433
Views
7
CrossRef citations to date
0
Altmetric
Review

The potential of ultrasound in cardiac pacing and rhythm modulation

, , &
Pages 815-822 | Received 16 Dec 2015, Accepted 25 Jul 2016, Published online: 23 Aug 2016

References

  • Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics–2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117(4):e25–e146.
  • Chihrin SM, Mohammed U, Yee R, et al. Utility and cost effectiveness of temporary pacing using active fixation leads and an externally placed reusable permanent pacemaker. Am J Cardiol. 2006;98(12):1613–1615.
  • Lee KL, Lau C-P, Tse H-F, et al. First human demonstration of cardiac stimulation with transcutaneous ultrasound energy delivery: implications for wireless pacing with implantable devices. J Am Coll Cardiol. 2007;50(9):877–883.
  • Dalecki D. Mechanical bioeffects of ultrasound. Annu Rev Biomed Eng. 2004;6:229–248.
  • Harvey EN. The effect of high frequency sound waves on heart muscle and other irritable tissue. Am J Physiol Leg. 1929;91:284–290.
  • Dalecki D, Keller BB, Raeman CH, et al. Effects of pulsed ultrasound on the frog heart: I. Thresholds for changes in cardiac rhythm and aortic pressure. Ultrasound Med Biol. 1993;19(5):385–390.
  • Fleischman A, Vecchio C, Sunny Y, et al. Ultrasound-induced modulation of cardiac rhythm in neonatal rat ventricular cardiomyocytes. J Appl Physiol. ( 1985)2015;118(11):1423–1428.
  • Livneh A, Kimmel E, Kohut AR, et al. Extracorporeal acute cardiac pacing by high intensity focused ultrasound. Prog Biophys Mol Biol. 2014;115(2–3):140–153.
  • Dalecki D, Keller BB, Carstensen EL, et al. Thresholds for premature ventricular contractions in frog hearts exposed to lithotripter fields. Ultrasound Med Biol. 1991;17(4):341–346.
  • Nelson TR, Fowlkes JB, Abramowicz JS, et al. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J Ultrasound Med. 2009;28(2):139–150.
  • Joy J, Cooke I, Love M. Is ultrasound safe? Obstet Gynaecol. 2006;8:222–227.
  • Beissner K. Radiation force and force balance. In: Ziskin MC, Lewin PA, editors. Ultrasound exposimetry. Boca Raton (FL): CRC Press; 1993. p. 127–142.
  • Goss SA, Johnston RL, Dunn F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am. 1978;64(2):423–457.
  • Nyborg WL. Physical mechanisms for biological effects of ultrasound. US Department of Health, Education, and Welfare. Washington (DC): Government Printing Office; 1977.
  • Nyborg WL. Intermediate biophysical mechanics. Menlo Park (CA): Cummings Publications; 1975.
  • Dayton PA, Allen JS, Ferrara KW. The magnitude of radiation force on ultrasound contrast agents. J Acoust Soc Am. 2002;112(5 Pt 1):2183–2192.
  • Kak AC, Dines KA. Signal processing of broadband pulsed ultrasound: measurement of attenuation of soft biological tissues. IEEE Trans Biomed Eng. 1978;25(4):321–344.
  • Borgnis FE. Acoustic radiation pressure of plane compressional waves. Rev Mod Phys. 1953;25(3):653–664.
  • Wojcik J, Kujawska T, Nowicki A, et al. Fast prediction of pulsed nonlinear acoustic fields from clinically relevant sources using time-averaged wave envelope approach: comparison of numerical simulations and experimental results. Ultrasonics. 2008;48(8):707–715.
  • Sachs F. Biophysics of mechanoreception. Membr Biochem. 1986;6(2):173–195.
  • Craelius W, Chen V, el-Sherif N. Stretch activated ion channels in ventricular myocytes. Biosci Rep. 1988;8(5):407–414.
  • Kohl P, Noble D. Mechanosensitive connective tissue: potential influence on heart rhythm. Cardiovasc Res. 1996;32(1):62–68.
  • Kamkin, A., Kiseleva I, Lozinsky I, et al. The role of mechanosensitive fibroblasts in the heart. In: Kamkin A, Kiseleva I, editors. Mechanosensitivity in cells and tissues. Moscow: Academia Academia Publishing House Ltd.; 2005.
  • Kohl P, Camelliti P. Fibroblast-myocyte connections in the heart. Heart Rhythm. 2012;9(3):461–464.
  • Sigurdson W, Ruknudin A, Sachs F. Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am J Physiol. 1992;262(4 Pt 2):H1110–H1115.
  • White E, Le Guennec JY, Nigretto JM, et al. The effects of increasing cell length on auxotonic contractions; membrane potential and intracellular calcium transients in single guinea-pig ventricular myocytes. Exp Physiol. 1993;78(1):65–78.
  • Calaghan SC, White E. The role of calcium in the response of cardiac muscle to stretch. Prog Biophys Mol Biol. 1999;71(1):59–90.
  • Franz MR, Cima R, Wang D, et al. Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation. 1992;86(3):968–978.
  • Franz MR. Mechano-electrical feedback in ventricular myocardium. Cardiovasc Res. 1996;32(1):15–24.
  • Hansen DE, Craig CS, Hondeghem LM. Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation. 1990;81(3):1094–1105.
  • Healy SN, McCulloch AD. An ionic model of stretch-activated and stretch-modulated currents in rabbit ventricular myocytes. Europace. 2005;7 Suppl 2:128–134.
  • Kohl P, Bollensdorff C, Garny A. Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp Physiol. 2006;91(2):307–321.
  • Morris CE, Juranka PF. Nav channel mechanosensitivity: activation and inactivation accelerate reversibly with stretch. Biophys J. 2007;93(3):822–833.
  • Krasovitski B, Frenkel V, Shoham S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci U S A. 2011;108(8):3258–3263.
  • MacRobbie AG, Raeman CH, Child SZ, et al. Thresholds for premature contractions in murine hearts exposed to pulsed ultrasound. Ultrasound Med Biol. 1997;23(5):761–765.
  • Rota C, Raeman CH, Child SZ, et al. Detection of acoustic cavitation in the heart with microbubble contrast agents in vivo: a mechanism for ultrasound-induced arrhythmias. J Acoust Soc Am. 2006;120(5 Pt 1):2958–2964.
  • Hersch A, Adam D. Premature cardiac contractions produced efficiently by external high-intensity focused ultrasound. Ultrasound Med Biol. 2011;37(7):1101–1110.
  • Miller DL, Dou C, Lucchesi BR. Are ECG premature complexes induced by ultrasonic cavitation electrophysiological responses to irreversible cardiomyocyte injury? Ultrasound Med Biol. 2011;37(2):312–320.
  • Tran TA, Le Guennec JY, Babuty D, et al. On the mechanisms of ultrasound contrast agents-induced arrhythmias. Ultrasound Med Biol. 2009;35(6):1050–1056.
  • Schott E. Uber Ventrikelstillstand (Adams-Stokes’sche Anfalle) nebst Bemerkungen uber andersartige Arhythymien passagerer Natur. Deutsches Arch Klin Med. 1920;131:211–229.
  • Pellis T, Kohl P. Extracorporeal cardiac mechanical stimulation: precordial thump and precordial percussion. Br Med Bull. 2010;93:161–177.
  • Klumbies A, Paliege R, Volkmann H. [Mechanical emergency stimulation in asystole and extreme bradycardia]. Z Gesamte Inn Med. 1988;43:348–352.
  • Zeh E, Rahner E. [The manual extrathoracal stimulation of the heart. Technique and effect of the precordial thump (author’s translation)]. Z Kardiol. 1978;67:299–304.
  • Zoll PM, Belgard AH, Weintraub MJ, et al. External mechanical cardiac stimulation. N Engl J Med. 1976;294(23):1274–1275.
  • Albano A, Di Comite A, Tursi F. [Rhythmic percussion of the precordium with the closed fist as the first procedure in therapy of cardiac arrest]. Minerva Med. 1967;58(59):2659–2665.
  • Chan L, Reid C, Taylor B. Effect of three emergency pacing modalities on cardiac output in cardiac arrest due to ventricular asystole. Resuscitation. 2002;52(1):117–119.
  • Humphrey VF. Ultrasound and matter–physical interactions. Prog Biophys Mol Biol. 2007;93(1–3):195–211.
  • Sarvazyan AP, Rudenko OV, Nyborg WL. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med Biol. 2010;36(9):1379–1394.
  • Eich C, Bleckmann A, Schwarz SK. Percussion pacing–an almost forgotten procedure for haemodynamically unstable bradycardias? A report of three case studies and review of the literature. Br J Anaesth. 2007;98(4):429–433.
  • Avitall B, Levine HJ, Naimi S, et al. Local effects of electrical and mechanical stimulation on the recovery properties of the canine ventricle. Am J Cardiol. 1982;50(2):263–270.
  • Buiochi EB, Miller RJ, Hartman E, et al. Transthoracic cardiac ultrasonic stimulation induces a negative chronotropic effect. IEEE Trans Ultrason Ferroelectr Freq Control. 2012;59(12):2655–2661.
  • Abramochkin DV, Lozinsky IT, Kamkin A. Influence of mechanical stress on fibroblast-myocyte interactions in mammalian heart. J Mol Cell Cardiol. 2014;70:27–36.
  • Mortimer AJ, Dyson M. The effect of therapeutic ultrasound on calcium uptake in fibroblasts. Ultrasound Med Biol. 1988;14(6):499–506.
  • Tsukamoto A, Higashiyama S, Yoshida K, et al. Stable cavitation induces increased cytoplasmic calcium in L929 fibroblasts exposed to 1-MHz pulsed ultrasound. Ultrasonics. 2011;51(8):982–990.
  • Shiraishi I, Takamatsu T, Minamikawa T, et al. Quantitative histological analysis of the human sinoatrial node during growth and aging. Circulation. 1992;85(6):2176–2184.
  • Davies MJ, Pomerance A. Quantitative study of ageing changes in the human sinoatrial node and internodal tracts. Br Heart J. 1972;34(2):150–152.
  • De Ferrari GM, Crijns HJGM, Borggrefe M, et al. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32(7):847–855.
  • Chen PS, Tan AY. Autonomic nerve activity and atrial fibrillation. Heart Rhythm. 2007;4(3 Suppl):S61–S64.
  • Schachter SC. Vagus nerve stimulation therapy summary: five years after FDA approval. Neurology. 2002;59(6 Suppl 4):S15–S20.
  • Cristancho P, Cristancho MA, Baltuch GH, et al. Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year. J Clin Psychiatry. 2011;72(10):1376–1382.
  • Medical devices. Available from: http://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/Recently-ApprovedDevices/ucm078532.htm.
  • Juan EJ, González R, Albors G, et al. Vagus nerve modulation using focused pulsed ultrasound: potential applications and preliminary observations in a rat. Int J Imaging Syst Technol. 2014;24(1):67–71.
  • Wright CJ, Rothwell J, Saffari N. Ultrasonic stimulation of peripheral nervous tissue: an investigation into mechanisms. In: Journal of Physics: Conference Series. IOP Publishing: 13th Anglo-French Physical Acoustics Conference (AFPAC2014); 2015; p. 012003.
  • Neren, D., Johnson MD, Legon W, et al. Vagus nerve stimulation and other neuromodulation methods for treatment of traumatic brain injury. Neurocrit Care. 2016;24(2):308–319.
  • Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–329.
  • Kim H, Taghados SJ, Fischer K, et al. Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound. Ultrasound Med Biol. 2012;38(9):1568–1575.
  • Bawiec CR, Sunny Y, Nguyen AT, et al. Finite element static displacement optimization of 20-100 kHz flexural transducers for fully portable ultrasound applicator. Ultrasonics. 2013;53(2):511–517.
  • Samuels JA, Weingarten MS, Margolis DJ, et al. Low-frequency (<100 kHz), low-intensity (<100 mW/cm(2)) ultrasound to treat venous ulcers: a human study and in vitro experiments. J Acoust Soc Am. 2013;134(2):1541–1547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.