plant colonization genes. PLoS Biol. 15(9):e2002860.
  • Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, Woyke T, North G, Visel A, Partida-Martinez LP, Tringe SG. 2016. Plant compartment and biogeography affect microbiome composition in cultivated and native agave species. New Phytol. 209:798–811.
  • Comas LH, Becker SR, Cruz VM, Byrne PF, Dierig DA. 2013. Root traits contributing to plant productivity under drought. Front Plant Sci. 4:442. doi: 10.3389/fpls.2013.00442.
  • Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins R, et al. 2011. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Glo Chang Biol. 17:3392–4004.
  • Cordero I, Balaguer L, Rincón A, Pueyo JJ. 2018. Inoculation of tomato plants with selected PGPR represents a feasible alternative to chemical fertilization under salt stress. J Plant Nutr Soil Sci. 181:694–703.
  • Cordier C, Alabouvette C. 2009. Effects of the introduction of a biocontrol strain of Trichoderma atroviride on non target soil micro-organisms. Eur J Soil Biol. 45:267–274.
  • da Costa P, Granada CE, Ambrosini A, Moreira F, de Souza R, dos Passos JFM, et al. 2014. A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates. PLoS One. 9:e116020. doi: 10.1371/journal.pone.0116020.
  • Datta R, Anand S, Moulick A, Baraniya D, Pathan SI, Rejsek K, Vranova V, Sharma M, Sharma D, Kelkar A, Formanek P. 2017. How enzymes are adsorbed on soil phase and factors limiting its activity: A review. Int Agrophysics. 31:287–302.
  • Dawson W, Hör J, Egert M, van Kleunen M, Pester MA. 2017. A small number of low-abundance bacteria dominate plant species-specific responses during rhizosphere colonization. Front Microbiol. 8:975. doi: 10.3389/fmicb.2017.00975.
  • Deng S, Caddell DF, Xu G, Dahlen L, Washington L, Yang J, Coleman-Derr D. 2021. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 15:3181–3194.
  • Desgarennes D, Garrido E, Torres-Gomez MJ, Peña-Cabriales JJ, Partida-Martinez LP. 2014. Diazotrophic potential among bacterial communities associated with wild and cultivated agave species. FEMS Microbiol Ecol. 90:844–857.
  • Dessaux Y, Faure D. 2018. Quorum sensing and quorum quenching in Agrobacterium: a “go/no go system”? Genes (Basel). 9(4):210. doi:10.3390/genes9040210.
  • Dias T, Dukes A, Antunes PM. 2015. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations. J. Sci. Food Agric. 95:447–454.
  • Duan B, Li L, Chen G, Su-Zhou C, Li Y, Merkeryan H, Liu W, Liu X. 2021. ACC deaminase-producing PGPRs improve drought stress tolerance in grapevine (Vitis vinifera L.). Front Plant Sci. 12:706990. doi: 10.3389/fpls.2021.706990.
  • Dubeux JCB, Sollenberger LE. 2020. Nutrient cycling in grazed pastures. In: Rouquette M, Aiken GE, editors. Management strategies for sustainable cattle production in southern pastures. Amsterdam: Academic Press, Elsevier; p. 59–75.
  • Edwards PJ. 1998. Sulfur cycling, retention, and mobility in soils: a review. General Technical Report NE-250. U.S. Department of Agriculture, Forest Service, Northeastern Research Station, Radnor, PA.
  • Eltlbany N, Baklawa M, Ding GC, Nassal D, Weber N, Kandeler E, Neumann G, Ludewig U, van Overbeek L, Smalla K. 2019. Enhanced tomato plant growth in soil under reduced P supply through microbial inoculants and microbiome shifts. FEMS Microbiol Ecol. 95:fiz124. doi: 10.1093/femsec/fiz124.
  • Espinosa-Urgel M, Salido A, Ramos JL. 2000. Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol. 182:2363–2369.
  • Feng H, Zhang N, Du W, Zhang H, Liu Y, Fu R, Shao J, Zhang G, Shen Q, Zhang R. 2018. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol Plant Microbe Interact. 31:995–1005.
  • French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu CH, Enders L. 2021. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat Plants. 7:256–267.
  • French E, Tran T, Iyer-Pascuzzi A. 2020. Tomato genotype modulates selection and responses to root microbiota. Phytobiomes J. 4:314–326.
  • Ghosh D, Sen S, Mohapatra S. 2017. Modulation of proline metabolic gene expression in Arabidopsis thaliana under water-stressed conditions by a drought-mitigating Pseudomonas putida strain. Ann Microbiol. 67:655–668.
  • Glick BR. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res. 169:30–39.
  • Gomez EJ, Delgado JA, Gonzalez JM. 2020a. Environmental factors affect the response of microbial extracellular enzyme activity in soils when determined as a function of water availability and temperature. Ecol Evol. 10:10105–10115.
  • Gomez EJ, Delgado JA, Gonzalez JM. 2020b. Persistence of microbial extracellular enzymes in soils under different temperatures and water availabilities. Ecol Evol. 10:10167–10176.
  • Gomez EJ, Delgado JA, Gonzalez JM. 2021. Influence of water availability and temperature on estimates of microbial extracellular enzyme activity. PeerJ. 9:e10994. doi: 10.7717/peerj.10994.
  • Gorlach-Lira K, Coutinho HDM. 2007. Population dynamics and extracellular enzymes activity of mesophilic and thermophilic bacteria isolated from semi-arid soil of northeastern Brazil. Braz J Microbiol. 38:135–141.
  • Gowtham HG, Brijesh S, Murali M, Shilpa N, Prasad M, Aiyaz M, Amruthesh KN, Niranjana SR. 2020. Induction of drought tolerance in tomato upon the application of ACC deaminase producing plant growth promoting rhizobacterium Bacillus subtilis Rhizo SF 48. Microbiol Res. 234:126422. doi: 10.1016/j.micres.2020.126422.
  • Gu S, Wei Z, Shao Z, Friman VP, Cao K, Yang T, Kramer J, Wang X, Li M, Mei X, et al. 2020. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes. Nat Microbiol. 5:1002–1010.
  • Guerrero A, De Neve F, Mouazen AM. 2021. Data fusion approach for map-based variable-rate nitrogen fertilization in barley and wheat. Soil Tillage Res. 205:104789. doi: 10.1016/j.still.2020.104789.
  • Hartmann M, Brunner I, Hagedorn F, Bardgett RD, Stierli B, Herzog C, Chen X, Zingg A, Graf-Pannatier E, Rigling A, Frey B. 2017. A decade of irrigation transforms the soil microbiome of a semi-arid pine forest. Mol Ecol. 26:1190–1206.
  • He M, Dijkstra FA. 2014. Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytol. 204:924–931.
  • Hemkemeyer M, Dohrmann AB, Christensen BT, Tebbe CC. 2018. Bacterial preferences for specific soil particle size fractions revealed by community analyses. Front Microbiol. 9:149. doi: 10.3389/fmicb.2018.00149.
  • Herrmann L, Lesueur D. 2013. Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol. 97:8859–8873.
  • Hol WH, Garbeva P, Hordijk C, Hundscheid PJ, Gunnewiek PJ, Van Agtmaal M, Kuramae EE, De Boer W. 2015. Non-random species loss in bacterial communities reduces antifungal volatile production. Ecology. 96:2042–2048.
  • Jacoby RP, Kopriva S. 2019. Metabolic niches in the rhizosphere microbiome: new tools and approaches to analyse metabolic mechanisms of plant–microbe nutrient exchange. J Exp Bot. 70:1087–1094.
  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Al-Juburi HJ, Somasundaram R, Panneerselvam R. 2009. Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol. 11:100–105.
  • Jiao X, Takishita Y, Zhou G, Smith DL. 2021. Plant associated rhizobacteria for biocontrol and plant growth enhancement. Front Plant Sci. 12:634796. doi: 10.3389/fpls.2021.634796.
  • Jochum MD, McWilliams KL, Borrego EJ, Kolomiets MV, Niu G, Pierson EA, Jo Y-K. 2019. Bioprospecting plant growth-promoting rhizobacteria that mitigate drought stress in grasses. Front Microbiol. 10:2106. doi: 10.3389/fmicb.2019.02106.
  • Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, et al. 2017. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 11:853–862.
  • Kanchiswamy CN, Malnoy M, Maffei ME. 2015. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 6:151. doi: 10.3389/fpls.2015.00151.
  • Kaplan D, Maymon M, Agapakis CM, Lee A, Wang A, Prigge BA, Volkogon M, Hirsch AM. 2013. A survey of the microbial community in the rhizosphere of two dominant shrubs of the negev desert highlands, Zygophyllum dumosum (Zygophyllaceae) and Atriplex halimus (Amaranthaceae), using cultivation-dependent and cultivation-independent methods. Am J Bot. 100:1713–1725.
  • Kaplan I, Bokulich NA, Caporaso JG, Enders LS, Ghanem W, Ingerslew KS. 2020. Phylogenetic farming: Can evolutionary history predict crop rotation via the soil microbiome? Evol Appl. 13:1984–1999.
  • Kasim WA, Osman ME, Omar MN, Abd El-Daim IA, Bejai S, Meijer J. 2013. Control of drought stress in wheat using plant growth promoting bacteria. J Plant Growth Regul. 32:122–130.
  • Kaushal M, Wani SP. 2016. Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol. 66:35–42.
  • Kehe J, Kulesa A, Ortiz A, Ackerman CM, Thakku SG, Sellers D, Kuehn S, Gore J, Friedman J, Blainey PC. 2019. Massively parallel screening of synthetic microbial communities. Proc Natl Acad Sci USA. 116:12804–12809.
  • Khan N, Bano A. 2019. Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLoS One. 14(9):e0222302. doi: 10.1371/journal.pone.0222302.
  • Khan N, Bano A, Ali S, Babar Md A. 2020. Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul. 90:189–203.
  • Kim N, Zabaloy MC, Guan K, Villamil MB. 2020. Do cover crops beneft soil microbiome? A meta-analysis of current research. Soil Biol Biochem. 142:107701.
  • Kochakinezhad H, Peyvast G-A, Kashi A-K, Olfati J-A, Asadi A. 2012. A comparison of organic and chemical fertilizers for tomato production. J Org Syst. 7:14–25.
  • Konstantinidis KT, Tiedje JM. 2004. Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci USA. 101:3160–3165.
  • Kurm V, van der Putten WH, de Boer W, Naus-Wiezer S, Hol WH. 2017. Low abundant soil bacteria can be metabolically versatile and fast growing. Ecology. 98:555–564. doi: 10.1002/ecy.1670.
  • Lau JA, Lennon JT. 2012. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA. 109:14058–14062.
  • Le TA, Pék Z, Takács S, Neményi A, Daood HG, Helyes L. 2018. The effect of plant growth promoting rhizobacteria on the water-yield relationship and carotenoid production of processing tomatoes. HortScience. 53:816–822.
  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J, McDonald M, Malfatti S, Glavina del Rio T, Jones CD, Tringe SG, Dangl JL. 2015. Plant microbiome. salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 349:860–864.
  • Li D, Mou W, Van de Poel B, Chang C. 2022. Something old, something new: conservation of the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid as a signaling molecule. Curr Opin Plant Biol. 65:102116. doi: 10.1016/j.pbi.2021.102116.
  • Li X, Rui J, Xiong J, Li J, He Z, Zhou J, Yanaarell AC, Mackie RI. 2014. Functional potential of soil microbial communities in the maize rhizosphere. PLoS One. 9:e112609. doi: 10.1371/journal.pone.0112609.
  • Liu XM, Zhang H. 2015. The effects of bacterial volatile emissions on plant abiotic stress tolerance. Front Plant Sci. 6:774. doi: 10.3389/fpls.2015.00774.
  • Liu Y, Chen L, Wu G, Feng H, Zhang G, Shen Q. 2017. Identification of root-secreted compounds involved in the communication between cucumber, the beneficial Bacillus amyloliquefaciens, and the soil-borne pathogen Fusarium oxysporum. Mol Plant-Microbe Interact. 30:53–62.
  • López-Bellido RJ, Lal R, Danneberger TK, Street JR. 2010. Street plant growth regulator and nitrogen fertilizer effects on soil organic carbon sequestration in creeping bentgrass fairway turf. Plant Soil. 332:247–255.
  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature. 488:86–90.
  • Mahmoudi N, Caeiro MF, Mahdhi M, Tenreiro R, Ulm F, Mars M, Cruz C, Dias T. 2021. Arbuscular mycorrhizal traits are good indicators of soil multifunctionality in drylands. Geoderma. 397:115099. doi: 10.1016/j.geoderma.2021.115099.
  • Mahmud K, Missaoui A, Lee K, Ghimire B, Presley HW, Makaju S. 2021. Rhizosphere microbiome manipulation for sustainable crop production. Curr Plant Biol. 27:100210. doi: 10.1016/j.cpb.2021.100210.
  • Mallon CA, Le Roux X, Van Doorn GS, Dini-Andreote F, Poly F, Salles JF. 2018. The impact of failure: unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche. ISME J. 12:728–741.
  • Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, et al. 2012. A drought resistance-promoting microbiome is selected by root system under desert farming. Plos one. 7(10):e48479. doi: 10.1371/journal.pone.0048479.
  • Marchant R, Banat IM, Rahman TJ, Berzano M. 2002a. The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol. 4:595–602.
  • Marchant R, Banat IM, Rahman TJ, Berzano M. 2002b. What are high temperature bacteria doing in cold environments? Trends Microbiol. 10:120–121.
  • Marchant R, Franzetti A, Pavlostathis SG, Tas DO, Erdbrugger I, Unyayar A, Mazmanci MA, Banat IM. 2008. Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport? Appl Microbiol Biotechnol. 78:841–852.
  • Marschner P, Grierson PF, Rengel Z. 2005. Microbial community composition and functioning in the rhizosphere of three Banksia species in native woodland in western Australia. Appl Soil Ecol. 28:191–201.
  • Martinez-Gil M, Yousef-Coronado F, Espinosa-Urgel M. 2010. Lapf, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol. 77:549–561.
  • Mawarda PC, Le Roux X, Van Elsas JD, Salles JF. 2020. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biol Biochem. 148:107874. doi: 10.1016/j.soilbio.2020.107874.
  • Mayak S, Tirosh T, Glick BR. 2004. Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci. 166:525–530.
  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK, et al. 2017. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci. 8:172. doi: 10.3389/fpls.2017.00172.
  • Meldau S, Hoang LH, Underberg S, Wunsche H, Baldwin IT. 2013. Dimethyl disulfide produced by the naturally associated bacterium Bacillus sp B55 promotes Nicotiana attenuata growth by enhancing sulfur nutrition. Plant Cell. 25:2731–2747.
  • Miche L, Belkin S, Rozen R, Balandreau J. 2003. Rice seedling whole exudates and extracted alkylresorcinols induce stress-response in Escherichia coli biosensors. Environ Microbiol. 5:403–411.
  • Mishra SK, Khan MH, Misra S, Dixit VK, Khare P, Srivastava S, Chauhan PS. 2017. Characterisation of Pseudomonas spp. and Ochrobactrum sp. isolated from volcanic soil. Antonie Leeuwenhoek. 110:253–270.
  • Mitter EK, Tosi M, Obregon D, Dunfield KE, Germida JJ. 2021. Rethinking crop nutrition in times of modern microbiology: innovative biofertilizer technologies. Front. Sustain. Food Syst. 5:1–2. doi: 10.3389/fsufs.2021.606815.
  • Morcillo RJL, Manzanera M. 2021. The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites. 11(6):337. doi: 10.3390/metabo11060337.
  • Morella NM, Weng FC-H, Joubert PM, Metcalf CJE, Lindow S. 2020. Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proc Natl Acad Sci USA. 117:1148–1159.
  • Mosqueira MJ, Marasco R, Fusi M, Michoud G, Merlino G, Cherif A, Daffonchio D. 2019. Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. Sci Rep. 9(1):4033. doi: 10.1038/s41598-019-40551-4.
  • Mueller UG, Sachs JL. 2015. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23(10):606–617. doi: 10.1016/j.tim.2015.07.009.
  • Mulvaney RL, Khan SA, Ellsworth TR. 2009. Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J Environ Qual. 38:2295–2314.
  • Munnaf MA, Haesaert G, Mouazen AM. 2021. Map-based site-specific seeding of seed potato production by fusion of proximal and remote sensing data. Soil Tillage Res. 205:104801. doi: 10.1016/j.still.2020.104801.
  • Naseem H, Bano A. 2014. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. J Plant Interact. 9:689–701.
  • Nautiyal CS, Dion P. 2008. Molecular mechanisms of plant and microbe coexistence. Berlin: Springer. doi: 10.1007/978-3-540-75575-3.
  • Naylor D, Coleman-Derr D. 2018. Drought stress and root-associated bacterial communities. Front Plant Sci. 8:2223. doi: 10.3389/fpls.2017.02223.
  • Naylor D, DeGraaf S, Purdom E, Coleman-Derr D. 2017. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. 11:2691–2704.
  • Nazina T N, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int J Syst Evol Microbiol. 51(Pt 2):433–446.
  • Neal AL, Ahmad S, Gordon-Weeks R, Ton J. 2012. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere. PLoS One. 7(4):e35498. doi: 10.1371/journal.pone.0035498.
  • Niu B, Paulson JN, Zheng X, Kolter R. 2017. Simplified and representative bacterial community of maize roots. Proc Natl Acad Sci U S A. 114(12):E2450–E2459.
  • Niu XG, Song LC, Xiao YN, Ge WD. 2018. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front. Microbiol. 8:2580. doi: 10.3389/fmicb.2017.02580.
  • Nuccio EE, Anderson-Furgeson J, Estera KY, Pett-Ridge J, De Valpine P, Brodie EL, Firestone MK. 2016. Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology. 97:307–1318.
  • Oku S, Komatsu A, Tajima T, Nakashimada Y, Kato J. 2012. Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization. Microbes Environ. 27:462–469.
  • Or D, Smets BF, Wraith JM, Dechesn A, Friedman SP. 2007. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Adv Water Resour. 30:1505–1527.
  • Pacheco I, Ferreira R, Correia P, Carvalho L, Dias T, Cruz C. 2021. Microbial consortium increases maize productivity and reduces grain phosphorus concentration under field conditions. Saudi J Biol Sci 28:232–237.
  • Pascault N, Ranjard L, Kaisermann A, Bachar D, Christen R, Terrat S, Mathieu O, Lévêque J, Mougel C, Henault C, et al. 2013. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect. Ecosystems. 16:810–822.
  • Paul D, Nair S. 2008. Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol. 48:378–384.
  • Pawar RR, Borkar SG. 2018. Isolation and characterization of thermophilic bacteria from different habitats and their assessment for antagonism against soil-borne fungal plant pathogens. Afr J Microbiol Res. 12:556–566.
  • Pérez CA, Kim M, Aravena JC, Silva W. 2022. Diazotrophic activity and denitrification in two long-term chronosequences of maritime Antarctica. Sci Total Environ. 809:152234. doi: 10.1016/j.scitotenv.2021.152234.
  • Portillo MC, Santana M, Gonzalez JM. 2012. Presence and potential role of thermophilic bacteria in temperate terrestrial environments. Naturwissenschaften. 99:43–53.
  • Renoud S, Abrouk D, Prigent-Combaret C, Wisniewski-Dyé F, Legendre L, Moënne-Loccoz Y, Muller D. 2022. Effect of inoculation level on the impact of the PGPR Azospirillum lipoferum CRT1 on selected microbial functional groups in the rhizosphere of field maize. Microorganisms. 10(2):325. doi: 10.3390/microorganisms10020325.
  • Rhodes D, Hanson AD. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol. 44:357–384.
  • Ribas-Agustí A, Seda M, Sarraga C, Montero J, Castellari M, Muñoz P. 2017. Municipal solid waste composting: application as a tomato fertilizer and its effect on crop yield, fruit quality and phenolic content. Renew Agric and Food Syst. 32:358–365.
  • Rodriguez-Salazar J, Suarez R, Caballero-Mellado J, Itturiaga G. 2009. Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett. 296:52–59.
  • Rouwenhorst KHR, Krzywda PM, Benes NE, Mul G, Lefferts L. 2021. Ammonia production technologies. In: Valera-Medina A, Banares-Alcantara R, editors. Techno-economic challenges of green ammonia as an energy vector. Amsterdam: Academic Press, Elsevier; p. 41–83, doi: 10.1016/B978-0-12-820560-0.00004-7.
  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017–1026.
  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA. 100:4927–4932.
  • Sakamoto A, Murata N. 2002. The role of glycine betaine in the protection of plants from stress, clues from transgenic plants. Plant Cell Environ. 25:163–171.
  • Salah Ud-Din AIM, Roujeinikova A. 2017. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cell Mol Life Sci. 74:3293–3303.
  • Santana MM, Carvalho L, Melo J, Araújo ME, Cruz C. 2020. Unveiling the hidden interaction between thermophiles and plant crops: wheat and soil thermophilic bacteria. J Plant Interact. 15:127–138.
  • Santana MM, Dias T, Gonzalez JM, Cruz C. 2021. Transformation of organic and inorganic sulfur– adding perspectives to new players in soil and rhizosphere. Soil Biol. Biochem. 160:108306. doi: 10.1016/j.soilbio.2021.108306.
  • Santana MM, Gonzalez JM. 2015. High temperature microbial activity in upper soil layers. FEMS Microbiol Lett. 362(22):fnv182. doi: 10.1093/femsle/fnv182.
  • Santana MM, Portillo MC, Gonzalez JM, Clara MIE. 2013. Characterization of new soil thermophilic bacteria potentially involved in soil fertilization. J Plant Nutr Soil Sci. 176:47–56.
  • Schalk IJ, Hannauer M, Braud A. 2011. New roles for bacterial siderophores in metal transport and tolerance. Environ Microbiol. 13:2844–2854.
  • Schimel J, Balser TC, Wallenstein M. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology. 88:1386–1394.
  • Schreiter S, Sandmann M, Smalla K, Grosch R. 2014. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce. Plos one. 9:e103726. doi: 10.1371/journal.pone.0103726.
  • Searcy SW. 1997. Precision farming:a new approach to crop management. Texas agriculture extension service. The Texas A&M University System, College station, Texas, 4. http://lubbock.tamu.edu/files/2011/10/precisionfarm_1.pdf.
  • Sessitsch A, Pfafenbichler N, Mitter B. 2019. Microbiome applications from lab to field: facing complexity. Trends Plant Sci. 24:194–198.
  • Shade A. 2017. Diversity is the question, not the answer. ISME J. 11:1–6.
  • Shrivastava P, Kumar R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 22:123–131.
  • Signorelli S, Tarkowski ŁP, O’Leary B, Tabares-da Rosa S, Borsani O, Monza J. 2021. GABA and proline metabolism in response to stress. In: Gupta DK, Corpas FJ, editors. Hormones and plant response. Plant in challenging environments. Vol 2. Cham: Springer; p. 291–314. doi: 10.1007/978-3-030-77477-6_12.
  • Song F, Han X, Zhu X, Herbert SJ. 2012. Response to water stress of soil enzymes and root exudates from drought and non-drought tolerant corn hybrids at different growth stages. Can. J. Soil Sci. 92:501–507.
  • Teixeira PJP, Colaianni NR, Fitzpatrick CR, Dangl JL. 2019. Beyond pathogens:microbiota interactions with the plant immune system. Curr Opin Microbiol. 49:7–17.
  • Terhorst CP, Lennon JT, Lau JA. 2014. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context. Proc R Soc B Biol Sci. 281(1785):20140028. doi: 10.1098/rspb.2014.0028.
  • Timmusk S, Abd El-Daim IA, Copolovici L, Tanilas T, Kännaste A, Behers L, Nevo E, Seisenbaeva G, Stemström E, Niinemets Ü. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One. 9:e96086. doi: 10.1371/journal.pone.0096086.
  • Tiwari S, Lata C, Chauhan PS, Nautiyal CS. 2016. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol Biochem. 99:108–117.
  • Tocheva EI, Ortega DR, Jensen GJ. 2016. Sporulation, bacterial cell envelopes and the origin of life. Nat Rev Microbiol. 14:535–542.
  • Totsche KU, Amelung W, Gerzabek MH, Guggenberger G, Klumpp E, Knief C, Lehndorff E, Mikutta R, Peth S, Prechtel A, et al. 2018. Microaggregates in soils. J Plant Nutr Soil Sci. 181:104–136.
  • Treseder KK, Kivlin SN, Hawkes CV. 2011. Evolutionary trade-offs among decomposers determine responses to nitrogen enrichment: evolutionary trade-offs among decomposers. Ecol Lett. 14:933–938.
  • Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, et al. 2005. Comparative metagenomics of microbial communities. Science. 308:554–557.
  • Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant PS. 2013. Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 7:2248–2258.
  • Ulm F, David A, Hobson P, Penha-Lopes G, Dias T, Máguas C, Cruz C. 2019. Sustainable urban agriculture using compost and an open-pollinated maize variety. J. Clean. Prod. 212:622–629.
  • Uroz S, Buée M, Murat C, Frey-Klett P, Martin F. 2010. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol. 2:281–288.
  • Valente J, Gerin F, Le Gouis J, Moënne-Loccoz Y, Prigent-Combaret C. 2020. Ancient wheat varieties have a higher ability to interact with plant growth-promoting rhizobacteria. Plant Cell Environ. 43:246–260.
  • Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE. 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol. 164:1367–1376.
  • Venturi V, Keel C. 2016. Signaling in the rhizosphere. Trends Plant Sci. 21:187–198.
  • Veresoglou SD, Menexes G. 2010. Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of science from 1981 to 2008. Plant Soil. 337:469–480.
  • Vurukonda SS, Vardharajula S, Shrivastava M, SkZ A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res. 184:13–24.
  • Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, Zhang W, González-Peña A, Peiffer J, Koren O, Shi Q, et al. 2018. Large-scale replicated feld study of maize rhizosphere identifes heritable microbes. Proc Natl Acad Sci USA. 115:7368–7373.
  • Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J. 2009. Arabidopsis CaM binding protein CBP60 g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog. 5(2):e1000301. doi: 10.1371/journal.ppat.1000301.
  • Wang S, Ouyang L, Ju X, Zhang L, Zhang Q, Li Y. 2014. Survey of plant drought-resistance promoting bacteria from Populus euphratica tree living in arid area. Indian J. Microbiol. 54:419–426.
  • Weng J, Wang Y, Li J, Shen Q, Zhang R. 2013. Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Appl. Microbiol. Biotechnol. 97:8823–8830.
  • Wigley P, George C, Turner S. 2017. Accelerated directed evolution of microbial consortia for the development of desirable plant phenotypic traits. Patent US-9150851-B2. https://pubchem.ncbi.nlm.nih.gov/patent/US-9260713-B2.
  • Wintermans PCA, Bakker PAHM, Pieterse CMJ. 2016. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol. Biol. 90:623–634.
  • Xie J, Dawwam GE, Sehim AE, Li X, Wu J, Chen S, Zhang D. 2021. Drought stress triggers shifts in the root microbial community and alters functional categories in the microbial gene pool. Front Microbiol. 744897(12):744897. doi: 10.3389/fmicb.2021.
  • Xun W, Shao J, Shen Q, Zhang R. 2021. Rhizosphere microbiome: functional compensatory assembly for plant fitness. Comput Struct Biotechnol J. 19:5487–5493.
  • Yamaguchi-Shinozaki K, Shinozaki K. 1994. A novel cis-acting element in an arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 6:251–264.
  • Yan Y, Kuramae EE, de Hollander M, Klinkhamer PG, van Veen JA. 2017. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 11:56–66.
  • Yancey PH. 2001. Water stress, osmolytes and proteins. Am Zool. 41:699–709.
  • Yin D, Wang N, Xia F, Li Q, Wang W. 2013. Impact of biocontrol agents Pseudomonas fluorescens 2P24 and CPF10 on the bacterial community in the cucumber rhizosphere. Eur J Soil Biol. 59:36–42.
  • Zengler K, Hofmockel K, Baliga NS, Behie SW, Bernstein HC, Brown JB, Dinneny JR, Floge SA, Forry SP, Hess M, et al. 2019. EcoFABs: advancing microbiome science through standardized fabricated ecosystems. Nat Methods. 16:567–571.
  • Zhalnina K, Louie KB, Hao Z, Mansoori N, da Rocha UN, Shi S, Cho H, Karaoz U, Loqué D, Bowen BP, et al. 2018. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat Microbiol. 3:470–480.
  • Zhang H, Murzello C, Sun Y, Kim MS, Xie X, Jeter RM, Zak JC, Dowd SE, Paré PW. 2010. Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microbe Interact. 23:1097–1104.
  • Zhang J, Guerrero A, Mouazen AM. 2021. Map-based variable-rate manure application in wheat using a data fusion approach. Soil Tillage Res. 207:104846. doi: 10.1016/j.still.2020.104846.
  • Zhang J, Liu YX, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X, et al. 2019b. NRT1.1B is associated with root microbiota composition and nitrogen use in feld-grown rice. Nat Biotechnol. 37:676–684.
  • Zhang Y, Gao X, Shen Z, Zhu C, Jiao Z, Li R, Shen Q. 2019a. Pre-colonization of PGPR triggers rhizosphere microbiota succession associated with crop yield enhancement. Plant Soil. 439:553–567.