1,511
Views
0
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions (open environment)

Isoprene emission by plants in polluted environments

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2266463 | Received 25 Jun 2023, Accepted 29 Sep 2023, Published online: 14 Oct 2023

References

  • Abbas F, O’Neill Rothenberg D, Zhou Y, Ke Y, Wang H-C. 2022. Volatile organic compounds as mediators of plant communication and adaptation to climate change. Physiol Plant. 174(6):e13840. doi: 10.1111/ppl.13840.
  • Affek H, Yakir D. 2002. Protection by isoprene against singlet oxygen in leaves. Plant Physiol. 129:269–277. doi: 10.1104/pp.010909.
  • Ainsworth EA, Long SP. 2005. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165(2):351–372. doi: 10.1111/j.1469-8137.2004.01224.x.
  • Andreae MO, Crutzen PJ. 1997. Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry. Science. 276(5315):1052–1058. doi: 10.1126/science.276.5315.1052.
  • Archibald A, Cooke M, Utembe S, Shallcross D, Derwent R, Jenkin M. 2010. Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene. Atmos Chem Phys. 10:8097–8118. doi: 10.5194/acp-10-8097-2010.
  • Arneth A, Miller P, Scholze M, Hickler T, Schurgers G, Smith B, Prentice I. 2007. CO2 inhibition of global terrestrial isoprene emissions: potential implications for atmospheric chemistry. Geophys Res Lett. 34. doi: 10.1029/2007GL030615.
  • Arneth A, Schurgers G, Hickler T, Miller P. 2008. Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests. Plant Biol. 10:150–162. doi: 10.1055/s-2007-965247.
  • Asensio D, Rapparini F, Penuelas J. 2012. AM fungi root colonization increases the production of essential isoprenoids vs. nonessential isoprenoids especially under drought stress conditions or after jasmonic acid application. Phytochemistry. 77:149–161. doi: 10.1016/j.phytochem.2011.12.012.
  • Ashmore M. 2005. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 28:949–964. doi: 10.1111/j.1365-3040.2005.01341.x.
  • Baptista P, Martins A, Pais MS, Tavares RM, Lino-Neto T. 2007. Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza. 17(3):185–193. doi: 10.1007/s00572-006-0091-4.
  • Barney J, Hay A, Weston L. 2005. Isolation and characterization of allelopathic volatiles from mugwort (Artemisia vulgaris). J Chem Ecol. 31:247–265. doi: 10.1007/s10886-005-1339-8.
  • Barta C, Loreto F. 2006. The relationship between the methyl-erythritol phosphate pathway leading to emission of volatile isoprenoids and abscisic acid content in leaves. Plant Physiol. 141(4):1676–1683. doi: 10.1104/pp.106.083063.
  • Behnke K, Ghirardo A, Janz D, Kanawati B, Esperschütz J, Zimmer I, Schmitt-Kopplin P, Niinemets Ü, Polle A, Schnitzler JP, Rosenkranz M. 2013. Isoprene function in two contrasting poplars under salt and sunflecks. Tree Physiol. 33(6):562–578. doi: 10.1093/treephys/tpt018.
  • Bibbiani S, Colzi I, Taiti C, Guidi Nissim W, Papini A, Mancuso S, Gonnelli C. 2018. Smelling the metal: volatile organic compound emission under Zn excess in the mint Tetradenia riparia. Plant Sci. 271:1–8. doi: 10.1016/j.plantsci.2018.03.006.
  • Blande J, Holopainen J, Niinemets Ü. 2014. Plant volatiles in polluted atmospheres: stress responses and signal degradation. Plant Cell Environ. 37:1892–1904. doi: 10.1111/pce.12352.
  • Blande JD, Tiiva P, Oksanen E, Holopainen JK. 2007. Emission of herbivore-induced volatile terpenoids from two hybrid aspen (Populus tremula×tremuloides) clones under ambient and elevated ozone concentrations in the field. Glob Chang Biol. 13(12):2538–2550. doi: 10.1111/j.1365-2486.2007.01453.x.
  • Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M. 2007. Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. New Phytol. 175(2):244–254. doi: 10.1111/j.1469-8137.2007.02094.x.
  • Brown S, Stutz J. 2012. Nighttime radical observations and chemistry. Chem Soc Rev. 41:6405–6447. doi: 10.1039/c2cs35181a.
  • Brunetti C, Saleem AR, Della Rocca G, Emiliani G, De Carlo A, Balestrini R, Khalid A, Mahmood T, Centritto M. 2021. Effects of plant growth-promoting rhizobacteria strains producing ACC deaminase on photosynthesis, isoprene emission, ethylene formation and growth of Mucuna pruriens (L.) DC. in response to water deficit. J Biotechnol. 331:53–62. doi: 10.1016/j.jbiotec.2021.03.008.
  • Calfapietra C, Scarascia Mugnozza G, Karnosky DF, Loreto F, Sharkey TD. 2008. Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. New Phytol. 179(1):55–61. doi: 10.1111/j.1469-8137.2008.02493.x.
  • Calfapietra C, Wiberley AE, Falbel TG, Linskey AR, Mugnozza GS, Karnosky DF, Loreto F, Shareky TD. 2007. Isoprene synthase expression and protein levels are reduced under elevated O3 but not under elevated CO2 (FACE) in field-grown aspen trees. Plant Cell Environ. 30(5):654–661. doi: 10.1111/j.1365-3040.2007.01646.x.
  • Cappellin L, Loreto F, Biasioli F, Pastore P, McKinney K. 2019. A mechanism for biogenic production and emission of MEK from MVK decoupled from isoprene biosynthesis. Atmos Chem Phys. 19:3125–3135. doi: 10.5194/acp-19-3125-2019.
  • Centritto M, Haworth M, Marino G, Pallozzi E, Tsonev T, Velikova V, Nogues I, Loreto F. 2014. Isoprene emission aids recovery of photosynthetic performance in transgenic Nicotiana tabacum following high intensity acute UV-B exposure. Plant Sci. 226:82–91. doi: 10.1016/j.plantsci.2014.06.004.
  • Cinege G, Louis S, Hänsch R, Schnitzler J-P. 2009. Regulation of isoprene synthase promoter by environmental and internal factors. Plant Mol Biol. 69(5):593–604. doi: 10.1007/s11103-008-9441-2.
  • Claeys M, Graham B, Vas G, Wang W, Vermeylen R, Pashynska V, Cafmeyer J, Guyon P, Andreae M, Artaxo P, Maenhaut W. 2004. Formation of secondary organic aerosols through photooxidation of isoprene. Science. 303:1173–1176. doi: 10.1126/science.1092805.
  • Claeys M, Maenhaut W. 2021. Secondary organic aerosol formation from isoprene: selected research, historic account and state of the art. Atmosphere. 12(6):728. doi: 10.3390/atmos12060728.
  • Cocozza C, Brilli F, Miozzi L, Pignattelli S, Rotunno S, Brunetti C, Giordano C, Pollastri S, Centritto M, Accotto GP, et al. 2019. Impact of high or low levels of phosphorus and high sodium in soils on productivity and stress tolerance of Arundo donax plants. Plant Sci. 289:110260. doi: 10.1016/j.plantsci.2019.110260.
  • Cocozza C, Brilli F, Pignattelli S, Pollastri S, Brunetti C, Gonnelli C, Tognetti R, Centritto M, Loreto F. 2020. The excess of phosphorus in soil reduces physiological performances over time but enhances prompt recovery of salt-stressed Arundo donax plants. Plant Physiol Biochem. 151:556–565. doi: 10.1016/j.plaphy.2020.04.011.
  • Dani KGS, Loreto F. 2022. Plant volatiles as regulators of hormone homeostasis. New Phytol. 234(3):804–812. doi: 10.1111/nph.18035.
  • Dani KGS, Pollastri S, Pinosio S, Reichelt M, Sharkey TD, Schnitzler J-P, Loreto F. 2022. Isoprene enhances leaf cytokinin metabolism and induces early senescence. New Phytol. 234(3):961–974. doi: 10.1111/nph.17833.
  • Delwiche C, Sharkey T. 1993. Rapid appearance of 13C in biogenic isoprene when 13CO2 is fed to intact leaves. Plant Cell Environ. 16:587–591. doi: 10.1111/j.1365-3040.1993.tb00907.x.
  • Dicke M, Baldwin IT. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 15(3):167–175. doi: 10.1016/j.tplants.2009.12.002.
  • Ditengou FA, Müller A, Rosenkranz M, Felten J, Lasok H, van Doorn MM, Legué V, Palme K, Schnitzler J-P, Polle A. 2015. Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun. 6(1):6279. doi: 10.1038/ncomms7279.
  • FAO, ITPS. 2015. Status of the World’s Soil Resources (SWSR) - main report. Rome, Italy. http://www.fao.org/3/a-i5199e.pdf.
  • Fares S, Barta C, Brilli F, Centritto M, Ederli L, Ferranti F, Pasqualini S, Reale L, Tricoli D, Loreto F. 2006. Impact of high ozone on isoprene emission, photosynthesis and histology of developing Populus alba leaves directly or indirectly exposed to the pollutant. Physiol Plant. 128:456–465. doi: 10.1111/j.1399-3054.2006.00750.x.
  • Fares S, Brilli F, Noguès I, Velikova V, Tsonev T, Dagli S, Loreto F. 2008. Isoprene emission and primary metabolism in Phragmites australis grown under different phosphorus levels. Plant Biol. 10:38–43. doi: 10.1055/s-2007-965429.
  • Fares S, Oksanen E, Lännenpää M, Julkunen-Tiitto R, Loreto F. 2010. Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations. Photosynth Res. 104(1):61–74. doi: 10.1007/s11120-010-9549-5.
  • Fargašová A, Molnárová M. 2010. Assessment of Cr and Ni phytotoxicity from cutlery-washing waste-waters using biomass and chlorophyll production tests on mustard Sinapis alba L. seedlings. Environ Sci Pollut Res. 17(1):187–194. doi: 10.1007/s11356-009-0136-2.
  • Faubert P, Tiiva P, Rinnan Å, Räsänen J, Holopainen JK, Holopainen T, Kyrö E, Rinnan R. 2010. Non-methane biogenic volatile organic compound emissions from a subarctic peatland under enhanced UV-B radiation. Ecosystems. 13(6):860–873. doi: 10.1007/s10021-010-9362-1.
  • Faxon C, Hammes J, Le Breton M, Pathak RK, Hallquist M. 2018. Characterization of organic nitrate constituents of secondary organic aerosol (SOA) from nitrate-radical-initiated oxidation of limonene using high-resolution chemical ionization mass spectrometry. Atmos Chem Phys. 18:5467–5481. doi: 10.5194/acp-18-5467-2018.
  • Fehsenfeld F, Calvert J, Fall R, Goldan P, Guenther A, Hewitt CN, Lamb B, Liu S, Trainer M, Westberg H, Zimmerman P. 1992. Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Global Biogeochem Cycles. 6:389–430. doi: 10.1029/92GB02125.
  • Feng Z, Yuan X, Fares S, Loreto F, Li P, Hoshika Y, Paoletti E. 2019. Isoprene is more affected by climate drivers than monoterpenes: a meta-analytic review on plant isoprenoid emissions. Plant Cell Environ. 42(6):1939–1949. doi: 10.1111/pce.13535.
  • Fernández-Martínez M, Llusia J, Filella I, Niinemets Ü, Arneth A, Wright I, Loreto F, Penuelas J. 2018. Nutrient-rich plants emit a less intense blend of volatile isoprenoids. New Phytol. 220:773–784. doi: 10.1111/nph.14889.
  • Ferrer MA, Cimini S, López-Orenes A, Calderón AA, De Gara L. 2018. Differential Pb tolerance in metallicolous and non-metallicolous Zygophyllum fabago populations involves the strengthening of the antioxidative pathways. Environ Exp Bot. 150:141–151. doi:10.1016/j.envexpbot.2018.03.010.
  • Foy CD, Chaney R, White M. 1978. The physiology of metal toxicity in plants. Annu Rev Plant Physiol. 29:511–566. doi: 10.1146/annurev.pp.29.060178.002455.
  • Ghirardo A, Gutknecht J, Zimmer I, Brüggemann N, Schnitzler J-P. 2011. Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants. PLoS One. 6(2):e17393. doi: 10.1371/journal.pone.0017393.
  • Giordano D, Facchiano A, D’Auria S, Loreto F. 2021. A hypothesis on the capacity of plant odorant-binding proteins to bind volatile isoprenoids based on in silico evidences. Elife. 10:e66741. doi: 10.7554/eLife.66741.
  • Goldstein AH, Galbally IE. 2007. Known and unexplored organic constituents in the earth's atmosphere. Environ Sci Technol. 41(5):1514–1521. doi: 10.1021/es072476p.
  • Guenther A, Hewitt CN, Erickson D, Fall R, Geron C, Graedel T, Harley P, Klinger L, Lerdau M, Mckay WA, et al. 1995. A global model of natural volatile organic compound emissions. J Geophys Res. 100:8873–8892. doi: 10.1029/94JD02950.
  • Guenther A, Jiang X, Heald C, Sakulyanontvittaya T, Duhl T, Emmons L, Wang X. 2012. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev Discuss. 5. doi: 10.5194/gmdd-5-1503-2012.
  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C. 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys. 6(11):3181–3210. doi: 10.5194/acp-6-3181-2006.
  • Guidolotti G, Calfapietra C, Loreto F. 2011. The relationship between isoprene emission, CO2 assimilation and water use efficiency across a range of poplar genotypes. Physiol Plant. 142:297–304. doi: 10.1111/j.1399-3054.2011.01463.x.
  • Hanson DT, Swanson S, Graham LE, Sharkey TD. 1999. Evolutionary significance of isopreneemission from mosses. Am J Bot. 86(5):634–639. doi: 10.2307/2656571.
  • Hantson S, Knorr W, Schurgers G, Pugh TAM, Arneth A. 2017. Global isoprene and monoterpene emissions under changing climate, vegetation, CO2 and land use. Atmos Environ. 155:35–45. doi: 10.1016/j.atmosenv.2017.02.010.
  • Harley P, Deem G, Flint S, Caldwell M. 1996. Effects of growth under elevated UV-B on photosynthesis and isoprene emission in Quercus gambelii and Mucuna pruriens. Glob Chang Biol. 2(2):149–154. doi: 10.1111/j.1365-2486.1996.tb00060.x.
  • Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn BE, et al. 2013. Volatile isoprenoid emissions from plastid to planet. New Phytol. 197(1):49–57. doi: 10.1111/nph.12021.
  • Heald C, Wilkinson M, Monson RK, Alo C, Wang G, Guenther A. 2009. Response of isoprene emission to ambient CO2 changes and implications for global budgets. Glob Chang Biol. 15:1127–1140. doi: 10.1111/j.1365-2486.2008.01802.x.
  • Jardine K, Monson R, Abrell L, Saleska S, Arneth A, Jardine AB, Ishida Y, Yañez-Serrano A, Artaxo P, Karl T, et al. 2012. Within-plant isoprene oxidation confirmed by direct emissions of oxidation products methyl vinyl ketone and methacrolein. Glob Chang Biol. 18:973–984. doi: 10.1111/j.1365-2486.2011.02610.x.
  • Joutsensaari J, Loivamäki M, Vuorinen T, Miettinen P, Nerg A-M, Holopainen JK, Laaksonen A. 2005. Nanoparticle formation by ozonolysis of inducible plant volatiles. Atmos Chem Phys. 5(6):1489–1495. doi: 10.5194/acp-5-1489-2005.
  • Kai H, Hirashima K, Matsuda O, Ikegami H, Winkelmann T, Nakahara T, Iba K. 2012. Thermotolerant cyclamen with reduced acrolein and methyl vinyl ketone. J Exp Bot. 63(11):4143–4150. doi: 10.1093/jxb/ers110.
  • Kaling M, Kanawati B, Ghirardo A, Albert A, Winkler JB, Heller W, Barta C, Loreto F, Schmitt-Kopplin PE, Schnitzler J-P. 2015. UV-B mediated metabolic rearrangements in poplar revealed by non-targeted metabolomics. Plant Cell Environ. 38(5):892–904. doi: 10.1111/pce.12348.
  • Kanakidou M, Seinfeld J, Pandis S, Barnes I, Dentener F, Facchini M, Van Dingenen R, Ervens B, Nenes A, Nielsen C, et al. 2005. Organic aerosol and global climate modelling: a review. Atmos Chem Phys. 5:1053–1123. doi: 10.5194/acp-5-1053-2005.
  • Kiendler-Scharr A, Wildt J, Dal Maso M, Hohaus T, Kleist E, Mentel TF, Tillmann R, Uerlings R, Schurr U, Wahner A. 2009. New particle formation in forests inhibited by isoprene emissions. Nature. 461(7262):381–384. doi: 10.1038/nature08292.
  • Knudsen J, Eriksson R, Gershenzon J, Ståhl B. 2006. Diversity and distribution of floral scent. Bot Rev. 72:1–120. doi: 10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2.
  • Lantz AT, Solomon C, Gog L, McClain AM, Weraduwage SM, Cruz JA, Sharkey TD. 2019. Isoprene suppression by CO2 is not due to triose phosphate utilization (TPU) limitation. Front For Glob Chang. 2. doi: 10.3389/ffgc.2019.00008.
  • Laothawornkitkul J, Paul ND, Vickers CE, Possell M, Taylor JE, Mullineaux PM, Hewitt CN. 2008. Isoprene emissions influence herbivore feeding decisions. Plant Cell Environ. 31(10):1410–1415. doi: 10.1111/j.1365-3040.2008.01849.x.
  • Laothawornkitkul J, Taylor JE, Paul ND, Hewitt CN. 2009. Biogenic volatile organic compounds in the earth system. New Phytol. 183(1):27–51. doi: 10.1111/j.1469-8137.2009.02859.x.
  • Lathière J, Hauglustaine DA, de Noblet N, Krinner G, Folberth G. 2005. Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. Geophys Res Lett. 32. doi: 10.1029/2005GL024164.
  • Lazazzara V, Avesani S, Robatscher P, Oberhuber M, Pertot I, Schuhmacher R, Perazzolli M. 2022. Biogenic volatile organic compounds in the grapevine response to pathogens, beneficial microorganisms, resistance inducers, and abiotic factors. J Exp Bot. 73(2):529–554. doi: 10.1093/jxb/erab367.
  • Lehning A, Zimmer W, Zimmer I, Schnitzler J-P. 2001. Modeling of annual variations of oak (Quercus robur L.) isoprene synthase activity to predict isoprene emission rates. J Geophys Res. 106:3157–3166. doi: 10.1029/2000JD900631.
  • Lerdau M. 2007. ECOLOGY: a positive feedback with negative consequences. Science. 316:212–213. doi: 10.1126/science.1141486.
  • Li D, Chen Y, Shi Y, He X, Chen X. 2009. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba. Bull Environ Contam Toxicol. 82(4):473–477. doi: 10.1007/s00128-008-9590-7.
  • Li K, Zhang X, Zhao B, Bloss WJ, Lin C, White S, Yu H, Chen L, Geng C, Yang W, et al. 2022. Suppression of anthropogenic secondary organic aerosol formation by isoprene. npj Clim Atmos Sci. 5(1):12. doi: 10.1038/s41612-022-00233-x.
  • Li M, Xu J, Algarra Alarcon A, Carlin S, Barbaro E, Cappellin L, Velikova V, Vrhovsek U, Loreto F, Varotto C. 2017. In planta recapitulation of isoprene synthase evolution from ocimene synthases. Mol Biol Evol. 34(10):2583–2599. doi: 10.1093/molbev/msx178.
  • Li S, Agathokleous E, Li S, Yuan X, Du Y, Feng Z. 2023. Sensitivity of isoprene emission rate to ozone in greening trees is concurrently determined by isoprene synthesis capacity and stomatal conductance. Sci Total Environ. 891:164325. doi: 10.1016/j.scitotenv.2023.164325.
  • Lin T, Zhu G, He W, Xie J, Li S, Han S, Li S, Yang C, Liu Y, Zhu T. 2022. Soil cadmium stress reduced host plant odor selection and oviposition preference of leaf herbivores through the changes in leaf volatile emissions. Sci Total Environ. 814:152728. doi: 10.1016/j.scitotenv.2021.152728.
  • Litvak M, Loreto F, Harley P, Sharkey T, Monson R. 1996. The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees. Plant Cell Environ. 19:549–559. doi: 10.1111/j.1365-3040.1996.tb00388.x.
  • Llusià J, Peñuelas J, Sardans J, Owen S, Niinemets Ü. 2010. Measurement of volatile terpene emissions in 70 dominant vascular plant species in Hawaii: aliens emit more than natives. Glob Ecol Biogeogr. 19:863–874. doi: 10.1111/j.1466-8238.2010.00557.x.
  • Locato V, Cimini S, De Gara L. 2018. ROS and redox balance as multifaceted players of cross-tolerance: epigenetic and retrograde control of gene expression. J Exp Bot. 69(14):3373–3391. doi: 10.1093/jxb/ery168.
  • Loivamäki M, Gilmer F, Fischbach RJ, Sörgel C, Bachl A, Walter A, Schnitzler J-P. 2007. Arabidopsis, a model to study biological functions of isoprene emission? Plant Physiol. 144(2):1066–1078. doi: 10.1104/pp.107.098509.
  • Loivamäki M, Mumm R, Dicke M, Schnitzler J-P. 2008. Isoprene interferes with the attraction of bodyguards by herbaceous plants. Proc Natl Acad Sci USA. 105(45):17430–17435. doi: 10.1073/pnas.0804488105.
  • Lombardi M, De Gara L, Loreto F. 2021. Determinants of root system architecture for future-ready, stress-resilient crops. Physiol Plant. 172(4):2090–2097. doi: 10.1111/ppl.13439.
  • Long SP, Ainsworth EA, Rogers A, Ort DR. 2004. Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol. 55:591–628. doi: 10.1146/annurev.arplant.55.031903.141610.
  • Loreto F, Centritto M, Barta C, Calfapietra C, Fares S, Monson RK. 2007. The relationship between isoprene emission rate and dark respiration rate in white poplar (Populus alba L.) leaves. Plant Cell Environ. 30(5):662–669. doi: 10.1111/j.1365-3040.2007.01648.x.
  • Loreto F, Delfine S. 2000. Emission of isoprene from salt-stressed Eucalyptus globulus leaves. Plant Physiol. 123(4):1605–1610. doi: 10.1104/pp.123.4.1605.
  • Loreto F, Dicke M, Schnitzler J-P, Turlings TCJ. 2014. Plant volatiles and the environment. Plant Cell Environ. 37(8):1905–1908. doi: 10.1111/pce.12369.
  • Loreto F, Fares S. 2007. Is ozone flux inside leaves only a damage indicator? Clues from volatile isoprenoid studies. Plant Physiol. 143:1096–1100. doi: 10.1104/pp.106.091892.
  • Loreto F, Fineschi S. 2015. Reconciling functions and evolution of isoprene emission in higher plants. New Phytol. 206(2):578–582. doi: 10.1111/nph.13242.
  • Loreto F, Schnitzler J-P. 2010. Abiotic stresses and induced BVOCs. Trends Plant Sci. 15:154–166. doi: 10.1016/j.tplants.2009.12.006.
  • Loreto F, Sharkey TD. 1990. A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L. Planta. 182(4):523–531. doi: 10.1007/BF02341027.
  • Loreto F, Velikova V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol. 127(4):1781–1787. doi: 10.1104/pp.010497.
  • McGarvey DJ, Croteau R. 1995. Terpenoid metabolism. Plant Cell. 7(7):1015–1026. doi: 10.1105/tpc.7.7.1015.
  • McMurry PH. 2000. A review of atmospheric aerosol measurements. Atmos Environ. 34(12):1959–1999. doi: 10.1016/S1352-2310(99)00455-0.
  • Mills G, Hayes F, Simpson D, Emberson L, Norris D, Harmens H, Büker P. 2011. Evidence of widespread effects of ozone on crops and (semi-)natural vegetation in Europe (1990–2006) in relation to AOT40- and flux-based risk maps. Glob Chang Biol. 17:592–613. doi: 10.1111/j.1365-2486.2010.02217.x.
  • Miloradovic van Doorn M, Merl-Pham J, Ghirardo A, Fink S, Polle A, Schnitzler J-P, Rosenkranz M. 2020. Root isoprene formation alters lateral root development. Plant Cell Environ. 43(9):2207–2223. doi: 10.1111/pce.13814.
  • Mithöfer A, Boland W. 2012. Plant defense against herbivores: chemical aspects. Annu Rev Plant Biol. 63:431–450. doi: 10.1146/annurev-arplant-042110-103854.
  • Mithöfer A, Schulze B, Boland W. 2004. Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett. 566(1–3):1–5. doi: 10.1016/j.febslet.2004.04.011.
  • Mittler R. 2017. ROS are good. Trends Plant Sci. 22(1):11–19. doi: 10.1016/j.tplants.2016.08.002.
  • Monson RK, Fall R. 1989. Isoprene emission from aspen leaves 1: influence of environment and relation to photosynthesis and photorespiration. Plant Physiol. 90(1):267–274. doi: 10.1104/pp.90.1.267.
  • Monson RK, Weraduwage SM, Rosenkranz M, Schnitzler J-P, Sharkey TD. 2021. Leaf isoprene emission as a trait that mediates the growth-defense tradeoff in the face of climate stress. Oecologia. 197(4):885–902. doi: 10.1007/s00442-020-04813-7.
  • Nah T, Sanchez J, Boyd C, Ng N. 2016. Photochemical aging of α-pinene and β-pinene secondary organic aerosol formed from nitrate radical oxidation. Environ Sci Technol. 50:222–231. doi: 10.1021/acs.est.5b04594.
  • Nanda AK, Andrio E, Marino D, Pauly N, Dunand C. 2010. Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol. 52(2):195–204. doi: 10.1111/j.1744-7909.2010.00933.x.
  • Niinemets Ü, Rasulov B, Talts E. 2021. CO2-responsiveness of leaf isoprene emission: why do species differ? Plant Cell Environ. 44(9):3049–3063. doi: 10.1111/pce.14131.
  • Ninkovic V, Markovic D, Rensing M. 2021. Plant volatiles as cues and signals in plant communication. Plant Cell Environ. 44(4):1030–1043. doi: 10.1111/pce.13910.
  • Novakov T, Penner JE. 1993. Large contribution of organic aerosols to cloud-condensation-nuclei concentrations. Nature. 365(6449):823–826. doi: 10.1038/365823a0.
  • Obara N, Hasegawa M, Kodama O. 2002. Induced volatiles in elicitor-treated and rice blast fungus-inoculated rice leaves. Biosci Biotechnol Biochem. 66:2549–2559. doi: 10.1271/bbb.66.2549.
  • Pallozzi E, Fortunati A, Marino G, Loreto F, Agati G, Centritto M. 2013a. BVOC emission from Populus × canadensis saplings in response to acute UV-A radiation. Physiol Plant. 148(1):51–61. doi: 10.1111/j.1399-3054.2012.01687.x.
  • Pallozzi E, Marino G, Fortunati A, Loreto F, Centritto M. 2013b. Effect of exposure to UVA radiation on photosynthesis and isoprene emission in populus × euroamericana. In: Kuang T, Lu C, Lixin Z, editors. Photosynthesis research for food, fuel and the future. Berlin: Springer; p. 763–767.
  • Palmer P, Abbot D, Fu T-M, Jacob D, Chance K, Kurosu T, Guenther A, Wiedinmyer C, Young J, Pilling M, et al. 2006. Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column. J Geophys Res. 111. doi: 10.1029/2005JD006689.
  • Paré PW, Tumlinson JH. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121(2):325–332. doi: 10.1104/pp.121.2.325.
  • Paulot F, Crounse JD, Kjaergaard HG, Kürten A, St Clair JM, Seinfeld JH, Wennberg PO. 2009. Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science. 325(5941):730–733. doi: 10.1126/science.1172910.
  • Pegoraro E, Abrell L, Van Haren J, Barron-Gafford G, Grieve KA, Malhi Y, Murthy R, Lin G. 2005. The effect of elevated atmospheric CO2 and drought on sources and sinks of isoprene in a temperate and tropical rainforest mesocosm. Glob Chang Biol. 11(8):1234–1246. doi: 10.1111/j.1365-2486.2005.00986.x.
  • Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler J-P. 2014. Biogenic volatile emissions from the soil. Plant Cell Environ. 37(8):1866–1891. doi: 10.1111/pce.12340.
  • Peñuelas J, Llusià J. 2003. BVOCs: plant defense against climate warming? Trends Plant Sci. 8(3):105–109. doi: 10.1016/S1360-1385(03)00008-6.
  • Pichersky E, Gershenzon J. 2002. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol. 5(3):237–243. doi: 10.1016/S1369-5266(02)00251-0.
  • Pinto-Zevallos D, Blande J, Souza S, Nerg A-M, Holopainen J. 2010. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: the ecological effects. J Chem Ecol. 36:22–34. doi: 10.1007/s10886-009-9732-3.
  • Pollastri S, Jorba I, Hawkins TJ, Llusià J, Michelozzi M, Navajas D, Peñuelas J, Hussey PJ, Knight MR, Loreto F. 2019. Leaves of isoprene-emitting tobacco plants maintain PSII stability at high temperatures. New Phytol. 223(3):1307–1318. doi: 10.1111/nph.15847.
  • Pollastri S, Savvides A, Pesando M, Lumini E, Volpe MG, Ozudogru EA, Faccio A, De Cunzo F, Michelozzi M, Lambardi M, et al. 2018. Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta. 247(3):573–585. doi: 10.1007/s00425-017-2808-3.
  • Possell M, Hewitt CN. 2011. Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Glob Chang Biol. 17(4):1595–1610. doi: 10.1111/j.1365-2486.2010.02306.x.
  • Possell M, Hewitt CN, Beerling D. 2005. The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. Glob Chang Biol. 11:60–69. doi: 10.1111/j.1365-2486.2004.00889.x.
  • Puig CG, Gonçalves RF, Valentão P, Andrade PB, Reigosa MJ, Pedrol N. 2018. The consistency between phytotoxic effects and the dynamics of allelochemicals release from eucalyptus globulus leaves used as bioherbicide green manure. J Chem Ecol. 44(7):658–670. doi: 10.1007/s10886-018-0983-8.
  • Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, Gessler A. 2006. Physiological responses of forest trees to heat and drought. Plant Biol. 8(5):556–571. doi: 10.1055/s-2006-924084.
  • Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK. 2003. Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature. 421(6920):256–259. doi: 10.1038/nature01312.
  • Sahu A, Mostofa MG, Weraduwage SM, Sharkey TD. 2023. Hydroxymethylbutenyl diphosphate accumulation reveals MEP pathway regulation for high CO2-induced suppression of isoprene emission. Proc Natl Acad Sci USA. 120(41):e2309536120. doi: 10.1073/pnas.2309536120.
  • Salt DE, Smith RD, Raskin I. 1998. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol. 49(1):643–668. doi: 10.1146/annurev.arplant.49.1.643.
  • Sanderson M, Jones CD, Collins W, Johnson CE, Derwent R. 2003. Effect of climate change on isoprene emissions and surface ozone levels. Geophys Res Lett. 30:1936. doi: 10.1029/2003GL017642.
  • Schenkel D, Lemfack MC, Piechulla B, Splivallo R. 2015. A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles. Front Plant Sci. 6:707. doi: 10.3389/fpls.2015.00707.
  • Scholefield P, Doick K, Herbert B, Hewitt CN, Schnitzler J-P, Pinelli P, Loreto F. 2004. Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring. Plant Cell Environ. 27:393–401. doi: 10.1111/j.1365-3040.2003.01155.x.
  • Seinfeld JH, Pandis S. 2006. Atmospheric chemistry and physics: from air pollution to climate change. 2nd ed. New York: Wiley-Interscience.
  • Sharkey TD, Loreto F, Delwiche CF. 1991. High carbon dioxide and sun/shade effects on isoprene emission from oak and aspen tree leaves. Plant Cell Environ. 14(3):333–338. doi: 10.1111/j.1365-3040.1991.tb01509.x.
  • Sharkey TD, Monson RK. 2017. Isoprene research – 60 years later, the biology is still enigmatic. Plant Cell Environ. 40(9):1671–1678. doi: 10.1111/pce.12930.
  • Sharkey TD, Preiser AL, Weraduwage SM, Gog L. 2020. Source of 12C in Calvin-Benson cycle intermediates and isoprene emitted from plant leaves fed with 13CO2. Biochem J. 477(17):3237–3252. doi: 10.1042/BCJ20200480.
  • Sharkey TD, Singsaas EL, Vanderveer PJ, Geron C. 1996. Field measurements of isoprene emission from trees in response to temperature and light. Tree Physiol. 16(7):649–654. doi: 10.1093/treephys/16.7.649.
  • Sharkey TD, Yeh S. 2001. Isoprene emission from plants. Annu Rev Plant Physiol Plant Mol Biol. 52:407–436. doi: 10.1146/annurev.arplant.52.1.407.
  • Shortall OK. 2013. “Marginal land” for energy crops: exploring definitions and embedded assumptions. Energy Policy. 62:19–27. doi: 10.1016/j.enpol.2013.07.048.
  • Singsaas EL, Lerdau M, Winter K, Sharkey TD. 1997. Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol. 115(4):1413–1420. doi: 10.1104/pp.115.4.1413.
  • Squire OJ, Archibald AT, Abraham NL, Beerling DJ, Hewitt CN, Lathière J, Pike RC, Telford PJ, Pyle JA. 2014. Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone. Atmos Chem Phys. 14(2):1011–1024. doi: 10.5194/acp-14-1011-2014.
  • Strada S, Unger N. 2016. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution. Atmos Chem Phys. 16(7):4213–4234. doi: 10.5194/acp-16-4213-2016.
  • Sun Z, Hüve K, Vislap V, Niinemets Ü. 2013. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen. J Exp Bot. 64(18):5509–5523. doi: 10.1093/jxb/ert318.
  • Sun Z, Niinemets Ü, Hüve K, Noe SM, Rasulov B, Copolovici L, Vislap V. 2012. Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Glob Chang Biol. 18(11):3423–3440. doi: 10.1111/j.1365-2486.2012.02789.x.
  • Tai A, Mickley L, Heald C, Wu S. 2013. Effect of CO2 inhibition on biogenic isoprene emission: implications for air quality under 2000 to 2050 changes in climate, vegetation, and land use. Geophys Res Lett. 40:3479–3483. doi: 10.1002/grl.50650.
  • Teuber M, Zimmer I, Kreuzwieser J, Ache P, Polle A, Rennenberg H, Schnitzler J-P. 2008. VOC emissions of Grey poplar leaves as affected by salt stress and different N sources. Plant Biol. 10(1):86–96. doi: 10.1111/j.1438-8677.2007.00015.x.
  • Tiiva P, Rinnan R, Faubert P, Räsänen J, Holopainen T, Kyrö E, Holopainen JK. 2007a. Isoprene emission from a subarctic peatland under enhanced UV-B radiation. New Phytol. 176(2):346–355. doi: 10.1111/j.1469-8137.2007.02164.x.
  • Tiiva P, Rinnan R, Holopainen T, Mörsky SK, Holopainen JK. 2007b. Isoprene emissions from boreal peatland microcosms; effects of elevated ozone concentration in an open field experiment. Atmos Environ. 41(18):3819–3828. doi: 10.1016/j.atmosenv.2007.01.005.
  • Tognetti R, Johnson JD, Michelozzi M, Raschi A. 1998. Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term elevated CO2. Environ Exp Bot. 39(3):233–245. doi: 10.1016/S0098-8472(98)00013-6.
  • Trowbridge AM, Asensio D, Eller ASD, Way DA, Wilkinson MJ, Schnitzler J-P, Jackson RB, Monson RK. 2012. Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations. PLoS One. 7(2):e32387. doi: 10.1371/journal.pone.0032387.
  • Velikova V, Edreva A, Loreto F. 2004. Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Physiol Plant. 122:219–225. doi: 10.1111/j.0031-9317.2004.00392.x.
  • Velikova V, Pinelli P, Pasqualini S, Reale L, Ferranti F, Loreto F. 2005a. Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone. New Phytol. 166(2):419–426. doi: 10.1111/j.1469-8137.2005.01409.x.
  • Velikova V, Tsonev T, Pinelli P, Alessio GA, Loreto F. 2005b. Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species. Tree Physiol. 25(12):1523–1532. doi: 10.1093/treephys/25.12.1523.
  • Velikova V, Várkonyi Z, Szabó M, Maslenkova L, Nogues I, Kovács L, Peeva V, Busheva M, Garab G, Sharkey TD, Loreto F. 2011a. Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiol. 157(2):905–916. doi: 10.1104/pp.111.182519.
  • Velikova V, Tsonev T, Loreto F, Centritto M. 2011b. Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel. Environ Pollut. 159(5):1058–1066. doi: 10.1016/j.envpol.2010.10.032.
  • Vickers C, Possell M, Cojocariu C, Velikova V, Laothawornkitkul J, Ryan A, Mullineaux P, Hewitt CN. 2009. Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ. 32:520–531. doi: 10.1111/j.1365-3040.2009.01946.x.
  • Wilkinson MJ, Monson RK, Trahan N, Lee S, Brown E, Jackson RB, Polley HW, Fay PA, Fall R. 2009. Leaf isoprene emission rate as a function of atmospheric CO2 concentration. Glob Chang Biol. 15(5):1189–1200. doi: 10.1111/j.1365-2486.2008.01803.x.
  • Winter TR, Borkowski L, Zeier J, Rostás M. 2012. Heavy metal stress can prime for herbivore-induced plant volatile emission. Plant Cell Environ. 35(7):1287–1298. doi: 10.1111/j.1365-3040.2012.02489.x.
  • Wittig V, Ainsworth E, Naidu S, Karnosky D, Long S. 2009. Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Glob Chang Biol. 15:396–424. doi: 10.1111/j.1365-2486.2008.01774.x.
  • Wu S, Mickley L, Kaplan J, Jacob D. 2012. Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmos Chem Phys. 12:1597–1609. doi: 10.5194/acp-12-1597-2012.
  • Xia X-J, Zhou Y-H, Shi K, Zhou J, Foyer CH, Yu J-Q. 2015. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot. 66(10):2839–2856. doi: 10.1093/jxb/erv089.
  • Yu H, Blande JD. 2021. Diurnal variation in BVOC emission and CO2 gas exchange from above- and belowground parts of two coniferous species and their responses to elevated O3. Environ Pollut. 278:116830. doi: 10.1016/j.envpol.2021.116830.
  • Yu H, Blande JD. 2022. A potential ozone defense in intercellular air space: clues from intercellular BVOC concentrations and stomatal conductance. Sci Total Environ. 852:158456. doi: 10.1016/j.scitotenv.2022.158456.
  • Yuan X, Calatayud V, Gao F, Fares S, Paoletti E, Tian Y, Feng Z. 2016. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar. Plant Cell Environ. 39(10):2276–2287. doi: 10.1111/pce.12798.
  • Yuan X, Feng Z, Liu S, Shang B, Li P, Xu Y, Paoletti E. 2017a. Concentration- and flux-based dose–responses of isoprene emission from poplar leaves and plants exposed to an ozone concentration gradient. Plant Cell Environ. 40(9):1960–1971. doi: 10.1111/pce.13007.
  • Yuan X, Shang B, Xu Y, Xin Y, Tian Y, Feng Z, Paoletti E. 2017b. No significant interactions between nitrogen stimulation and ozone inhibition of isoprene emission in Cathay poplar. Sci Total Environ. 601-602:222–229. doi: 10.1016/j.scitotenv.2017.05.138.
  • Zuo Z, Weraduwage SM, Lantz AT, Sanchez LM, Weise SE, Wang J, Childs KL, Sharkey TD. 2019. Isoprene acts as a signaling molecule in gene networks important for stress responses and plant growth. Plant Physiol. 180(1):124–152. doi: 10.1104/pp.18.01391.