1,402
Views
0
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions (close environment)

Pick-and-eat space crop production flight testing on the International Space Station

, , , , , , , , & show all
Article: 2292220 | Received 04 Sep 2023, Accepted 04 Dec 2023, Published online: 18 Jan 2024

References

  • Abdel Latef AAH, Abu Alhmad MF, Kordrostami M, Abo-Baker A-B A-E, Zakir A. 2020. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. J Plant Growth Regul. 39:1293-1306. doi:10.1007/s00344-020-10065-9.
  • Aung K, Yanjuan J, Sheng Y. 2018. The role of water in plant–microbe interactions. Plant J. 93(4):771–780. doi:10.1111/tpj.13795.
  • Bache SE, Maclean M, Gettinby G, Anderson JG, MacGregor SJ, Taggart I. 2018. Universal decontamination of hospital surfaces in an occupied inpatient room with a continuous 405 nm light source. J Hosp Infect. 98:67–73. doi:10.1016/j.jhin.2017.07.010.
  • Barta DJ, Tibbitts TW, Bula RJ, Morrow RC. 1992. Evaluation of light emitting diode characteristics for a space-based plant irradiation source. Adv Space Res. 12(5):141–149. doi:10.1016/0273-1177(92)90020-X.
  • Basu A, Imrhan V. 2007. Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur J Clin Nutr. 61:295–303. doi:10.1038/sj.ejcn.1602510.
  • Bingham GE, Topham TS, Taylor A, Podolsky IG, Levinskikh MA, Sychev VN. 2003. Lada: ISS Plant growth technology checkout. SAE Technical Paper Series 2003-01-2613. doi:10.4271/2003-01-2613.
  • Bourget CM. 2008. An introduction to LEDs. HortScience. 43:1944–1946. doi:10.21273/HORTSCI.43.7.1944.
  • Bula R, Morrow R, Tibbitts T, Barta D, Ignatius R, Martin T. 1991. LEDs as a radiation source for plants. Hort Sci. 26:203–205. doi:10.21273/HORTSCI.26.2.203.
  • Bunchek JM, Curry AB, Romeyn MW. 2021. Sustained Veggie: a continuous food production comparison. ICES-2019-229.
  • Burgner SE, Mitchell C, Massa G, Romeyn MW, Wheeler RM, Morrow R. 2019. Troubleshooting performance failures of Chinese cabbage for Veggie on the ISS. ICES-2019-328.
  • Burgner SE, Nemali K, Massa GD, Wheeler RM, Morrow RC, Mitchell CA. 2020. Growth and photosynthetic responses of Chinese cabbage (Brassica rapa L. cv. Tokyo Bekana) to continuously elevated carbon dioxide in a simulated Space Station “Veggie” crop-production environment. Life Sci Space Res (Amst). 27:83–88, ISSN 2214-5524. doi:10.1016/j.lssr.2020.07.007.
  • Castro VA, Thrasher AN, Healy M, Ott CM, Pierson DL. 2004. Microbial Characterization during the Early Habitation of the International Space Station. Microb Ecol. 47(2):119–126. doi:10.1007/s00248-003-1030-y.
  • Catauro PM, Perchonok MH. 2012. Assessment of the long-term stability of retort pouch foods to support extended duration spaceflight. J Food Sci. 77(1):S29–S39. doi:10.1111/j.1750-3841.2011.02445.x.
  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E. 2005. Endophytic colonization of vitis Vinifera L. by plant growth-promoting bacterium Burkholderia Sp. strain PsJN. Appl Environ Microbiol. 71(4):1685–1693. doi:10.1128/AEM.71.4.1685-1693.2005.
  • Cooper MR, Perchonok MH, Douglas GL. 2017. Initial assessment of the nutritional quality of the space food system over three years of ambient storage. NPJ Microgravity 3(17):1-4. doi:10.1038/s41526-017-0022-z.
  • Dannemiller KC, Weschler CJ, Peccia J. 2017. Fungal and bacterial growth in floor dust at elevated relative humidity levels. Indoor Air. 27:354–363. doi:10.1111/ina.12313.
  • DeMers M. 2022. Alternaria alternata as endophyte and pathogen. Microbiology. 168:001153. doi:10.1099/mic.0.001153.
  • Gharaie S, Vaas LAI, Rosberg AK, Windstam ST, Karlsson ME, Bergstrand K-J, Khalil S, Wohanka W, Alsanius BW. 2017. Light spectrum modifies the utilization pattern of energy sources in Pseudomonas sp. DR 5-09. PLoS ONE 12(12):e0189862. doi:10.1371/journal.pone.0189862.
  • Glick BR. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo). 2012(Article ID 963401):15. doi:10.6064/2012/9634.
  • Gómez-Godínez LJ, Aguirre-Noyola JL, Martínez-Romero E, Arteaga-Garibay RI, Ireta-Moreno J, Ruvalcaba-Gómez JM. 2023. A look at plant-growth-promoting bacteria. Plants. 12(8):1668. doi:10.3390/plants12081668.
  • Graham T, Yorio N, Zhang P, Massa G, Wheeler R. 2019. Early seedling response of six candidate crop species to increasing levels of blue light. Life Sci Space Res (Amst). 21:40–48. doi:10.1016/j.lssr.2019.03.001.
  • Handy D, Hummerick ME, Dixit AR, Ruby AM, Massa G, Palmer P. 2021. Identification of plant growth promoting bacteria within space crop production systems. Front Astron Space Sci. 8(October):1–10. doi:10.3389/fspas.2021.735834.
  • Hanschen FS, Klopsch R, Oliviero T, Schreiner M, Verkerk R, Dekker M. 2017. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana. Sci. Rep. 7(40807):1–15.
  • Haridas D, Atreya CD. 2022. The microbicidal potential of visible blue light in clinical medicine and public health. Front Med. 9:905606. doi:10.3389/fmed.2022.905606.
  • Heo AY, Koo YM, Choi HW. 2022. Biological control activity of plant growth promoting rhizobacteria Burkholderia contaminans AY001 against tomato fusarium wilt and bacterial speck diseases. Biology (Basel). 11(4):619. doi:10.3390/biology11040619.
  • Hummerick ME, Garland JL, Wheeler RM, Bingham GE, Topham TS, Sychev VN, Podolsky IG. 2011. A hazard analysis critical control point plan applied to the Lada vegetable production units (VPU) to ensure the safety of space grown vegetables. Proceedings of the 41st International conference on environmental systems; Portland, OR, USA. 17–21 July 2011; p. 5277.
  • Hummerick ME, Khodadad CLM, Dixit AR, Spencer LE, Maldonado-Vásquez GJ, Gooden JL, Spern CJ, Fischer JA, Dufour N, Wheeler RM, et al. 2021. Spatial characterization of microbial communities on multi-species leafy greens grown simultaneously in the vegetable production systems on the international space station. Life. 11(10):1060. doi:10.3390/life11101060.
  • Ivanova T. 2002. Space farming on Mars: greenhouse aboard MIR shows plants can thrive in space. 21st Century Science and Technology. Summer 2002:41–49.
  • Kadariya J, Smith TC, Thapaliya D. 2014. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. BioMed Res Int. 2014:1–9. doi:10.1155/2014/827965.
  • Katsenios N, Andreou V, Sparangis P, Djordjevic N, Giannoglou M, Chanioti S, Kasimatis CN, Kakabouki I, Leonidakis D, Danalatos N, et al. 2022. Assessment of plant growth promoting bacteria strains on growth, yield and quality of sweet corn. Sci Rep. 12(1):1–13. doi:10.1038/s41598-022-16044-2.
  • Khodadad CL, Hummerick ME, Spencer LE, Dixit AD, Richards JT, Romeyn MW, Smith TM, Wheeler RM, Massa GD. 2020. Microbiological and nutritional analysis of lettuce crops grown on the International Space Station. Front Plant Sci. 11. doi:10.3389/fpls.2020.00199.
  • Kopsell DA, Sams CE, Morrow RC. 2015. Blue wavelengths from LED lighting increase nutritionally important metabolites in specialty crops. HortScience. 50:1285–1288. doi:10.21273/HORTSCI.50.9.1285.
  • Lane HW, Schoeller DA, editors. 2000. Nutrition in space flight and weightlessness models. Boca Raton, FL: CRC Press.
  • Lang JM, Coil DA, Neches RY, Brown WE, Cavalier D, Severance M, Jarrad T, Hampton-Marcell JT, Jack A, Gilbert JA, Eisen JA. 2017. A microbial survey of the International Space Station (ISS). PeerJ. 2017(12):1–20. doi:10.7717/peerj.4029.
  • Li X, Tambong J, Yuan KX, Chen W, Xu H, Lévesque CA, De Boer SH. 2018. Re-Classification of clavibacter michiganensis subspecies on the basis of whole-genome and multi-locus sequence analyses. Int J Syst Evol Microbiol. 68(1):234–240. doi:10.1099/ijsem.0.002492.
  • Liao J, Liu G, Monje O, Stutte GW, Porterfield DM. 2004. Induction of hypoxic root metabolism from physical limitations in O2 bioavailability in microgravity. Adv Space Res. 34:1579–1584. doi:10.1016/j.asr.2004.02.002.
  • Liu RH. 2003. Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Amer J Clinic Nutr. 78:517S–520S. doi:10.1093/ajcn/78.3.517S.
  • Losi A, Gärtner W. 2021. A light life together: photosensing in the plant microbiota. Photochem Photobiol Sci. 20:451–473. doi:10.1007/s43630-021-00029-7.
  • Madhaiyan M, Selvakumar G, Alex THH, Cai L, Ji L. 2021. Plant growth promoting abilities of novel Burkholderia-related genera and their interactions with some economically important tree species. Front Sustainable Food Syst. 5(September):1–14. doi:10.3389/fsufs.2021.618305.
  • Massa GD. 2017. Pick-and-eat salad-crop productivity, nutritional value, and acceptability to supplement the ISS food system. The NASA Task Book. https://taskbook.nasaprs.com/tbp/index.cfm?action=public_query_taskbook_content&TASKID=15517.
  • Massa GD. 2018. Pick-and-eat salad-crop productivity, nutritional value, and acceptability to supplement the ISS food system. The NASA Task Book. https://taskbook.nasaprs.com/tbp/index.cfm?action=public_query_taskbook_content&TASKID=15517.
  • Massa GD, Dufour NF, Carver JA, Hummerick ME, Wheeler RM, Morrow RC, Smith TM. 2017a. VEG-01: veggie hardware validation testing on the International Space Station. Open Agric. 2:33–41. doi:10.1515/opag-2017-0003.
  • Massa GD, Emmerich JC, Morrow RC, Bourget CM, Mitchell CA. 2006. Plant-growth lighting for space life support: a review. Gravit. Space Biol. 19:19–29.
  • Massa GD, Kim H-H, Wheeler RM, Mitchell CA. 2008. Plant productivity in response to LED lighting. HortScience. 43:1951–1956. doi:10.21273/HORTSCI.43.7.1951.
  • Massa GD, Newsham G, Hummerick ME, Morrow RC, Wheeler RM. 2017b. Plant pillow preparation for the veggie plant growth system on the International Space Station. Gravit Space Res. 5(1):24–34. doi:10.2478/gsr-2017-0002.
  • Massa GD, Wheeler RM, Morrow RC, Levine HG. 2016. Growth chambers on the International Space Station for large plants. Acta Hortic. 1134:215–222. doi:10.17660/ActaHortic.2016.1134.29.
  • Massa GD, Wheeler RM, Stutte GW, Richards JT, Spencer LE, Hummerick ME, Douglas GL, Sirmons T. 2015. Selection of leafy green vegetable varieties for a pick-and eat diet supplement on ISS. ICES-2015-252. 1–16.
  • Mckenzie K, Maclean M, Timoshkin IV, Macgregor SJ, Anderson JG. 2014. Enhanced inactivation of Escherichia Coli and Listeria monocytogenes by exposure to 405 Nm light under sub-lethal temperature, salt and acid stress conditions. Int J Food Microbiol. 170:91–98. doi:10.1016/j.ijfoodmicro.2013.10.016.
  • Mickens MA, Skoog EJ, Reese LE, Barnwell PL, Spencer LE, Massa GD, Wheeler RM. 2018. A strategic approach for investigating light recipes for ‘Outredgeous’ red romaine lettuce using white and monochromatic LEDs. Life Sci Space Res (Amst). 19:53–62. doi:10.1016/j.lssr.2018.09.003.
  • Mickens MA, Torralba M, Robinson SA, Spencer LE, Romeyn MW, Massa GD, Wheeler RM. 2019. Growth of red pak choi under red and blue, supplemented white, and artificial sunlight provided by LEDs. Sci Hortic. 245:200–209. doi:10.1016/j.scienta.2018.10.023.
  • Mitchell CA. 2022. History of controlled environment horticulture: indoor farming and its key technologies. HortScience. 57(2):247–256. [accessed 2023 Jul 25]. doi:10.21273/HORTSCI16159-21.
  • Mogren L, Windstam S, Boqvist S, Vågsholm I, Söderqvist K, Rosberg AK, Julia Lindén J, Mulaosmanovic E, Karlsson M, Uhlig E, et al. 2018. The hurdle approach-a holistic concept for controlling food safety risks associated with pathogenic bacterial contamination of leafy green vegetables. A review. Front Microbiol. 9:1–20. doi:10.3389/fmicb.2018.01965.
  • Montville TJ, Matthews KR. 2008. Food microbiology: an introduction. 2nd ed. Washington (DC): ASM Press.
  • Morrow RC, Remiker RW. 2009. A deployable salad crop production system for lunar habitats. SAE Tech. Paper 2009-01-2382.
  • Morrow RC, Remiker RW, Mischnick MJ, Tuominen LK, Lee MC, Crabb TM. 2005. A low equivalent system mass plant growth unit for space exploration. SAE Tech. Paper 2005-01-2843.
  • Morrow RC, Wetzel JP, Richter RC, Crabb TM. 2017. Evolution of space-based plant growth technologies for hybrid life support systems. ICES-2017-301.
  • Morsi AH, Massa GD, Morrow RC, Wheeler RM, Elsysy MA, Mitchell CA. 2023. Leaf yield and mineral content of mizuna in response to cut-and-come-again harvest, substrate particle size, and fertilizer formulation in a simulated spaceflight environment. Life Sci Space Res (Amst). doi:10.1016/j.lssr.2023.09.005.
  • Neugart S, Baldermann S, Hanschen FS, Klopsch R, Wiesner-Reinhold M, Schreiner M. 2018. The intrinsic quality of brassicaceous vegetables: how secondary plant metabolites are affected by genetic, environmental, and agronomic factors. Sci Hortic. 233:460–478. doi:10.1016/j.scienta.2017.12.038.
  • Perchonok MH, Cooper MR, Catauro PM. 2012. Mission to mars: food production and processing for the final frontier. Ann Rev Food Sci Techno. 3:311–330. doi:10.1146/annurev-food-022811-101222.
  • Polivkova Z, Smerak P, Demova H, Houska M. 2010. Antimutagenic effects of lycopene and tomato puree. J Med Food. 13:1443–1450. doi:10.1089/jmf.2009.0277.
  • Porterfield DM. 2002. The biophysical limitations in physiological transport and exchange in plants grown in microgravity. J Plant Growth Regul. 21:177–190. doi:10.1007/s003440010054.
  • Poulet L, Dussap C-G, Fontaine J-P. 2020. Development of a mechanistic model of leaf surface gas exchange coupling mass and energy balances for life-support systems applications. Acta Astronaut. 175:517–530. doi:10.1016/j.actaastro.2020.03.048.
  • Poulet L, Zeidler C, Bunchek J, Zabel P, Vrakking V, Schubert D, Massa G, Wheeler R. 2021. Crew time in a space greenhouse using data from analog missions and Veggie. Life Sci Space Res (Amst). 31:101–112. doi:10.1016/j.lssr.2021.08.002.
  • Prithiviraj B, Weir T, Bais HP, Schweizer HP, Vivanco JM. 2005. Plant models for animal pathogenesis. Cell Microbiol. 7:315–324. doi:10.1111/j.1462-5822.2005.00494.x.
  • Romeyn MW, Spencer LE, Massa GD, Wheeler RM. 2019. Crop readiness level (CRL): a scale to track progression of crop testing for space. ICES-2019-342.
  • Schuerger AC. 2021. Integrated pest management protocols for space-based bioregenerative life support systems. Front Astron Space Sci. 8:759641. doi:10.3389/fspas.2021.759641.
  • Schuerger AC, Amaradasa BS, Dufault NS, Hummerick ME, Richards JT, Khodadad CL, Smith TM, Massa GD. 2021a. Fusarium oxysporum as an opportunistic fungal pathogen on Zinnia hybrida plants grown on board the International Space Station. Astrobiology. 21:9. doi:10.1089/ast.2020.2399.
  • Seo KS, Bohach GA. 2007. Staphylococcus aureus. In: Doyle M.P., Beuchat L.R., editors. Food micro-biology: fundamentals and frontiers. Washington (DC): ASM Press; p. 493–518.
  • Sergejeva D, Alsina I, Duma M, Dubova L, Augspole I, Erdberga I, Berzina K. 2018. Evaluation of different lighting sources on the growth and chemical composition of lettuce. Agronomy Res. 16:892–899.
  • Sielaff AC, Urbaniak C, Babu G, Mohan M, Stepanov VG, Tran Q, Wood JM, et al. 2019. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome. 7(12):50. doi:10.1111/tpj.13795.
  • Smith SM, Zwart SR, Douglas GL, Heer M. 2021. Human adaptation to spaceflight: the role of food and nutrition. 2nd ed. NASA, NP-2021-03-003-JSC. p. 255.
  • Spencer LE, Hummerick ME, Stutte GW, Sirmons T, Graham GT, Massa G, Wheeler RM. 2019. Dwarf tomato and pepper cultivars for space crops. ICES-2019-164.
  • Steele M, Odumera J. 2004. Irrigation water as source of foodborne pathogens on fruits and vegetables. J Food Protect. 67:2839–2849. doi:10.4315/0362-028X-67.12.2839.
  • Steenhoudt O, Vanderleyden J. 2000. Azospirillum, a Free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev. 24(4):487–506. doi:10.1016/S0168-6445(00)00036-X.
  • Stutte GW, Edney S, Skerritt T. 2009. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience. 44:79–82. doi:10.21273/HORTSCI.44.1.79.
  • Sugimoto M, Oono Y, Gusev O, Matsumoto T, Yazawa T, Levinskikh MA, Sychev VN, Bingham GE, Wheeler RM, Hummerick ME. 2014. Genome-wide expression analysis of reactive oxygen species gene network in Mizuna plants grown in long-term spaceflight. BMC Plant Biol. 14:4. doi:10.1186/1471-2229-14-4.
  • Sychev VN, Shepelev EY, Meleshhko GI, Gurieva TS, Levinskikh MA, Podolshy IG, Dadsheva OA, Popov VV. 2001. Main characteristics of biological components of developing life support system observed during experiment about orbital complex MIR. Adv Space Res. 27(9):1529–1534. doi:10.1016/S0273-1177(01)00245-9.
  • Takkinen J, Nakari UM, Johanson T, Niskanen T, Siitonen A, Kuusi M. 2005. A nationwide outbreak of multiresistant Salmonella typhimurium in Finland due to contaminated lettuce from Spain, May 2005. Euro Surveill. 10:E050630–E050631. doi:10.2807/esw.10.26.02734-en.
  • Tataryn J, Morton V, Cutler J, McDonald L, Whitfield Y, Billard B, Gad RR, Hexemer A. 2014. Outbreak of E. coli 0157:H7 associated with lettuce served at fast food chains in the Maritimes and Ontario, Canada, Dec 2012. Can Commun Dis Rep 40(Suppl. 1):2–9. doi:10.14745/ccdr.v40is1a01.
  • Taylor EV, Nguyen TA, Machesky KD, Koch E, Sotir MJ, Bohm SR, Folster JP, Bokanyi R, Kupper A, Bidol SA, et al. 2013. Multistate outbreak of Escherichia coli 0145 infections associated with romaine lettuce consumption, 2010. J Food Prot. 76:939–944. doi:10.4315/0362-028X.JFP-12-503.
  • United States Food and Drug Administration [FDA]. 2022. Proposed rule on agriculture water. https://www.fda.gov/food/food-safety-modernization-act-fsma/fsma-proposed-rule-agricultural-waterFSMA.
  • Venkateswaran K, Vaishampayan P, Cisneros J, Pierson DL, Rogers SO, Perry J. 2014. International space station environmental microbiome- microbial inventories of ISS filter debris. Appl Microbiol Biotechnol. 98:6453–6466. doi:10.1007/s00253-014-5650-6.
  • Wadamori Y, Gooneratne R, Hussain MA. 2017. Outbreaks and factors influencing microbiological contamination of fresh produce. J Sci Food Agric. 97:1396–1403. doi:10.1002/jsfa.8125.
  • Wiesner M, Zrenner R, Krumbein A, Glatt H, Schreiner M. 2013. Genotypic variation of the glucosinolate profile in pak choi (Brassica rapa ssp chinensis). J Agric Food Chem. 61:1943–1953. doi:10.1021/jf303970k.
  • Yamaguchi N, Roberts M, Castro S, Oubre C, Makimura K, Leys N, Grohman E, Sugita T, Ichijo T, Nasu M. 2014. Microbial monitoring of crewed habitats in space-current status and future perspectives. Microbes Environ. 29:1–11. doi:10.1264/jsme2.ME14031.
  • Zlosnik JEA, Henry DA, Hird TJ, Hickman R, Campbell M, Cabrera A, Chiavegatti GL, Chilvers MA, Sadarangani M. 2020. Epidemiology of Burkholderia infections in people with cystic fibrosis in Canada between 2000 and 2017. Ann Am Thorac Soc. 17(12):1549–1557. doi:10.1513/AnnalsATS.201906-443OC.
  • Zwart SR, Kloeris V, Perchonok M, Braby L, Smith SM. 2009. Assessment of nutrient stability in foods from the space food system after long-duration spaceflight on the ISS. J Food Sci. 74:H209–H217. doi:10.1111/j.1750-3841.2009.01265.x.