1,254
Views
0
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions (close environment)

Incorporation of nanobubbles in spaceflight food production systems

, , , , , , , & ORCID Icon show all
Article: 2271492 | Received 31 Aug 2023, Accepted 12 Oct 2023, Published online: 24 Oct 2023

References

  • Abu-Shahba MS, Mansour MM, Mohamed HI, Sofy MR. 2021. Comparative cultivation and biochemical analysis of iceberg lettuce grown in sand soil and hydroponics with or without microbubbles and macrobubbles. J Soil Sci Plant Nutr. 21(1):389–403. doi:10.1007/s42729-020-00368-x.
  • Agarwal A, Ng WJ, Liu Y. 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere. 84(9):1175–1180. doi:10.1016/j.chemosphere.2011.05.054.
  • Ahmed AKA, Shi X, Hua L, Manzueta L, Qing W, Marhaba T, Zhang W. 2018a. Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth. J Agric Food Chem. 66:5117–5124. doi:10.1021/acs.jafc.8b00333.
  • Ahmed AKA, Sun C, Hua L, Zhang Z, Zhang Y, Zhang W, Marhaba T. 2018b. Generation of nanobubbles by ceramic membrane filters: the dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure. Chemosphere. 203:327–335. doi:10.1016/j.chemosphere.2018.03.157.
  • Alheshibri M, Qian J, Jehannin M, Craig VSJ. 2016. A history of nanobubbles. Langmuir. 32(43):11086–11100. doi:10.1021/acs.langmuir.6b02489.
  • Arias S, Ruiz X, Casademunt J, Ramírez-Piscina L, González-Cinca R. 2009. Experimental study of a microchannel bubble injector for microgravity applications. Microgravity Sci Technol. 21:107–111. doi:10.1007/s12217-008-9060.
  • Atkinson AJ, Apul OG, Schneider O, Garcia-Segura S, Westerhoff P. 2019. Nanobubble Technologies Offer Opportunities to Improve Water Treatment. Acc Chem Res. 52(5):1196–1205. doi:10.1021/acs.accounts.8b00606.
  • Attard P. 2014. The stability of nanobubbles. Eur Phys J Spec Top. 223:893–914. doi:10.1140/epjst/e2013-01817-0.
  • Azizoglu U, Yilmaz N, Simsek O, Ibal JC, Tagele SB, Shin J-H. 2021. The fate of plant growth-promoting rhizobacteria in soilless agriculture: future perspectives. Biotech. 11(3):382. doi:10.1007/s13205-021-02941-2.
  • Babu KS, Amamcharla JK. 2022. Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective. Crit Rev Food Sci Nutr. 0:1–20. doi:10.1080/10408398.2022.2067119.
  • Buckey JC. 2006. Space physiology. New York: Oxford Press. Retrieved from https://books.google.com/books?id=RYnxmAEACAAJ.
  • Carducci A, Caponi E, Ciurli A, Verani M. 2015. Possible internalization of an enterovirus in hydroponically grown lettuce. Int J Environ Res Public Health. 12(7):8214. doi:10.3390/ijerph120708214.
  • Cerrón-Calle GA, Luna Magdaleno A, Graf JC, Apul OG, Garcia-Segura S. 2022. Elucidating CO2 nanobubble interfacial reactivity and impacts on water chemistry. J Colloid Interface Sci. 607:720–728. doi:10.1016/j.jcis.2021.09.033.
  • Cho C-H, Shin H-J, Singh B, Kim K, Park M-H. 2023. Assessment of sub-200-nm nanobubbles with ultra-high stability in water. Appl Water Sci. 13:149. doi:10.1007/s13201-023-01950-1.
  • Cooper M, Perchonok M, Douglas GL. 2017 December. Initial assessment of the nutritional quality of the space food system over three years of ambient storage. Npj Microgravity. 3. doi:10.1038/s41526-017-0022-z.
  • de Micco V, Aronne G, Colla G, Fortezza R, de Pascale S. 2009 December. Agro-biology for bioregenerative life support systems in long-term space missions: general constraints and the Italian efforts. J Plant Interact. 4:241–252. doi:10.1080/17429140903161348.
  • Dhawi F. 2023. The role of plant growth-promoting microorganisms (PGPMs) and their feasibility in hydroponics and vertical farming. Metabolites. 13(2):247. doi:10.3390/metabo13020247.
  • Douglas GL, Wheeler RM, Fritsche RF. 2021 August. Sustaining astronauts: resource limitations, technology needs, and parallels between spaceflight food systems and those on earth. Sustainability (Switzerland). 13:9424. doi:10.3390/su13169424.
  • Douglas GL, Zwart SR, Smith SM. 2020 September. Space food for thought: challenges and considerations for food and nutrition on exploration missions. J Nutr. 150:2242–2244. doi:10.1093/jn/nxaa188.
  • Dowdy R. 2020 August. Space Station 20th: food on ISS. Retrieved from https://www.nasa.gov/feature/space-station-20th-food-on-iss.
  • Du YD, Niu WQ, Gu XB, Zhang Q, Cui BJ, Zhao Y. 2018 November. Crop yield and water use efficiency under aerated irrigation: a meta-analysis. Agric Water Manag. 210:158–164. doi:10.1016/j.agwat.2018.07.038.
  • Ebina K, Shi K, Hirao M, Hashimoto J, Kawato Y, Kaneshiro S, Morimoto T, Koizumi K, Yoshikawa H. 2013. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS ONE. 8:e65339. doi:10.1371/journal.pone.0065339.
  • Ellery A. 2021. Supplementing closed ecological life support systems with in-situ resources on the moon. Life. 11(8). doi:10.3390/life11080770.
  • Ewert MK, Chen TT, Powell CD. 2022. Life support baseline values and assumptions document. Retrieved from http://www.sti.nasa.gov.
  • Fan K, Huang Z, Lin H, Shen L, Gao C, Zhou G, Hu J, Yang H, Xu F. 2022. Effects of micro-/nanobubble on membrane antifouling performance and the mechanism insights. J Cleaner Prod. 376:1–9. doi:10.1016/j.jclepro.2022.134331.
  • Fierer N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 15. doi:10.1038/nrmicro.2017.87.
  • Fortuna KJ, Holtappels D, Venneman J, Baeyen S, Vallino M, Verwilt P, Rediers H, De Coninck B, Maes M, Van Vaerenbergh J, et al. 2023. Back to the roots: agrobacterium-specific phages show potential to disinfect nutrient solution from hydroponic greenhouses. Appl Environ Microbiol. 89(4). doi:10.1128/AEM.00215-23/SUPPL_FILE/AEM.00215-23-S0001.PDF.
  • Frasetya B, Harisman K, Ramdaniah NAH. 2021. The effect of hydroponics systems on the growth of lettuce. IOP Conf Ser: Mater Sci Eng. 1098(4):042115. doi:10.1088/1757-899X/1098/4/042115.
  • Graham T, Wheeler R. 2016 June. Root restriction: a tool for improving volume utilization efficiency in bioregenerative life-support systems. Life Sci Space Res (Amst). 9:62–68. doi:10.1016/j.lssr.2016.04.001.
  • Grooms L. 2020 August. Nanobubbles grow “space crops”.AgUpdate. Retrieved from https://agupdate.com/agriview/news/business/nanobubbles-grow-space-crops/article_faee850a-b348-5903-a024-295449e684db.html.
  • Guo W, Ngo H-H, Li J. 2012. A mini-review on membrane fouling. Biores Technol. 122:27–34. doi:10.1016/j.biortech.2012.04.089.
  • Han Z, Kurokawa H, Matsui H, He C, Wang K, Wei Y, Dodbiba G, Otsuki A, Fujita T. 2022. Stability and free radical production for CO2 and H2 in air nanobubbles in ethanol aqueous solution. Nanomaterials. 12:237. doi:10.3390/nano12020237.
  • Hodgson L. 2023, January 5. 15 healthiest vegetables: nutrition and health benefits. Medical News Today. https://www.medicalnewstoday.com/articles/323319.
  • Iijima M, Yamashita K, Hirooka Y, Ueda Y, Yamane K, Kamimura C. 2020. Ultrafine bubbles effectively enhance soybean seedling growth under nutrient deficit stress. Plant Prod Sci. 23(3):366–373. doi:10.1080/1343943X.2020.1725391.
  • Ikeura H, Tsukada K, Tamaki M. 2017. Effect of microbubbles in deep flow hydroponic culture on spinach growth. J Plant Nutr. 40(16):2358–2364. doi:10.1080/01904167.2017.1346663.
  • Jiang X, Wang W, Yu G, Deng S. 2021. Contribution of Nanobubbles for PFAS Adsorption on graphene and OH- and NH2-functionalized graphene: comparing simulations with experimental results. Environ Sci Technol. 55:13254–13263. doi:10.1021/acs.est.1c03022.
  • Johnson CM, Boles HO, Spencer LSE, Poulet L, Romeyn M, Bunchek JM, … Wheeler RM. 2021 November. Supplemental food production with plants: a review of NASA research. Front Astron Space Sci. 8. doi:10.3389/fspas.2021.734343.
  • Kai K, Kasa S, Sakamoto M, Aoki N, Watabe G, Yuasa T, Iwaya-Inoue M, Ishibashi Y. 2016. Role of reactive oxygen species produced by NADPH oxidase in gibberellin biosynthesis during barley seed germination. Plant Signal Behav. 11:e1180492. doi:10.1080/15592324.2016.1180492.
  • Kaschubek D. 2021 August. Optimized crop growth area composition for long duration spaceflight. Life Sci Space Res (Amst). 30:55–65. doi:10.1016/j.lssr.2021.05.005.
  • Khan S, Purohit A, Vadsaria N. 2020. Hydroponics: current and future state of the art in farming. J Plant Nutr. 44(10):1515–1538. doi:10.1080/01904167.2020.1860217.
  • Kobayashi N, Yamaji K. 2021. Leaf lettuce (Lactuca sativa L. ‘L-121’) growth in hydroponics with different nutrient solutions used to generate ultrafine bubbles. J Plant Nutr. 45(6):816–827. doi:10.1080/01904167.2021.2006227.
  • Kulkarni S, Gandhi D, Mehta PJ. 2022 January. Nutraceuticals for reducing radiation effects during space travel. Handbook of Space Pharmaceuticals. doi:10.1007/978-3-030-05526-4_54.
  • Kyzas GZ, Bomis G, Kosheleva RI, Efthimiadou EK, Favvas EP, Kostoglou M, Mitropoulos AC. 2019. Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chem Eng J. 356:91–97. doi:10.1016/j.cej.2018.09.019.
  • Lee S, Lee J. 2015. Beneficial bacteria and fungi in hydroponic systems: types and characteristics of hydroponic food production methods. Sci Hortic. 195:206–215. doi:10.1016/j.scienta.2015.09.011.
  • Levine LH, Kasahara H, Kopka J, Erban A, Fehrl I, Kaplan F, Zhao W, Littell RC, Guy C, Wheeler R, et al. 2008. Physiologic and metabolic responses of wheat seedlings to elevated and super-elevated carbon dioxide. Adv Space Res. 42(12):1917–1928. doi:10.1016/j.asr.2008.07.014.
  • Li Y, Cave R. 2019. Nanobubbles in hydroponics. Proc AMIA Annu Fall Symp. 36:39. doi:10.3390/proceedings2019036039.
  • Liu S, Kawagoe Y, Makino Y, Oshita S. 2013. Effects of nanobubbles on the physicochemical properties of water: the basis for peculiar properties of water containing nanobubbles. Chem Eng Sci. 93:250–256. doi:10.1016/j.ces.2013.02.004.
  • Liu S, Oshita S, Kawabata S, Makino Y, Yoshimoto T. 2016. Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination. Langmuir. 32(43):11295–11302. doi:10.1021/acs.langmuir.6b01621.
  • Liu S, Oshita S, Kawabata S, Thuyet DQ. 2017. Nanobubble water’s promotion effect of barley (Hordeum vulgare L.) sprouts supported by RNA-Seq analysis. Langmuir. 33:12478–12486. doi:10.1021/acs.langmuir.7b02290.
  • Liu S, Oshita S, Makino Y. 2014. Stimulating effect of nanobubbles on the reactive oxygen species generation inside barley seeds as studied by the microscope spectrophotometer, In: Proceedings]. Int. Conf. of Agric. Eng., Zurich. 06–10.
  • Liu S, Oshita S, Makino Y, Wang Q, Kawagoe Y, Uchida T. 2016b. Oxidative capacity of nanobubbles and its effect on seed germination. ACS Sustain Chem Eng. 4:1347–1353. doi:10.1021/acssuschemeng.5b01368.
  • Liu Y, Zhou Y, Wang T, Pan J, Zhou B, Muhammad T, Zhou C, Li Y. 2019. Micro-nano bubble water oxygation: synergistically improving irrigation water use efficiency, crop yield and quality. J Cleaner Prod. 222:835–843. doi:10.1016/j.jclepro.2019.02.208.
  • Ma L, Chai C, Wu W, Qi P, Liu X, Hao J. 2023. Hydrogels as the plant culture substrates: a review. Carbohydr Polym. 305. doi:10.1016/j.carbpol.2023.120544.
  • Magdaleno AL, Cerrón-calle GA, Santos AJ, Lanza MRV, Apul OG, Garcia-segura S. 2023. Unlocking the potential of nanobubbles: achieving exceptional Gas efficiency in electrogeneration of hydrogen peroxide. Small. 2304547:1–10. doi:10.1002/smll.202304547.
  • Manos DP, Xydis G. 2019. Hydroponics: are we moving towards that direction only because of the environment? a discussion on forecasting and a systems review. Environ Sci Pollut Res. 26(13):12662–12672. doi:10.1007/s11356-019-04933-5.
  • Massa G, Dufour N, Carver J, Hummerick M, Wheeler R, Morrow R, Smith T. 2017a. VEG-01: veggie hardware validation testing on the international space station. Open Agriculture. 2(1):33–41. doi:10.1515/opag-2017-0003.
  • Massa GD, Romeyn M, Fritsche R. 2017b. Future food production system development pulling from space biology crop growth testing in veggie. Seattle, WA: American Society for Gravitational and Space Research. Oct 25-21.
  • Massa GD, Wheeler RM, Morrow RC, Levine HG. 2016. Growth chambers on the international space station for large plants. Acta Hortic. 1134:215–221. doi:10.17660/ActaHortic.2016.1134.29.
  • Massa GD, Wheeler RM, Stutte GW, Richards JT, Spencer LE, Hummerick ME, … Technology AF. 2015. Selection of leafy green vegetable varieties for a pick-and- eat diet supplement on ISS.
  • Meegoda, J.N., Aluthgun Hewage, S., Batagoda, J.H., 2018. Stability of nanobubbles. Environ Eng Sci 35, 1216–1227. doi:10.1089/ees.2018.0203.
  • Meegoda JN, Hewage SA, Batagoda JH. 2019. Application of the diffused double layer theory to nanobubbles. Langmuir. 35:10. doi:10.1021/acs.langmuir.9b01443.
  • Michailidi ED, Bomis G, Varoutoglou A, Kyzas GZ, Mitrikas G, Mitropoulos AC, Efthimiadou EK, Favvas EP. 2020. Bulk nanobubbles: production and investigation of their formation/stability mechanism. J Colloid Interface Sci. 564:371–380. doi:10.1016/j.jcis.2019.12.093.
  • Monje O, Stutte G, Chapman D. 2005. Microgravity does not alter plant stand gas exchange of wheat at moderate light levels and saturating CO2 concentration. Planta. 222(2):336–345. doi:10.1007/s00425-005-1529-1.
  • Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G. 2009. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol. 150:1855–1865. doi:10.1104/pp.109.139204.
  • Nguyen M, Knowling M, Tran NN, Burgess A, Fisk I, Watt M, Escribà-Gelonch M, This H, Culton J, Hessel V. 2023. Space farming: horticulture systems on spacecraft and outlook to planetary space exploration. Plant Physiol Biochem. 194:708–721. doi:10.1016/j.plaphy.2022.12.017.
  • Nirmalkar N, Pacek AW, Barigou M. 2018. On the existence and stability of bulk nanobubbles. Langmuir. 34:10964–10973. doi:10.1021/acs.langmuir.8b01163.
  • Oshita, S., Boerzhijin, S., Kameya, H., Yoshimura, M., Sotome, I., 2023. Promotion effects of ultrafine bubbles/nanobubbles on seed germination. Nanomaterials 13. doi:10.3390/nano13101677.
  • Oshita S, Kamijo Y, Pham TQA, Yoshimura M, Sotome I, Kameya H, Fujita T, Liu S. 2020. Number concentration of ultrafine bubble being effective in promoting barley seed germination. 混相流(Miscible flow). 34:194–204.
  • Owen-Going N, Sutton JC, Grodzinski B. 2003. Relationships of Pythium isolates and sweet pepper plants in single-plant hydroponic units. Can J Plant Pathol. 25(2):155–167. doi:10.1080/07060660309507064.
  • Pal P, Anantharaman H. 2022. CO2 nanobubbles utility for enhanced plant growth and productivity: recent advances in agriculture. J CO2 Util. 61:102008. doi:10.1016/j.jcou.2022.102008.
  • Park J-S, Kurata K. 2009. Application of microbubbles to hydroponics solution promotes lettuce growth. HortTechnology. 19:212–215. doi:10.21273/HORTTECH.19.1.212.
  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 11(11):789–799. doi:10.1038/nrmicro3109.
  • Seddon JRT, Lohse D, Ducker WA, Craig VSJ. 2012. A deliberation on nanobubbles at surfaces and in bulk. ChemPhysChem. 13(8):2179–2187. doi:10.1002/cphc.201100900.
  • Seridou P, Kalogerakis N. 2021. Disinfection applications of ozone micro- and nanobubbles. Environmental Science: Nano. 8(12):3493–3510. doi:10.1039/D1EN00700A.
  • Sharma H, Nirmalkar N. 2022. Enhanced gas-liquid mass transfer coefficient by bulk nanobubbles in water. Materials Today: proceedings, International Chemical Engineering Conference 2021 (100 Glorious Years of Chemical Engineering & Technology). 57:1838–1841. doi:10.1016/j.matpr.2022.01.029.
  • Shin D, Park JB, Kim YJ, Kim SJ, Kang JH, Lee B, Cho SP, Hong BH, Novoselov KS. 2015. Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells. Nat Commun. 6(1):1–6. doi:10.1038/ncomms7068.
  • Shiroodi S, Schwarz MH, Nitin N, et al. 2021. Efficacy of nanobubbles alone or in combination with neutral electrolyzed water in removing escherichia coli O157:H7, vibrio parahaemolyticus, and listeria innocua biofilms. Food Bioprocess Technol. 14:287–297. doi:10.1007/s11947-020-02572-0.
  • Siregar IZ, Muharam KF, Purawanto YA, Sudrajat DJ. 2020. Seed germination characteristics in different storage time of Gmelina arborea treated with ultrafine bubbles priming. Biodiversitas J Bio Divers. 21.
  • Steinberg S, Ming DW, Henninger DL. 2002. Plant production systems for microgravity: critical issues in water, air, and solute transport through unsaturated porous media. In NASA Technical Report Server (No. 20020039552). Retrieved October 20, 2023, from https://ntrs.nasa.gov/api/citations/20020039552/downloads/20020039552.pdf.
  • Stromberg J. 2015 August. NASA astronauts just ate food grown in space for the first time. Vox. Retrieved from https://www.vox.com/2015/8/10/9126949/nasa-food-space-station
  • Takahashi M, Chiba K, Li P. 2007. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J Phys Chem B. 111:1343–1347. doi:10.1021/jp0669254.
  • Takahashi M, Shirai Y, Sugawa S. 2021. Free-radical generation from bulk nanobubbles in aqueous electrolyte solutions: ESR spin-trap observation of microbubble-treated water. Langmuir. 37:5005–5011. doi:10.1021/acs.langmuir.1c00469.
  • Tan BH, An H, Ohl C-D. 2020. How bulk nanobubbles might survive. Phys Rev Lett. 124:134503. doi:10.1103/PhysRevLett.124.134503.
  • Thi Phan, K.K., Truong, T., Wang, Y., Bhandari, B., 2020. Nanobubbles: fundamental characteristics and applications in food processing. Trends Food Sci Technol 95, 118–130. doi:10.1016/j.tifs.2019.11.019.
  • Torres LJ, Jenson R, Weislogel M. 2020. Capillary Hydroponic Plant Watering System for Spacecraft. 2020 International Conference on Environmental Systems. 1–9.
  • Uchida T, Oshita S, Ohmori M, Tsuno T, Soejima K, Shinozaki S, Take Y, Mitsuda K. 2011. Transmission electron microscopic observations of nanobubbles and their capture of impurities in wastewater. Nanoscale Res Lett. 6:295. doi:10.1186/1556-276X-6-295.
  • Ulatowski K, Sobieszuk P. 2018. Influence of liquid flowrate on size of nanobubbles generated by porous-membrane modules. Chem Process Eng. 335–345.
  • van Delden SH, SharathKumar M, Butturini M, Graamans LJA, Heuvelink E, Kacira M, Kaiser E, Klamer RS, Klerkx L, Kootstra G, et al. 2021. Current status and future challenges in implementing and upscaling vertical farming systems. Nature Food. 2(12):944–956. doi:10.1038/s43016-021-00402-w.
  • Wang Y, Wang S, Sun J, Dai H, Zhang B, Xiang W, Hu Z, Li P, Yang J, Zhang W. 2021. Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production. Sci Total Environ. 800:149627. doi:10.1016/j.scitotenv.2021.149627.
  • Watkins P, Hughes J, Gamage TV, Knoerzer K, Ferlazzo ML, Banati RB. 2022 February. Long term food stability for extended space missions: a review. Life Sci Space Res (Amst). 32:79–95. doi:10.1016/j.lssr.2021.12.003.
  • Wheeler RM. 2003 January. Carbon balance in bioregenerative life support systems: some effects of system closure, waste management, and crop harvest index. Adv Space Res. 31:169–175. doi:10.1016/S0273-1177(02)00742-1.
  • Wu Y, Lyu T, Yue B, Tonoli E, Verderio EAM, Ma Y, Pan G. 2019. Enhancement of tomato plant growth and productivity in organic farming by agri-nanotechnology using nanobubble oxygation. J Agric Food Chem. 67(39):10823–10831. doi:10.1021/acs.jafc.9b04117.
  • Yaparatne S, Doherty ZE, Magdaleno AL, Matula EE, MacRae JD, Garcia-Segura S, Apul OG. 2022 May. Effect of air nanobubbles on oxygen transfer, oxygen uptake, and diversity of aerobic microbial consortium in activated sludge reactors. Bioresour Technol. 351:1–10. doi:10.1016/J.BIORTECH.2022.127090.
  • Yildirim T, Yaparatne S, Graf J, Garcia-Segura S, Apul O. 2022. Electrostatic forces and higher order curvature terms of Young–Laplace equation on nanobubble stability in water. npj Clean Water. 5:1–3. doi:10.1038/s41545-022-00163-4.
  • Zhang Z-H, Wang S, Cheng L, Ma H, Gao X, Brennan CS, Yan J-K. 2022. Micro-nano-bubble technology and its applications in food industry: a critical review. Food Rev Int. 1–23. doi:10.1080/87559129.2021.2023172.
  • Zhou Y, Bastida F, Zhou B, Sun Y, Gu T, Li S, Li Y. 2020. Soil fertility and crop production are fostered by micro-nano bubble irrigation with associated changes in soil bacterial community. Soil Biol Biochem. 141:107663. doi:10.1016/j.soilbio.2019.107663.
  • Zhou Y, Han Z, He C, Feng Q, Wang K, Wang Y, Luo N, Dodbiba G, Wei Y, Otsuki A, et al. 2021. Long-Term stability of different kinds of Gas nanobubbles in deionized and salt water. Materials (Basel). 14(7):1808. doi:10.3390/ma14071808.
  • Zhou Y, Zhou B, Xu F, Muhammad T, Li Y. 2019. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation. Agric Water Manag. 223:105713. doi:10.1016/j.agwat.2019.105713.
  • Zhu J, An H, Alheshibri M, Liu L, Terpstra PMJ, Liu G, Craig VSJ. 2016. Cleaning with bulk nanobubbles. Langmuir. 32:11203–11211. doi:10.1021/acs.langmuir.6b01004.
  • Zimmerman, W.B., Tesař, V., Bandulasena, H.C.H., 2011. Towards energy efficient nanobubble generation with fluidic oscillation. Curr Opin Colloid Interface Sci 16, 350–356. doi:10.1016/j.cocis.2011.01.010.